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On the scarring of eigenstates for some arithmetic
hyperbolic manifolds in dimension 2 and 3

Tristan POULLAOUEC

April 27, 2004

Abstract

In this paper, we shall deal with the so-called conjecture of Quantum Unique Ergod-
icity. In [9], Rudnick and Sarnak showed that there is no strong scarring (see definition
page 2) on closed geodesics for compact arithmetic congruence surfaces derived from a
quaternion division algebra (see Introduction and Theorem 0.1).

First we extend this Theorem to the congruence surface X = Γ(2)\H2 (it is not
compact but has finite measure), where Γ(2) is the kernel of the projection of SL(2,Z) into
SL(2,Z2). Then, after some algebraic and geometric preliminaries – and the establishment
of useful technical Lemmas – we extend Theorem 0.1 to a class of Riemannian manifolds
X

R
= Γ

R
\H3, the so-called (KS

2 ) class, that are again derived from quaternion division
algebras. We show that there is no strong scarring on closed geodesics or on Γ

R
- closed

imbedded totally geodesic surfaces.

Introduction

A topic of great interest in quantum mechanics is the study of the limit of the quantized
systems when ~−→ 0, which we call the semi-classical limit of quantum mechanics. The under-
lying purpose is to relate classical dynamics to the quantum one, in order to understand better
the quantum mechanics. This is the path we follow to study quantum chaos : we consider
a classicaly chaotic system, and we try to identify in the quantized system the influence of the
chaotic nature of the classical dynamics.

For M a Riemannian manifold of negative sectional curvature in dimension 2 or 3, it is
well known (see [1], [4], [5]) that the geodesic flow on the unitary sphere tangent bundle T 1M
is ergodic and chaotic. After quantization, the wave functions of the stationary Schrödinger
equation −~

2

2m
∆φ+ V (q)φ = E φ with E a constant (0.1)

are the L 2 eigenfunctions or eigenmodes of −~
2

2m
∆ + V (q), where ∆ is the Laplace-Beltrami

operator on M . The potential V (q) is in fact related to the curvature of M . We suppose
that this operator has a discrete spectrum (λk)k∈N with λk −→

k→∞
∞, which is true at least in

the compact case.
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We shall denote by (φk)k∈N the associated eigenfunctions – we assume that they are nor-
malized, so that ‖φk‖2

= 1 – and by (µk)k∈N the corresponding measures given by

dµk(q) =
∣
∣φk(q)

∣
∣
2
dvol(q) (0.2)

The measure µk is actually the probability of presence of a particle in the state φk at q.
Moreover the semi-classical limit is the limit at large energies i.e. when k −→ ∞. We shall
now state the so-called Quantum Unique Ergodicity Conjecture (see [10]) :

Conjecture Let M be a Riemannian manifold of dimension 2 or 3 and of sectional

curvature K < 0. Then dµk −→
k→∞

dvol

vol(M)

For a compact surface M whose geodesic flow is ergodic, this result was established in
[12] for a subsequence of full density of (µk). More precisely, we shall consider here quotient
manifolds M = Γ\Hn (n = 2, 3) where Γ is a freely acting discrete subgroup of Is(Hn), endowed
with the projection of the canonical Poincaré metric on Hn. In particular (see [3]) all Riemann
surfaces are of such a type, apart from S2, C, C∗ and T2. A first step towards this conjecture
was realized in [9] with the following Theorem :

Theorem 0.1 Let X = Γ\H2 be an arithmetic congruence surface derived from a quaternion

algebra and ν a quantum limit on X. If σ = singsupp ν is contained in the

union of a finite number of isolated points and closed geodesics, then σ = ∅.

In other words, there is no strong scarring (cf. [10]) of eigenmodes on closed geodesics. Here
Γ is a congruence subgroup of a discrete group derived from an indefinite quaternion division
algebra. By a quantum limit ν we mean a probability measure on M such that there exists
a subsequence (µkj) of (µk) with µkj

−→
j→∞

ν. All the quantum limits considered in the sequel

will implicitely have singsupp ν 6= ∅.
In [9] a congruence subgroup is implicitly used to get a free action onH2. Thus the canonical

projection H2 −→ Γ\H2 will be a covering ; otherwise branching points would appear, at which
the projection of the canonical Poincaré metric would be singular.

In this work, we shall extend Theorem 0.1 to the particular arithmetic congruence surface
X = Γ(2)\H2, where Γ(2) is the congruence group Γ(2) = { γ ∈ SL(2,Z)

/
γ ≡ I2 [2] }.

This space is not compact anymore, but it has finite measure. The extension is straight forward,
we just adapt the techniques and ideas of [9]. Note that SL(2,Z) being derived from the matrix
algebra M(2,Z), Theorem 0.1 does not apply to the surface X.

Then we deal with the case of X
R

= Γ
R
\H3, where Γ

R
is a discrete group derived from a

class of division quaternions algebras explicitly defined in sections 3.2 and 4. We show that a
non empty set Λ contained in a finite union of isolated points, closed geodesics and Γ

R
- closed

(see section 4 for definition) imbedded totally geodesic surfaces of X
R

(in this last case, we
shall assume that area(Λ) 6= 0) cannot be the singular support of a quantum limit on X

R
.

Before giving the proof, we shall recall some useful points of algebra and geometry
(cf. section 2 and 3), and establish some arithmetical and geometrical Lemmas (cf. section 3
and 4). Contrary to the previous case, the proof is not a straight adaptation of [9] because
the algebraic formalism used there (binary quadratic forms) does not apply to points (or to
the imbedded surfaces) anymore.
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1 The case Γ(2)\H2

Let us recall that

Γ(2) =

{

γ =

(
a b
c d

)

∈ SL(2,Z)
/
γ ≡ I [2]

}

(1.1)

We define the same way Γ(N) for N ≥ 2. The result obtained is the following :

Theorem 1.1 If the singular support σ of a quantum limit on X = Γ(2)\H2 is contained

in a finite union of isolated points and closed geodesics of X, then σ = ∅.

1.1 Correspondences and separation

Definition A correspondence C of order r on a Riemannian manifoldX is a mapping from

X to Xr/Sr such that C (x) = (S1(x), . . . , Sr(x)) with ∀ k = 1 . . . r, Sk ∈ Is(X).

Here Sr denote the symmetric group of order r.

We shall denote by T
C

the associated operator of L 2(X) defined by T
C
(f) : x 7−→

r∑

k=1

f
(
Sk(x)

)
.

Definition Let Λ be a subset of X. We say that such a correspondence C separates Λ

if ∃ z ∈ X − Λ such that ∃ ! k ∈ {1, . . . , r}, Sk(z) ∈ Λ.

Then we have the following Proposition (proved in [9])

Proposition 1.1 Let Λ ⊂ X be a closed subset of zero volume and C be a correspondence

on X that separates Λ. Let (φj)j∈N be a sequence of eigenfunctions of T
C

such that ∀ j ∈ N, ‖φj‖
2

= 1 and that dν = lim
j→∞

|φj(z)|2dvol(z) exists.

Then singsupp ν 6= Λ.

Keep in mind than given any measure ν on X, its singular support is a closed subset of X.

1.2 H2, the modular group and modular operators

In the sequel, we shall set Γ = SL(2,Z) and deal with the hyperbolic space X = Γ(2)\H2.

1.2.1 Some hyperbolic geometry

• The space H2 = { z ∈ C / Im(z) > 0 } is provided with Poincaré hyperbolic metric

ds = |dz|/Im(z) which becomes in cartesian coordinates ds2 =
(
dx2 + dy2

)
/y2. As shown

on figure 1, the geodesics of H2 are half-circles centered on the real axis (like γ who is con-

necting a to b) or vertical straight half-lines (like γ2 who is connecting c to infinity).

The metric ds induces on H2 the volume form dσ = dx dy/y2. Its Gaussian curvature is
K = −1, and the Laplace-Beltrami operator on H2 is given by

∆ = y2

(
∂2

∂x2 +
∂2

∂y2

)
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Figure 1: H2 and its geodesics

Definition A measure ν on X is called a quantum limit if there exists a sequence
(
φj

)

of eigenfunctions of ∆ in L 2(X) normalized by the condition ‖φj‖
2

= 1 such

that the measures |φj(z)|2 dz converge weakly to dν.

• We know that Is(H2), the group isometries of H2, consists of the real linear fractional
transformations and fractional reflections. Moreover PSL(2,R) = SL(2,R)/{±I} can be iden-
tified with Is+(H2) (the subgroup of isometries preserving the orientation) via the action

SL(2,R) ×H2 −→ H2

(γ, z) 7−→ γ.z
where

(
a b
c d

)

. z =
az + b

cz + d
(1.2)

The elements of Is+(H2) are characterized by their fixed points in H2 ∪ ∂H2 = H2 ∪ R ∪∞.
Moreover γ.z = z ⇐⇒ cz2 + (d− a)z− b (discriminant (d− a)2 + 4bc = (d+ a)2 − 4) so that

� if Tr(γ)2 ∈ [0, 4[, the isometry γ has a single fixed point (which is a center) in H2 and
is called elliptic (we follow the classical terminology, see [8]).

� if Tr(γ)2 = 4 and γ 6= ±I, the isometry γ has a single fixed point (which is attractive) inR ∪∞ and is called parabolic.

� if Tr(γ)2 /∈ [0, 4], the isometry γ has a two distinct fixed points in R ∪∞, one attractive
and the other repulsive, and is called hyperbolic. The geodesic L connecting this fixed
points is called the axis of γ. The isometry γ leaves L invariant and acts on it as a
translation of the curvilinear abscisse.

• Finally we recall the notion of binary quadratic form and its use in geometry (cf. [9]).
Set M = [a, b, c] (with a, b, c ∈ R) the (real) binary quadratic form on C2 defined by

∀ (x, y) ∈ C2 M(x, y) = ax2 + 2bxy + cy2

We shall identify M with its (real symmetric) matrix in the canonical basis, and we set
M ◦ g = M [g] = tgMg for g ∈ M(2,R). Only non degenerate forms will be considered in the
sequel i.e. we suppose that detM 6= 0.
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Let M be such a form : it has two distinct roots (x : y) in P1(C) ≃ C ∪∞, the equation
M(x, y) = ax2 + 2bxy + cy2 = 0 having discriminant b2 − ac = − detM 6= 0.

� if detM > 0 then M is anisotropic on R and M(z, 1) = 0 has a single root zM ∈ H2

� otherwise, M being isotropic on R, it has two distinct roots in P1(R) ≃ R ∪ ∞, and
we call γM the geodesic connecting them.

Therefore we associate to each non degenerate binary quadratic form M a point zM or
a geodesic γM of H2. Conversely to each point or geodesic we associate a single proportionality
class of non degenerate binary quadratic forms.

In this way the action of g ∈ SL(2,R) on H2 translates into an action M 7−→M [g−1] on
the binary quadratic forms.

1.2.2 The quotient space X = Γ(2)\H2

• Contrary to Γ, its subgroup Γ(2) contains no elliptic element (this is a particular case
of a general property of the congruence subgroups Γ(N) for N ≥ 2 cf. [6]) : it acts therefore
freely on H2 and X = Γ(2)\H2 is a Riemannian manifold of Gaussian curvature K = −1.

We see (cf. [6]) that
Γ(2)\SL(2,Z) = { 1, σ, τ, τσ, τ στ, τ σ τ σ } (1.3)

with σ and τ representing the classes modulo Γ(2) of the transformations S : z 7−→ −1/z
and T : z 7−→ z + 1. They verify σ2 = τ 2 = 1 and (σ τ)3 = 1.

0 1

ρ+ 2ρ

T F0
F0

TSF0SF0

TST F0TSTSF0

ν

ρ+ 1

Figure 2: A fundamental domain for Γ(2)\H2
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Moreover Γ(2), being discrete, acts discontinuously on H2 (cf. [8]) ; knowing that Γ admits

the geodesic triangle F0 = (ρ, ρ+ 1,∞) as a fundamental domain (where ρ = e
2iπ
3 ), we deduce

from (1.3) that F = F0 ∪SF0 ∪ TF0 ∪ TSF0 ∪ TSTF0 ∪ TSTSF0 is a fundamental domain

for the group Γ(2) (cf. figure 2).

On this figure, we have ν =
1

1 − ρ
=

1

2
+

i

2
√

3
.

• Let us recall that the geodesics of Γ(2)\H2 are the projections of those of H2.

Definition A closed geodesic of a metric space (X, d) is the image of a periodic geodesic line

λ : R −→ X.

Proposition 1.2 Let L be a closed geodesic of X = Γ(2)\H2. There exists an hyperbolic

transformation γ ∈ Γ(2) whose axis L projects onto L .

The proof (see [8]) uses only the discontinuity of the action of Γ(2) on H2. In particular, there

exists a compact segment l of the geodesic L such that L =
⋃

n∈Z γn l and L = π(L) = π(l),

where π is the canonical projection π : H2 −→ Γ(2)\H2.

Lemma 1.1 Let F and G be two closed geodesics of X. Then F = G or F ∩G is finite.

Proof: we shall use Proposition 1.2. Let γ1 and γ2 ∈ Γ(2) be two hyperbolic transforma-

tions whose axis L1 and L2 project onto F and G respectively. Let l1 and l2 be compact

segments of L1 and L2 such that L1 =
⋃

n∈Z γn
1 l1 and L2 =

⋃

n∈Z γn
2 l2. Then

F ∩G = π(l1) ∩ π(l2) = π
[(

∪
γ ∈Γ(2)

γ l1

)

∩
(

∪
γ′ ∈Γ(2)

γ′ l2

)]

= π
[

∪
γ ∈Γ2

(

l1 ∩ γ l2
)]

because for p ∈ γ l1 ∩ γ′ l2, γ−1p ∈ l1 ∩ (γ−1γ′) l2 and π(γ−1p) = π(p).

Since the segments l1 and l2 are compact subsets of H2, we deduce from the discontinuity

of the action of Γ(2) on H2 that the set Γ0 =
{
γ ∈ Γ(2)

/
l1 ∩ γ l2 6= ∅

}
is finite and that

F ∩G = π
[

∪
γ ∈Γ0

(

l1 ∩ γ l2
)]

(1.4)

Let us assume that F ∩G is infinite : ∪
γ ∈Γ0

(

l1 ∩ γ l2
)

is infinite so that, Γ0 being finite,

there exists γ ∈ Γ0 such that l1 ∩ γ l2 is infinite. Hence L1 ∩ γ L2 is infinite, L1 and γ L2

being two geodesics of H2 i.e. half-circles or half-lines : therefore L1 = γ L2 and F = G.

1.2.3 Modular correspondences

• Let us set P (n) =
{
M ∈ M(2,Z)

/
detM = n

}
and R(n) =

{
M ∈ P (n)

/
M ≡ I [2]

}
=

{
M ∈ M(2,Z)

/
det(M) = n and M ≡ I [2]

}
for n ∈ N. Note that Γ(2) = R(1) and Γ = P (1).

As is well-known, we have

Lemma P (1)\P (n) ≈
{(

a b
0 d

)

∈ M(2,Z)
/

ad = n, a ≥ 1, 0 ≤ b < d

}
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Using the six representants for the cosets of R(1)\P (1) (cf. previous section) we show that

Lemma 1.2 R(1)\R(n) ≈
{(

a b
0 d

)

∈ R(n)
/

a ≥ 1, 0 ≤ b < d

}

Obviously R(n) 6= ∅ if and only if n is odd. We call Rpr(n) the set of the elements of R(n)
that are not integer multiples of matrices in M(2,Z) : these are the primitive elements. We
can now define the modular correspondence of order n ∈ N for n odd.

Definition Cn :

∣
∣
∣
∣

X −→ Xr/Sr

Γ(2) x 7−→ {Γ(2)α1x, . . . , Γ(2)αrx}

where R(1)\R(n) = {Γ(2)α1, . . . , Γ(2)αr}. Let Tn be the associated operator, which we call

a modular operator :

Tn(f)(Γ(2)z) =
∑

δ∈R(1)\R(n)

f(Γ(2)δz) (1.5)

• Because R(1)\R(n) is finite, the modualr operators are defined on L 2(X) : if f ∈ L 2(X)
and α ∈ Is(X), clearly f ◦α ∈ L 2(X). Moreover ‖f ◦α‖2 = ‖f‖2 : they are bounded operators
on L 2(X). They also operators satisfy the classical properties of the modular operators :

� Tn is self adjoint and commutes with the Laplace-Beltrami operator ∆.

. Tn =
∑

t2/n

Cn/t2 where Cnf(Γ(2)z) =
∑

δ∈R(1)\Rpr (n)

f(Γ(2)δz)

Nota Bene : in the sequel we shall consider only operators Tp = Cp where p is an odd prime.
We shall also note Cp = Cp for simplicity’s sake. Let us denote by P the set of all prime
numbers.

Lemma 1.3 Let p ∈ P and R(1)\R(p) = {Γ(2)α1, . . . , Γ(2)αn}.
Then ∀ i, ∃ ! j such that αj αi ∈ pΓ(2) and ∀ k 6= j, αk αi ∈ Rpr(p2).

Proof : we just use the fact that for any odd m, the set R(m) is stable under passage to
the comatrix

γ =

(
a b
c d

)

∈ R(m) =⇒ Com(γ) = mγ−1 =

(
d −b
−c a

)

∈ R(m) (1.6)

which corresponds actually to the passage to the inverse in Is+(H2) ≃ PGL+(2,Z). Let us

take i ∈ {1, . . . , n} : we have Com(αi) ∈ R(p) and Com(αi)αi = det(αi) I2 = p I2. Since

Γ(2)Com(αi) is a coset of R(1)\R(p), there exists j ∈ {1, . . . , n} such that Γ(2)Com(αi) =

Γ(2)αj. Therefore Γ(2)αj αi = pΓ(2) and αj αi ∈ pΓ(2).

For all k 6= j, we have Γ(2)αk 6= Γ(2)αj whence Γ(2)αk αi 6= Γ(2)αj αi = pΓ(2) so that
αk αi ∈ Rpr(p2) : this ends the proof of the Lemma. We deduce easily the self adjointness of
Tp from this Lemma.

We shall use in section 3.2 an extension of this Lemma to an order of a quaternion algebra
(cf. Proposition 3.7).
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1.3 Results on binary quadratic forms

In this section we adapt the Lemmas 2.2 and 2.3 of [9] to the discrete group Γ(2).

Definition M = [a, b, c] is a Q-form if there exists λ ∈ R\{0} such that (λa, λb, λc) ∈ Q3.

Then we have

Proposition 1.3 Let M and M ′ be two binary quadratic forms and p1, p2 and p3 distinct
primes for which either :

� ∃αi ∈ R(pi) such that M [αi] = λiM
′ ∀ i = 1 . . . 3.

� ∃αi ∈ Rpr(pi
2) such that M [αi] = λiM

′ ∀ i = 1 . . . 3.

Then M and M ′ are both Q-forms.

Proof : let us set M = [A,B,C] and M ′ = [A′, B′, C ′]. M and M ′ being non degenerate,
M [α1] = λ1M

′ ⇒ λ1 6= 0. As α1 ∈ GL(2,Q), M is a Q-form if and only if M ′ also is a Q-form.

If M ′ is isotropic over Q, so is M and both split over Q : they are proportional to M0[γ] and
M0[γ

′], where M0(x, y) = xy and γ, γ′ ∈ GL(2,Q), thus they are both Q-forms. Henceforth
we assume that both M and M ′ are anisotropic over Q.

For a fixed n ∈ {1, 2}
∀ i, M [αi] = λiM

′ with αi ∈ Rpr(pi
n) (1.7)

Taking the determinant of both sides of (1.7) we get pi
2n detM = λi

2 detM ′, so that

λi = εiκpi
n with εi = ±1 and κ =

√

detM

detM ′ (1.8)

Set αi =

(
ai bi
ci di

)

; as M [αi] = tαiMαi equation (1.7) can be written as

∀ i λiM
′ =

(
Aai

2 + 2Baici + Cci
2 Aaibi + Ccidi +B(aidi + bici)

Aaibi + Ccidi +B(aidi + bici) Abi
2 + 2Bbidi + Cdi

2

)

(1.9)

• The identification of the lower right terms in (1.9) gives

λiC
′ = εiκpi

nC ′ = Abi
2 + 2Bbidi + Cdi

2 for i = 1 . . . 3 (1.10)

that we will write as




b1
2 b1d1 d1

2

b2
2 b2d2 d2

2

b3
2 b3d3 d3

2









A
2B
C



 = κC ′





ε1p1
n

ε2p2
n

ε3p3
n





that is

Ψ





A
2B
C



 = κC ′N with Ψ ∈ M(3,Z), det Ψ =
∏

i<j

(bidj − bjdi) and N ∈ Z3 (1.11)

8



If Ψ is invertible, then Ψ−1N ∈ Q3 so that M and M ′ are both Q-forms. Otherwise
we have det Ψ = 0 : we may assume without loss of generality that b1d2 = b2d1. Therefore
∃µ ∈ Q\{0}, µ(b1, d1) = (b2, d2) because det(αi) 6= 0 implies (bi, di) 6= (0, 0). Substituting
into (1.10) we find

κε2p2
nC ′ = µ2κε1p1

nC ′ = M(b2, d2) 6= 0 from the anisotropy of M over Q
so that p2

n = µ2p1
n. If n = 1, µ2 = p2/p1 is a square of Q, which cannot happen for two

distinct primes p1 and p2. Therefore n = 2, µ = ±p2/p1 and p2(b1, d1) = ±p1(b2, d2), and we
deduce from the Gauss Theorem that

b1 ≡ d1 ≡ 0 [p1] and b2 ≡ d2 ≡ 0 [p2] (1.12)

• The identification of the upper left terms in (1.9) gives

λiA
′ = εiκpi

nA′ = Aai
2 + 2Baici + Cci

2 for i = 1 . . . 3 (1.13)

that we will write




a1
2 a1c1 c1

2

a2
2 a2c2 c2

2

a3
2 a3c3 c3

2









A
2B
C



 = κA′





ε1p1
n

ε2p2
n

ε3p3
n





that is

Φ





A
2B
C



 = κA′Ñ with Φ ∈ M(3,Z), det Φ =
∏

i<j

(aicj − ajci) and Ñ ∈ Z3

If Φ is invertible, as before we can show that M and M ′ are both Q-forms. Otherwise
det Φ = 0 so that ∃ i 6= j ∈ {1, 2, 3}, ∃µ′ ∈ Q\{0}, µ′(ai, ci) = (aj, cj). Substituting into

(1.13) we see that µ′ = ±pj/pi because A′ = λ1
−1M(a1, c1) 6= 0 by anisotropy of M . Hence :

ai ≡ ci ≡ 0 [pi] and aj ≡ cj ≡ 0 [pj] (1.14)

Because {i, j} ⊂ {1, 2, 3}, either i ∈ {1, 2} or j ∈ {1, 2}. We may assume that i = 1. From
the relations (1.12) and (1.14) we deduce that α1 ∈ p1Γ(2), which contradicts the assumption
α1 ∈ Rpr(p1

n). This ends the proof of the Proposition.

Proposition 1.4 Let M, M1, . . . , Mr be binary quadratic forms representing points or

closed geodesics of Γ(2)\H2. Then there exists infinitely many primes p

such that ∀α ∈ R(p) ∪Rpr(p2) ∀ j = 1 . . . r M [α] 6= λjMj (1.15)

Proof : by Proposition 1.3, if the forms M and M ′ are not Q-forms, then for all primes p

except at most 4, we have ∀α ∈ R(p) ∪ Rpr(p2), M [α] 6= λM ′. Hence we just have to give

the proof for Q-forms. We shall set M = [A,B,C] with A, B and C ∈ Z, and ∀ i = 1 . . . r,

Mi = [Ai, Bi, Ci] with Ai, Bi and Ci ∈ Z.

Let p ∈ P, j ∈
{
1, . . . r

}
and α ∈ R(p)∪Rpr(p2) such that M [α] = λjMj . Let us note that

because α ∈ GL(2,Q) and M 6= 0, then λj ∈ Q\{0}. By taking the determinants of both sides

in M [α] = λjMj , we get

λj = pnκj with κj = ±
√

detM detMj
−1 ∈ Q\{0} (1.16)
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We restrict ourselves in the sequel to primes p such that ∀ j, ordp(κj) = 0. As α ∈ GL(2,Q),
the relation M [α] = λjMj implies that M and Mj are simultaneously isotropic or anisotropic
over Q. Hence we just have to investigate both cases.

• Anisotropic Case : the quadratic form M has for discriminant B2 − AC = d(M) ∈ Z,
so that M is anisotropic over a field K if and only if d(M) is not a square in K. Hence d(M)
is not a square in Q ; let us consider the primes p satisfying

∀ j = 1 . . . r ordp(κj) = 0 and

(
d(M)

p

)

= −1 (1.17)

They form (cf. [11]) a set of Dirichlet density 1/2 in P – therefore infinite. For such primes p,
the form M is still anisotropic over Qp.

If ∃α ∈ Rpr(pn), ∃ j, M [α] = λjMj , then for α =

(
a b
c d

)

{

Aa2 + 2Bac+ Cc2 = λjAj = κjp
nAj = M(a, c)

Ab2 + 2Bbd+ Cd2 = λjCj = κjp
nCj = M(b, d)

(1.18)

and, because Aj , Cj ∈ Z and ordp(κj) = 0, we get M(a, c) ≡ M(b, d) ≡ 0 [p]. Therefore,
by the anisotropy of M on Qp , α ∈ pR(1) is not primitive, which contradicts the choice of α.
Thus in the anisotropic case, for all p ∈ P satisfying the relation (1.17)

∀α ∈ R(p) ∪ Rpr(p2) ∀ j = 1 . . . r M [α] 6= λjMj (1.19)

• Isotropic Case : we consider non degenerate quadratic forms with integer coefficients.
Thus they split over Q as a product of two independent linear forms. Let M be such a form :
it has two roots z1, z2 ∈ Q ∪∞ and let γM be the geodesic of H2 connecting these two points.
We will show that γM cannot be a closed geodesic of X.

We look for γ =

(
a b
c d

)

∈ Γ(2) such that γ(z1) = z1 and γ(z2) = z2.

If z1 = ∞, z2 ∈ Q : γ(∞) = ∞ =⇒ c = 0 =⇒ ad = 1. As a and d are integers,
a = d = ±1 and γ is not hyperbolic.

If z1 6= z2 ∈ Q : then c 6= 0 and γ(x) = x ⇐⇒ cx2 + (d − a)x − b = 0. The two fixed
points of γ are then

z1,2 =
a− d±

√

(a+ d)2 − 4

2c

Thus z1, z2 ∈ Q =⇒
√

(a+ d)2 − 4 ∈ Q =⇒ ∃ y ∈ Q, y2 = (a+ d)2 − 4 ∈ Z so that

y ∈ Z and (a + d+ y)(a+ d− y) = 4

The integers a+ d+ y and a+ d− y being of same parity, necessarily a+ d+ y = a+ d− y =
a+ d = ±2 : γ cannot be hyperbolic.

Hence γM is not the axis of any hyperbolic element of Γ(2) : owing to Proposition 1.2,
we can state that the binary quadratic Q-forms isotropic on Q are not associated with closed
geodesics of X = Γ(2)\H2. This ends the proof of the Proposition.
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1.4 Separation of points and geodesics

Proposition 1.5 Let Λ be a non-empty set contained in a finite union of closed geodesics

of X = Γ(2)\H2. There exists a modular correspondence Cp separating Λ.

Proof : given two points z, z′ ∈ H2 and M, M ′ the associated binary quadratic forms,
we have z = z′ ⇐⇒ ∃λ ∈ R, M ′ = λM . The same goes for two geodesics. We recall briefly
the proof presented in [9].

• Λ is finite : let us write Λ = {z1, . . . , zl}. We take z̃1, . . . , z̃l liftings to H2 and
M1, . . . , Ml the associated binary quadratic forms. Proposition 1.4 applied to them gives

∃ p ∈ P ∀α ∈ R(p) ∪Rpr(p2) ∀ j = 1 . . . l αz̃1 6= z̃j (1.20)

We set R(1)\R(p) = {Γ(2)α1, . . . , Γ(2)αn} and w = Γ(2)α1z̃1 ∈ H2. Then, according to
relation (1.20), we have ∀ j = 1 . . . l, w 6= Γ(2)z̃j so that w /∈ Λ. Consider the correspondence
Cp(w) =

{
Γ(2)α1α1z̃1, . . . , Γ(2)αnα1z̃1

}
. From Lemma 1.3, we deduce

Cp(w) =
{
z1
}
∪B where B ⊂

{
Γ(2)α z̃1, α ∈ Rpr(p2)

}
= Cp2(z1)

As Cp2(z1) ∩ Λ = ∅ – cf. (1.20) – then Cp(w) ∩ Λ = {z1}. Hence for this choice of w, we have
shown that Cp separates Λ in the sense of section 1.1.

• Λ is infinite : Λ ⊂ F1 ∪ · · · ∪ Fr , where the Fi are closed geodesics. Besides at least one
of the sets Λ ∩ Fi, 1 ≤ i ≤ r is infinite : we can assume Λ ∩ F1 is infinite. Let F̃1, . . . , F̃r be
liftings of those geodesics to H2. As before, we have according to Proposition 1.4

∃ p ∈ P ∀α ∈ R(p) ∪ Rpr(p2) ∀ j = 1 . . . r αF̃1 6= F̃j (1.21)

From Lemma 1.1, we know that for two distinct closed geodesics F and G of X = Γ(2)\H2,
necessarily F ∩G is finite. Hence the relation (1.21) implies that µ1 = Cp(F1)∩ (F1 ∪· · ·∪Fr)
and µ2 = Cp2(F1) ∩ (F1 ∪ · · · ∪ Fr) are finite subsets of X. It follows that

ν1 =
{
z ∈ X /Cp(z) ∩ µ1 6= ∅

}
and ν2 =

{
z ∈ X /Cp2(z) ∩ µ2 6= ∅

}

are finite subsets of X too and, Λ∩F1 being infinite, there exists z ∈ Λ∩F1\(ν1∩ν2). Let z̃ be
a lifting to H2 and w = Γ(2)α1z̃ ∈ Cp(z) ⊂ Cp(F1). Because z /∈ ν1, we have Cp(z) ∩ µ1 = ∅
so that Cp(z) ∩ Λ = ∅ (cf. z ∈ F1) and w /∈ Λ.

As before Cp(w) = {z} ∪ B′ where B′ ⊂ Cp2(z). Hence z /∈ ν2 implies Cp2(z) ∩ µ2 = ∅
so that Cp2(z) ∩ Λ = ∅ and Cp(w) ∩ Λ = {z} : Cp separates Λ. This ends the proof.

Conclusion : proof of Theorem 1.1

Let Λ be a non-empty closed set contained in such a finite union of closed geodesics of X,
and ν a quantum limit on X. Consider (φj)j the associated sequence of eigenfunctions of ∆.
We make the assumption – as in [9], where an orthonormal basis of common eigenfunctions of
∆ and {Tn} is considered – that they’re also eigenfunctions of the modular operators (which
commute with ∆) as “all evidence points to the spectrum of ∆ being simple ...”. We shall make
a similar assumption in section 9.

So our quantum limit is associated to a sequence of eigenfunctions of TC , where C = Cp

is a modular correspondence separating Λ (cf. Proposition 1.5) : according to Proposition 1.1,
we deduce that singsupp ν 6= Λ. This proves Theorem 1.1.
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2 Hyperbolic Geometry in dimension 3

2.1 Definition

• We take as model of hyperbolic space the upper half-space H3 =
{

(x, y, t) ∈ R3
/
t > 0

}
.

Using the usual notation j = 1 ∧ i ∈ R3 we haveH3 =
{
z + t j

/
z ∈ C, t > 0

}

Therefore we shall identify H3 with the subset R⊕R i⊕R+j of the algebra of quaternions of
Hamilton H = R[1, i, j,k]. The space H3 is provided with the Riemannian hyperbolic metric

ds2 =
|dz|2 + dt2

t2
=

dx2 + dy2 + dt2

t2

It is of constant sectional curvature K = −1 and defines the volume form dvol = dx dy dz/t3.
Finally the associated Laplace-Beltrami operator is

∆ = t2
(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂t2

)

− t
∂

∂t

• We deduce easily the geodesics of H3 from the ones of H2. They are half-circles centered
on C and half-lines orthogonal to C.

Moreover they are uniquely determined by their end points (possibly infinite) i.e. two
distinct points of P1(C) ≃ C ∪ ∞, that are the roots of a unique proportionality class of
non-degenerate binary quadratic form with coefficient in C : as in dimension 2, it is a bijection.

C z1

z2

j

R

R j
∞

iRz3

1

i

γ1

γ2

Figure 3: Geodesics of H3

Let us now turn to the imbedded totally geodesic submanifolds (abbreviated itgs) of H3.
By definition, an imbedded submanifold S in a manifold X is called totally geodesic if and
only if for all (M,~u) ∈ TS, the geodesic of X tangent to ~u at M is contained in S.

In H3, the geodesics being half-lines and half-circles orthogonal to C, the itgs are half-planes
orthogonal to C and half-spheres centered on C.
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2.2 Isometries of H3

We know (cf. results of inversive geometry in [8]) that Is(H3) consists of extensions to R3

of the Möbius transformations of C
M(C) =

{

z 7−→ az + b

cz + d
, z 7−→ az + b

cz + d

/ (
a b
c d

)

∈ PSL(2,C)

}

and Is+(H3), whose elements are extensions of the complex fractional linear transformations, is
isomorphic to PSL(2,C) : we shall make the identification implicitely in the sequel. More pre-
cisely (always identifying H3 with a subset of H) we have the following action

∀ γ =

(
a b
c d

)

∈ SL(2,C) ∀x ∈ H3 γ.x = (ax+ b).(cx+ d)−1 (2.1)

This extension is also known as the Poincaré extension. The action of

γ =

(
a b
c d

)

∈ GL(2,C) with ad− bc = n 6= 0

is given by : if c = 0

γ .





z

t



 =







az + b

d
∣
∣
∣
a

d

∣
∣
∣ t







(2.2)

and if c 6= 0

γ .






z

t




 =








a

c
− n

c

cz + d

|cz + d|2 + |c|2t2

|n|t
|cz + d|2 + |c|2t2








(2.3)

Finally the classification of the elements of Is+(H2) extends to Is+(H3) : they are elliptic,
parabolic or hyperbolic according to their trace. The notion of axis of a hyperbolic element is
the same. The only (subtle) difference is that an elliptic element does not have a unique fixed
point in H3 but a whole geodesic of them. Indeed for c 6= 0 we have

(
a b
c d

)(

z

t

)

=

(

z

t

)

⇐⇒
{

a+ d = Tr(γ) = 2 Re(cz + d)

|cz + d|2 + |c|2t2 = 1

and there exists solutions in H3 (in fact an euclidean ellipse) iff Tr(γ)2 ∈ [0, 4[ (elliptic case).
For c = 0 we have

(
a b
0 d

)(

z

t

)

=

(

z

t

)

⇐⇒
{

(a− d)z + b = 1

|a| = |d| = 1

and there exists one solution in H3 for a 6= d ∈ S1 (whence Tr(γ)2 = a2 + 2 + a−2 ∈ [0, 4[).

In the parabolic case (Tr(γ)2 = 4 with γ 6= ±I2) or in the hyperbolic case (Tr(γ)2 /∈ [0, 4]),
the resolution of the equation γ.z = z on C leads again to the existence of a fixed attractive
point or two fixed (attractive and repulsive) points in C respectively. In those cases the value
of c ∈ C does not have any importance.
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3 Algebraic complements

3.1 Number theory

We base on [7] in this section.

3.1.1 Extensions and prime ideals

• Let K be a number field and L a finite extension. We shall denote by OK and OL
their rings of algebraic integers. Let B be a prime ideal of OL. Then P = B ∩ OK is a prime
ideal of OK called the underlying ideal to B. Moreover

[
OL/B : OK/P ] ≤ [L : K ] < ∞ ;

we denote this quantity by fL /K(B) : it is the degree of B over K.

Conversely let us take a prime ideal P of OK. Then we have POL = B1
e1 . . .Bs

es , where

the Bi are prime ideals of OL. The quantities ei are called ramification indices, and setting

∀ i, fi = fL/K(Bi) we get s∑

i=1

eifi =
[L : K ] (3.1)

If ∃ i with ei > 1, we say that P is ramified (there is only a finite number of such ones).

• Let K be a number field, P a prime ideal of OK, pZ = P ∩ Z its underlying ideal and
f = fK/Q(P ). We define the norm of the ideal P by

N(P )
def
= |OK/P | = pf

Given a set A of prime ideals of OK, we shall say that A is regular with density a in the set of
all prime ideals of OK if ∑

p∈A

N(P )−s ∼
s→1+

a log
1

s− 1
(3.2)

• Finally let us take a finite extension L/K with normal closure M/K and Galois group

G = Gal
(M/K). The set of the prime ideals P of OK satisfying POL = B1 . . .Br with

∀ i = 1 . . . r, Bi prime ideal and fL/K(Bi) = fi fixed, is regular and its density is the relative

frequence in G of the elements of G that, in the left translation representation considered as
a permutation group of the set G, are the products of r disjoints cycles of length f1, . . . , fr.

3.1.2 Application to quadratic extensions

• Let K be a number field and take a ∈ OK\{1} that is square-free. Then L = K (
√
a) ≃K[X]/(X2−a) is a quadratic (hence Galois) extension of K and its Galois group is G = {Id, τ}

where τ 2 = Id. Moreover OL = OK[α] with α = (1 +
√
a)/2 if a ≡ 1 [4] and α =

√
a

otherwise (we just use that an algebraic integer of L must have trace and norm in OK).

For a prime ideal P of OK, we have L/(P ) = K/(P )[X]/(X2 − a) and POL = B1
e1 . . .Bs

es

with
∑

i eifi =
[L : K ] = 2, so that only three situations occur :

i) POL = R, prime in OL, is inert in iff a is not a square modulo P (density 1/2)

ii) POL = RR, with R prime in OL, splits iff a is a square modulo P (density 1/2)

iii) POL = R2, with R prime in OL, is ramified iff a ∈ P . (density 0)

• From now on, K = Q(
√
d) where d ∈ Z\{1} is square free, and we consider a ∈ OK that

is not a square. Let us denote by A the set {P primes of OK / a is not a square modulo P}
(that is of density 1/2) and by B the set { pZ = P ∩ Z / P ∈ A } of underlying ideals of Z.
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We shall divide B into three subsets B = B1 ∪ B2 ∪ B3 respectively the sets of ideals that are
inert, ramified or split.

If P ∩ Z = pZ ∈ B1 : pOK = P ∈ A so that N(P ) = p2 because fK/Q(P ) = 2.

If P ∩ Z = pZ ∈ B2 ∪ B3 : pOK = P 2 or PP with P ∈ A, hence N(P ) = p.

An ideal pZ of B either splits (pZ ∈ B3) and there are two prime ideals of A above it, or it is
inert or ramified (pZ ∈ B1 ∪B2) and there is only one above it. Therefore

∑

P∈A

N(P )−s =
∑

pZ∈B1

p−2s +
∑

pZ∈B2

p−s + 2
∑

pZ∈B3

p−s =⇒
∑

P∈A

N(P )−s ≤ 2
∑

pZ∈B

p−s

Because A is of density 1/2, B contains a subset of density greater than 1/4. This proves

Proposition 3.1 Let d ∈ Z\{1} be square-free, K = Q(√d) a quadratic extension and

a ∈ OK that is not a square. Then there exists a subset C ⊂ P of density

greater than 1/4 such that for any prime ideal P of OK satisfying P∩Z = pZ
with p ∈ C , a is not a square modulo P .

3.1.3 A result on Legendre character

Definition Let p ∈ P and K be a field number. Elements a1, a2, . . . , an of K are

called p-independent if and only if as soon as a1
x1 a2

x2 . . . an
xn (with xi ∈ Z)

is a pth power in K, necessarily ∀ i = 1 . . . n, xi ≡ 0 [p].

Applied to quadratic characters, a Theorem from [7] states

Theorem 3.1 Let a1, . . . , an ∈ Z be 2-independent integers and z1, . . . , zn ∈ {±1} fixed.

There exists infinitely many p ∈ P such that ∀ i = 1 . . . n,
(

ai

p

)

= zi.

Proposition 3.2 Let a1, . . . , an ∈ Z\N. There exists infinitely many primes p such

that ∀ i = 1 . . . n,
(

ai

p

)

= −1.

Proof : let a1, . . . , an ∈ Z\N. If they are 2-independent, the result is immediate by appli-
cation of Theorem 3.1. Otherwise, let us take a maximal 2-independent subfamily, that – up
to relabelling – we may take to be a1, . . . , am with 1 ≤ m < n. According to Theorem 3.1,
there exists infinitely many primes p such that

∀ i = 1 . . .m

(
ai

p

)

= −1

Let p be such a prime satisfying : ∀ i = m + 1 . . . n, ai 6≡ 0 [p], and let 1 ≤ j ≤ n −m.
Because the selected 2-independent family is maximal, the elements a1, . . . , am and am+j

are not 2-independent and, after simplification

∃ q ∈ Z ∃x1, . . . , xm ∈
{
0, 1
}

a1
x1 . . . am

xmam+j = q2 > 0

As ai < 0 for all i, then
m∑

i=1

xi is necessarily odd and

am+j = q2
m∏

i=1

a−xi

i =⇒
(
am+j

p

)

=
m∏

i=1

(
ai

p

)xi

= (−1)
∑

xi = −1

We can take any j with 1 ≤ j ≤ n−m, which ends the proof.
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3.2 Quaternion algebras

3.2.1 Definition

We base on [2] in this section.

Definition Let a, b ∈ Q. We call quaternion algebra of type (a, b) on Q the Q-algebra

A = Q[1, ω,Ω, ωΩ], with the multiplication table ω2 = a, Ω2 = b and ωΩ+Ωω = 0.

Such an algebra will be denoted by A =
(

a,bQ ). We may assume without loss of generality that

a and b are square free integers. We shall also take a 6= 1 in the sequel.

• The center of A is Q. F =
{
q+ r ω

/
q, r ∈ Q } is a subfield of A isomorphic to Q(

√
a).

We shall identify F to Q(
√
a), and write any element of A as α = x0 + x1 ω+ x2 Ω + x3 ωΩ =

ξ + ηΩ , with ξ = x0 + x1 ω, η = x2 + x3 ω ∈ F . Note that ∀ ξ ∈ F, ξ Ω = Ω ξ
F
. We define :

� α = x0 − x1 ω − x2 Ω − x3 ωΩ = ξ
F − ηΩ the conjugate of α.

� Tr(α) = α + α = Tr(ξ) = 2x0 ∈ Q the trace of α.

� N(α) = αα = ξ ξ
F − b η ηF = (x0

2 − ax1
2) − b(x2

2 − ax3
2) ∈ Q its norm.

Proposition ∀α1, α2 ∈ A, α1.α2 = α2.α1.

Theorem A has zero divisors ⇐⇒ A ≃ M(2,Q)

In this case we shall speak of matrix algebra. Otherwise, we have a division algebra, as the one
considered here. But after extending the scalars to F, we have zero divisors and the mapping

ϕ : α = ξ + ηΩ 7−→
(

ξ η

b ηF ξ
F ) (3.3)

provides the identification of A ⊗ F with M(2,F). Let us note that ϕ leaves the trace and
the norm (as they are defined on A) invariant, the norm on Im(ϕ) ⊂ M(2,F) being quite
simply the determinant.

Finally, we will call a quaternion algebra definite or indefinite whether its norm is definite
(a < 0 and b < 0) or indefinite (a > 0 or b > 0) as a quaternary quadratic form on R.

• Going back to matrix algebras, we have the following characterization :

Proposition 3.3 Let b ∈ P. If A =
(

a,bQ ) is a matrix algebra, then
(a

b

)

= 1.

Proof : given α = x0 + x1ω + x2Ω + x3ωΩ ∈ A, its norm is

N(α) = (x0
2 − ax1

2) − b(x2
2 − ax3

2) = (x0
2 − bx2

2) − a(x1
2 − bx3

2) (3.4)

If α ∈ A is a divisor of 0, we have α 6= 0 and N(α) = 0. Hence by (3.4)

x0
2 − ax1

2 = b
(
x2

2 − ax3
2
)

with ∀ i = 0 . . . 3, xi ∈ Q
After the multiplication by the least common multiple of the denominators of the xi, we obtain

y0
2 − ay1

2 = b
(
y2

2 − ay3
2
)

where ∀ i = 0 . . . 3, yi ∈ Z
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Let us deal with this equation :

(i) If b does not divide y1 : as y0
2 − ay1

2 ≡ 0
[
b
]

then a ≡
(
y0

y1

)2
[
b
]

and a is a square
modulo b.

(ii) If b divides y1 : then b divides y0
2 so that, b being prime, b divides y0. By noting

y′0 = y0/b and y′1 = y1/b, we get
y2

2 − ay3
2 = b

(
y′0

2 − ay′1
2)

We find in case (ii) an equation in y2, y3 of the same type as before. Therefore after a finite
number of simplifications by b, we are in case (i), unless y1 = y3 = 0. In this last case, we have
y0

2 = by2
2 6= 0 as α 6= 0 , so that b ∈ Z is a square in Q i.e. in Z, which cannot happen for

b ∈ P. So we have shown

For b ∈ P A matrix algebra =⇒
(

a is a square modulo b
)

3.2.2 Definition of a discrete group of isometries associated to A

Definition An order I in A is a subring of A such that

1) 1 ∈ I.

2) α ∈ I =⇒ N(α) & Tr(α) ∈ Z.

3) I has four linearly independent generators over Q.

Thus I is a free Z-module of rank four in A, that is besides stable under the conjugation.

For example, I0 = OF ⊕ OFΩ =
{
ξ + ηΩ

/
ξ, η ∈ OF } is a particular order for any

quaternion algebra A =
(

a,bQ ), and M(2,Z) is an order for the matrix algebra A = M(2,Q).

Proposition 3.4 Let I be an order. Then ∃D, D′ ∈ Z\{0} D′I ⊂ DI0 ⊂ I.

Proof : the orders I and I0 being two free Z-modules of rank four in A, their Z-bases
are two Q-bases of A. Let us call M ∈ GL(4,Q) any transition matrix from a basis of I

to a basis of I0. We just have to take two integers D and D′ such that DM ∈ M(4,Z)
and D′D−1M−1 ∈ M(4,Z) to satisfy the above property. Moreover OF ≃ Z2 and I ≃ Z4 is
countable.

• Given n ∈ Z we define I(n) =
{
α ∈ I

/
N(α) = n

}
and Ipr(n) = I(n) ∩ Ipr the subset

of primitive elements, where the primitive elements are the ones that cannot be divided in I

by a non unit rational integer. Then we have

Proposition 3.5 Let p ∈ P be a prime such that ordp(2abDD
′) = 0 and

(
a
p

)

= −1.

∀α = ξ + ηΩ ∈ Ipr, N(α) ≡ 0 [p] =⇒ ordp N(ξ) = ordp N(η) = 0.

In particular, ξ η 6= 0 for such an α.

Proof : let p ∈ P and α = ξ + ηΩ ∈ I satisfy the above assumptions ; thus we have

N(α) = ξ ξ
F − b η ηF = N(ξ) − bN(η) ≡ 0 [p]. As D′I ⊂ DI0 ⊂ I, then D′ξ = Dξ1 and

D′η = Dη1 with ξ1, η1 ∈ OF. Besides ordp(DD
′) = 0 so that ordp N(ξ) = ordp N(ξ1) ≥ 0

and ordp N(η) = ordp N(η1) ≥ 0 (we follow the classical convention ordp(0) = +∞). By taking

the norm we get
N(D′α) = N

[
D(ξ1 + η1 Ω)

]
= D2

[
N(ξ1) − bN(η1)

]
≡ 0 [p] (3.5)
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hence, as ordp(D) = 0, N(ξ1) − bN(η1) ≡ 0 [p] and ordp(b) = 0 implies

ordp N(ξ1) > 0 ⇐⇒ ordp N(η1) > 0

Let us assume
ordp N(ξ) = ordp N(ξ1) > 0 (3.6)

ordp N(η) = ordp N(η1) > 0 (3.7)

a 6≡ 1[4] : therefore OF = Z[
√
a] and ξ1 = b0 + b1

√
a with b0, b1 ∈ Z. The relation (3.6)

can be expressed as p / b20 − ab21.

. If p / b1 then p / b0 and ξ1 = p ξ2, with ξ2 ∈ OF.

. Otherwise a ≡
(
b0
b1

)2

[p] and

(
a

p

)

= 1, contradicting the assumption.

a ≡ 1[4] : in this case OF = Z [1 +
√
a

2

]

and ξ1 =

(

b0 +
b1
2

)

+
b1
√
a

2
with b0, b1 ∈ Z.

We have p /N(2ξ1) thus p / (2b0 + b1)
2 − ab21.

. If p / b1 then p / 2b0 + b1 and p / b0, so that ξ1 = p ξ2 with ξ2 ∈ OF.

. Otherwise a ≡
(

2b0
b1

+ 1

)2

[p] and

(
a

p

)

= 1, contradicting the assumption.

Therefore relation (3.6) leads to ∃ ξ2 ∈ OF, ξ1 = p ξ2. In the same way, relation (3.7) leads

to ∃ η2 ∈ OF, η1 = p η2. Thus D′α = D
(
ξ1 + η1 Ω

)
= pD

(
ξ2 + η2 Ω

)
= pDα2 where α2 ∈ I0.

Because p ∧D′ = 1, ∃x, y ∈ Z such that xD′ + yp = 1 (Bézout) and

α = xD′α + pyα = p(xDα2 + yα). (3.8)

As α2 ∈ I0 and DI0 ⊂ I, then Dα2 ∈ I and α ∈ pI : α is not primitive. This ends the
proof of the Proposition.

• Let A be an indefinite quaternion algebra of type (a, b) on Q ; we shall consider in the
sequel orders of type (q1, q2) in A, that are principal so that we can us them to define modular
correspondences (cf. [2] §3). For q1 = 1, these orders are simply the maximal ones.

Let I be such an order of type (q1, q2) and R = ϕ(I) its image in M(2,F), where ϕ is
defined by (3.3). Implicitely we shall identify I with its image by ϕ, and denote by α = ξ+ηΩ
any element of R. Via Poincaré extension the set R∗ =

{
α ∈ R

/
det(α) 6= 0

}
is identified

with a subgroup of Is+(H3). For n ∧ q1q2 = 1 we define

R(n) = { α ∈ R / N(α) = n} (3.9)

Rpr(n) = { α ∈ R / α primitive N(α) = n} (3.10)

which are infinite subsets of M(2,F) for n∧q1q2 = 1. Consider for example I a maximal order
containing I0 : the Pell-Fermat Theorem applied to the equation N(α) = 1 implies that I(1)
is infinite because A is indefinite and at least one of the square-free integers a, b is positive.

Let Γ
R

= R(1) be the discrete subgroup of SL(2,C) induced by R. We shall denote the
quotient space by X

R
= Γ

R
\H3 and the canonical projection by π

R
: H3 −→ Γ

R
\H3.

18



To insure that X
R

inherits the Riemannian structure of H3, the group Γ
R

may not contain
any elliptic element.

Proposition 3.6 Let us assume that b ∈ P\{3}. If Γ
R

contains an elliptic element,

then necessarily one of the integers a, −a or −3a is a square modulo b.

Proof : if Γ
R

contains an elliptic element, there exists α = ξ+ηΩ ∈ I such that |Tr(α)| < 2

and N(α) = ξ ξ
F − b η ηF = 1. Because I is an order, we have Tr(α) = Tr(ξ) ∈

{
− 1, 0,+1

}
.

Set ξ = x + y
√
a and η = z + t

√
a ∈ F, where x, y, z and t ∈ Q. Then N(α) = x2 − a y2 −

b(z2 − a t2) = 1 and Tr(α) = 2x ∈
{
− 1, 0,+1

}
. We shall assume that a 6≡ 0 [b] (otherwise a

would be a square modulo b).

If x = 0 : then −ay2 = 1 + b(z2 − at2) and after multiplication by the least common
multiple of the denominators of y, z and t, we get −ay′2 = E2 + b(z′2 − at′2) with integers y′,
z′ and t′ such that y′ ∧ z′ ∧ t′ = 1.

. If y′ 6≡ 0 [b] then −a ≡ E2/y′2 [b] : −a is a square modulo b.

. If y′ ≡ 0 [b] then b divides E and z′2−at′2 ≡ 0 [b] where z′ 6≡ 0 [b] and t′ 6≡ 0 [b] because

a 6≡ 0 [b] and y′ ∧ z′ ∧ t′ = 1 . Therefore a ≡ z′2/t′2 [b] : a is a square modulo b.

If x = ±1/2 : then −ay2 = 3/4+b(z2 −at2) and after multiplication by the least common
multiple of the denominators of y, z and t, we get −ay′2 = 3E2 + b(z′2 − at′2) with integers y′,
z′ and t′ such that y′ ∧ z′ ∧ t′ = 1. As in the case x = 0 we deduce that

. If y′ 6≡ 0 [b] then −3a ≡ 9E2/y′2 [b] and −3a is a square modulo b.

. If y′ ≡ 0 [b] then b divides E because |b| 6= 3, and z′2 − at′2 ≡ 0 [b] where z′ 6≡ 0 [b]

and t′ 6≡ 0 [b] because a 6≡ 0 [b] and y′ ∧ z′ ∧ t′ = 1 . Therefore a ≡ z′2/t′2 [b] and a is
a square modulo b, which ends the proof of the Proposition.

• ∀n ∈ N such that n ∧ q1q2 = 1, R(1)\R(n) is finite (cf. [2] §7) : we may consequently
define (as in section 1.2.3) the modular correspondences on the quotient space X

R
= Γ

R
\H3 by

Tn f(z) =
∑

α∈R(1)\R(n)

f(α.z) Cn f(z) =
∑

α∈R(1)\Rpr (n)

f(α.z) (3.11)

We call these operators modular operators. They possess the classical properties of the modular
operators we have seen in dimension 2 (cf. section 1.2.3) : they are bounded linear operators of
L 2(X

R
). Moreover the proof of Lemma 1.3 can be adapted to an order R : for any n ∈ N the

set R(n) is stable under the passage to the comatrix, which corresponds to the conjugation of
the underlying element of I

ϕ(ξ + ηΩ) =

(
ξ η

bηF ξ
F ) ∈ R(n) =⇒ ϕ(ξ

F − ηΩ) =

(

ξ
F −η

−bηF ξ

)

∈ R(n) (3.12)

Then we can prove (exactly as in proof of Lemma 1.3) that for p ∈ P such that p ∧ q1q2 = 1
(only such p will be considered thereafter)

Proposition 3.7 |R(1)\R(p)| = m. We shall denote R(1)\R(p) =
{
R(1) σ1, . . . , R(1) σm

}
.

∀ i, ∃ ! j such that σjσi ∈ pR(1) and ∀ k 6= j, σkσi ∈ Rpr(p2).
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4 The quotient space X
R

= Γ
R
\H3

4.1 Definition of the studied class

We take an indefinite division algebra A =
(

a,bQ ) with a < 0 (for technical reasons), and

consider an order I of type (q1, q2) – e.g. a maximal order containing the order I0 – such
that Γ

R
acts freely on H3. This way we get a class

(
K2

)
of quotient manifolds X

R
, that are

Riemannian and of sectional curvature K = −1 when provided with the metric induced by H3.

This class
(
K2

)
is far from being empty. Indeed take a ∈ Z−\{−1,−3} and b ∈ P\{3}

such that a is not a square modulo b : then A is an indefinite division quaternion algebra
according to Proposition 3.3. For the action of Γ

R
to be free, we just have to impose that

−1 and −3 are squares modulo b by Proposition 3.6. Theorem 3.1 shows that, given a fixed,

these three conditions modulo b are simultaneously satisfied by infinitely many primes b because

the negative integers a, −1 and −3 are obviously 2-independent.

Definition The infinite set of
(
K2

)
-manifolds satisfying the conditions

a ∈ Z−, b ∈ P,
(a

b

)

= −1,

(−1

b

)

= 1,

(−3

b

)

= 1 (4.1)

will be called the class
(
KS

2

)
.

For example, we can take a = −2 and b = 13.

4.2 Properties of
(
KS

2

)
-manifolds

• In the sequel of this work we shall consider manifolds X
R

of the class
(
KS

2

)
. The conju-

gation in F ≃ Q(√a) coincides with the complex conjugation because a < 0.

Lemma 4.1 Let ξ ∈ F\{0}. Then ordb |ξ|2 is even.

Proof : let ξ = x′ + y′
√
a be any element in F. We can write

ξ =
p
(
x+ y

√
a
)

q

with q, p, x, y ∈ Z, x ∧ y = 1 and p ∧ q = 1. Assume that |x + y
√
a|2 = x2 − a y2 ≡ 0 [b].

If b divides y, then b divides x, which contradicts x ∧ y = 1. Therefore y 6≡ 0 [b] so that

a ≡
(
x

y

)2

[b] i.e
(a

b

)

= 1

and X
R

cannot be of class
(
KS

2

)
. Hence |x+ y

√
a|2 6≡ 0 [b] and as |ξ|2 = p2 q−2 |x+ y

√
a|2,

we deduce that ordb |ξ|2 = 2
(
ordb (p) − ordb (q)

)
is even. This ends the proof of the Lemma.

Proposition 4.1 Let X
R

be a
(
KS

2

)
-manifold. Then Γ

R
has no parabolic element.

Proof : let us take a parabolic element γ = ξ + ηΩ in Γ
R
. By taking its opposite −γ if

necessary, we may always assume that ξ = 1 + x
√
a and η = y + z

√
a with x, y and z ∈ Q.

As N(γ) = 1 we have
0 = |ξ|2 − b |η|2 − 1 = −ax2 − b (y2 − az2)
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and after multiplication of x, y and z by the least common multiple of their denominators, and
after division of the integers obtained by their greatest common divisor, we get

aX2 + b (Y 2 − aZ2) = 0 with X, Y, Z ∈ Z and X ∧ Y ∧ Z = 1 (4.2)

Because b∧a = 1, b divides X. Setting X0 = X/b we get after simplification abX0
2 +Y 2 −

aZ2 = 0 so that a divides Y . Setting Y0 = Y/a, Z0 = Z we finally get

bX2
0 + aY 2

0 − Z2
0 = 0 with X0, Y0, Z0 ∈ Z and X0 ∧ Y0 ∧ Z0 = 1 (4.3)

Thus if b divides Y0, b divides Z0 hence b2 divides bX2
0 and b divides X0, which contradicts

X0 ∧ Y0 ∧ Z0 = 1. Therefore Y0 6≡ 0 [b] so that, by reduction of (4.3) modulo b, we have

a ≡
(
Z0

Y0

)2

[b] i.e.
(a

b

)

= 1

and X
R

cannot be of class
(
KS

2

)
.

• Two geometrical properties of the space Γ(2)\H2 stated in section 1.2.2 extend directly
to the space X

R
, because Γ

R
acts freely and discontinuously on H3. Therefore we have

Proposition 4.2 Let L be a closed geodesic of X
R

= Γ
R
\H3. There exists an hyperbolic

transformation γ ∈ Γ
R

whose axis L projects on L .

In particular, there exists a compact portion l of L such that L = Γ
R
.l.

Lemma 4.2 Let F and G be two closed geodesics of X
R
. Then F = G or F ∩G is finite.

• We have similar properties for closed itgs, which are compact itgs of X
R
.

Definition An itgs S of H3 is closed for Γ
R

if its projection in X
R

is closed, that is

∃F ⊂ S compact ∃Γ′ ⊂ Γ
R

S =
⋃

γ∈Γ′

γ.F = Γ′.F (4.4)

As Γ
R

is countable and S has non empty interior, then Baire’s Lemma applied to the
complete space S shows that F has non empty interior. More precisely we have

Proposition 4.3 Let S̃ be a closed itgs of X
R

and S be a lifting to H3. There exists

a subgroup Γ0 of Γ
R

and a compact subset F ⊂ S with non empty interior

such that γ ∈ Γ0 ⇐⇒ γ.S = S and

S =
⋃

γ∈Γ0

γ.F = Γ0.F

Moreover ∃ γ = ξ + ηΩ ∈ Γ0 hyperbolic (and η 6= 0).

Proof : let Γ0 denote the subset

Γ0 =
{
γ ∈ Γ

R

/
γ.F ⊂ S

}
⊃ Γ′ (4.5)

Hence for γ ∈ Γ0, we have γ.S ∩ S ⊃ γF which has non zero area. As γ.S and S are both
itgs of H3 i.e. half-planes or half-spheres, then γ.S = S. Conversely γ.S = S implies that
γ.F ⊂ γS = S and γ ∈ Γ0. Hence Γ0 =

{
γ ∈ Γ

R
/ γ.S = S

}
. That Γ0 is a group is obvious.
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¿From the definition of the class
(
KS

2

)
and Proposition 4.1, we know that except for {±Id}

the groups Γ0 and Γ
R

contain only hyperbolic elements. As Γ 6= {±Id} (otherwise S = F

would be a compact itgs in H3), we can find a hyperbolic element γ = ξ + ηΩ ∈ Γ0 . Then

|ξ|2 ≥ Re2(ξ) > 1 and b |η|2 = |ξ|2 − N(γ) = |ξ|2 − 1 > 0 so that η 6= 0.

Lemma 4.3 Let S1 and S2 be two distinct closed itgs of X
R
. S1 ∩ S2 has dimension 1

and either S1 ∩ S2 is the empty set, or it is a closed geodesic of X
R
.

Proof : from the definition of an itgs, it is clear that two distinct itgs must intersect
transversally, because an itgs is entirely defined by a point and the tangent space at this point.
Then the intersection has dimension 1.

Since S1 and S2 are closed itgs, they are compact. Hence L = S1 ∩ S2 is a compact subset
of X

R
. If L 6= ∅, then it is a complete geodesic because for (M,~u) ∈ TL, the geodesic of X

R

tangent to ~u at M is contained in both S1 and S2. Moreover L being compact, it is a closed
geodesic of X

R
.

4.3 The type So and Γ
R
- closed itgs

• There is a particular itgs of H3 that is invariant under the action of the isometries induced
by A ⊗ R : it is the half-sphere So = S

(
O, 1/

√
b
)
. Given γ = ξ + ηΩ ∈ A ⊗ R such that

N(γ) = |ξ|2 − b |η|2 6= 0, we have indeed

∀ θ ∈ R ∣
∣γ(b−1/2 eiθ)

∣
∣ =

∣
∣
∣
∣

ξeiθb−1/2 + η

b ηeiθb−1/2 + ξ

∣
∣
∣
∣
=

1√
b

∣
∣
∣
∣
∣

ξ eiθ + η
√
b

η
√
b+ ξ e−iθ

∣
∣
∣
∣
∣
=

1√
b

(4.6)

i.e. γ. (So ∩C) = So ∩ C whence γ.So = So. We shall also denote by So the projection of
this half-sphere in X

R
. Unfortunately, So is the itgs in H3 that is closed for Γ

R
: indeed,

the subgroup Γ0 of elements of Γ
R

leaving an itgs S invariant is generically a one-parameter
group (cf. I is a Z-modulus of rank 4) so that Γ0\S cannot be compact (for further details,
see Appendix A).

• Lacking of closed itgs in X
R
, we shall use instead the weaker notion of Γ

R
- closed itgs and

look for modular correspondances separating points, closed geodesics or Γ
R

- closed itgs.

Definition An itgs S of H3 is called Γ
R

- closed if there exists γ = ξ+ηΩ ∈ Γ
R

hyperbolic

such that γ.S = S. Its projection in X
R

is also called a Γ
R

- closed itgs.

There are infinitely many of them, as we shall see in Proposition 8.3 section 8.

Lemma 4.4 Let Σ1 and Σ2 be to distinct Γ
R

- closed itgs of X
R
. Then area(Σ1 ∩Σ2) = 0.

Proof : it is a straightforward corollary of Lemma 4.3, since every 1-dimensional set has zero
area. Just be aware that the notion of area is here inherent to the manifold Σ1 (for example),
which is provided with the Riemannian metrics induced by H3. That will be – and has been –
always the case : we only mention the area of subsets of two-dimensional manifolds of X

R
.

Definition We say that Λ ⊂ X
R

has type (So) if Λ is contained in a finite union of

Γ
R

- closed itgs and area(Λ) = area(Λ ∩ So) 6= 0.
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5 Statement of the result in dimension 3

Theorem 5.1 Let X
R

= Γ
R
\H3 be a 3-dimensional manifold, Γ

R
being a discrete subgroup

of Is+(H3) derived from an indefinite quaternion algebra A =
(

a, bQ ).
We shall assume moreover that X

R
is a manifold of class

(
KS

2

)
.

If the singular σ of a quantum limit on X
R

is contained in a finite union

of isolated points, closed geodesics and Γ
R

- closed itgs of X
R

(we assume in

this last case that area(σ) 6= 0) and has not type (So), then it is the empty set.

First we prove a separation result on such a subset Λ :

Proposition 5.1 Let X
R

be a manifold of class
(
KS

2

)
. For all non-empty subset Λ ⊂ X

R

contained in a finite union of isolated points, closed geodesics and Γ
R

- closed

itgs (with area(Λ) 6= 0 in this last case) that has not type (So), there exists

a correspondence T separating Λ.

We shall distinguish three cases and treat them separately in sections 6 to 8 :

1) Λ is finite

2) Λ ⊂ F1 ∪ · · · ∪ Fr a finite union of closed geodesics

3) Λ ⊂ S1 ∪ · · · ∪ Sl a finite union of Γ
R

- closed itgs.

and complete the proof in section 9.

Before that, let us state a Proposition that will spare us lots of efforts in the following
sections, by simplifying the calculations. By a set of objects of the same type of X

R
we mean

a set of points, a set of closed geodesics or a set of Γ
R

- closed itgs of X
R

= Γ
R
\H3.

Proposition 5.2 Let F1, . . . , Fr be objects of the same type of X
R

and consider fixed

liftings G1, . . . , Gr of these objects to H3. There exists a finite subset

of prime numbers F ⊂ P such that, given p ∈ P\F , the relation

∃α ∈ R(p) ∪Rpr(p2) ∃ i ∈ {1 . . . r}, α.G1 = Gi (5.1)

leads to

∃N ∈ F ∃ α̃ ∈ Rpr(N p) ∪Rpr(N2p2), α̃.G1 = G1 (5.2)

Proof : let us fix n = 1, 2 and assume that ∃ i ∈ {1, . . . , r}, ∃ pi ∈ P, ∃αi ∈ Rpr(pi
n),

αi.G1 = Gi. As a consequence G1 = Com(αi).Gi. Take p 6= pi ∈ P and α ∈ Rpr(pn) :
α.G1 = Gi =⇒ α̃.G1 = G1 where α̃ = Com(αi)α ∈ R(pi

npn) = R(Nnpn). This element is
primitive : otherwise α̃ ∈ pR or α̃ ∈ piR (and n = 2) whence, as pgcd(pi, p) = 0,

. if α̃ ∈ pR : αi α̃ = p2
iα ∈ pR =⇒ α ∈ pR, a contradiction with α ∈ Rpr(p2).

. if α̃ ∈ piR : α̃Com(α) = p2Com(αi) ∈ piR =⇒ αi ∈ piR, a similar contradiction.

Proceeding the same way with all the indices i ∈ {1 . . . r} we get to relation (5.2) after exclusion
of at most r values of p ∈ P, the forementionned set F (here N ∈ F is one of the pi).
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6 Case of the points

• Let Λ =
{
x̃1, . . . , x̃l

}
be a set of points of X

R
. We shall denote by xi = (zi, ti) ∈ H3

liftings of the x̃i for i = 1 . . . l and apply Proposition 5.2 to those points : for n = 1 or 2,
N ∈ F and p ∈ P\F a prime satisfying the assumptions of Proposition 3.5 i.e.

ordp(2abDD
′) = 0 and

(
a

p

)

= −1 (6.1)

we consider α = ξ+ηΩ ∈ Rpr(Nnpn) such that α.x1 = x1. In that case, ordp |ξ|2 = ordp |η|2 =
0 ; in particular ξ 6= 0 and η 6= 0. By relation (2.3), the action of α as an isometry of H3 is

α.

(

z

t

)

=







ξ

bη
− Nnpn

bη

ξ + bηz

|ξ + bηz|2 + b2|η|2t2
Nnpnt

|ξ + bηz|2 + b2|η|2t2







that is well defined for any t > 0 because η 6= 0. The relation α.x1 = x1 implies

Nnpn = |ξ + b η z1|2 + b2 |η|2 t21 = |ξ|2 − b |η|2 (6.2)

η z1 + η z1 = 0 (6.3)

Note that z1 6= 0, otherwise relation (6.2) gives |ξ|2 +b2 |η|2 t21 = |ξ|2−b |η|2 so that |η| = 0,
a contradiction. Therefore

−z1
z1

=
η

η
= constant ∈ F

Fix η0 ∈ OF such that η0/η0 = −z1/zi. Then we have

η

η
=
η0

η0
hence

η

η0
=

η

η0
∈ R ∩ F = Q (because a < 0)

so that ∃m ∈ Q, η = mη0. As D′ η ∈ OF by Proposition 3.4, we get by taking the norms
m2D′2 N(η0) ∈ Z, with D′2 |η0|2 fixed in Z. Thus there exists E ∈ N fixed such that Em ∈Z∗, and by expanding (6.2)

pn = |ξ|2 + 2 bmRe (ξ0 η0 z1) + b2 m2 |η0|2 (t21 + |z1|2) = |ξ|2 − bm2 |η0|2

After simplification by bm 6= 0 we get

2 Re (ξ η0 z1) +m |η0|2
[
1 + b (t21 + |z1|2)

]
= 0 (6.4)

As D′ ξ ∈ OF by Proposition 3.4, we have 2D′ξ = X+Y
√
a with X, Y ∈ Z. The coefficient of

m in relation (6.4) being strictly positive because b > 0, then m is obviously a linear function
of X and Y . Hence the middle term of (6.2) is a definite positive quadratic form of the two
integer variables X and Y , which we will write

Nn pn = c1X
2 + c2XY + c3Y

2 (6.5)

A priori c1, c2, c3 ∈ R ; moreover c22 − 4c1c3 < 0 since the quadratic form is definite positive.

• Let us suppose that for all N ∈ F , there are at most two primes p ∈ P\F satisfying both
relations (6.1) and (6.5) ; let ∆ ∈ N be the product of all those primes p. As a consequence,
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for all p ∈ P\F satisfying relation (6.1) such that ordp(∆) = 0, for all N ∈ F and for all
α ∈ Rpr(N2p2) ∪ R(Np), we have α.x1 6= x1. We deduce by Proposition 5.2 that

∀ p ∈ P\F such that ordp(2abDD
′∆) = 0 and

(
a

p

)

= −1

∀α ∈ R(p) ∪Rpr(p2) ∀ i ∈ { 1 . . . l } α.x1 6= xi

(6.6)

It is clear that there are infinitely many convenient primes p (they even form a regular subset
of P of density 1/2).

• Now assume that for some N ∈ F , equation (6.5) is solvable for at least three distinct
primes p1, p2, p3 satisfying relation (6.1) : we have three points (Xi : Yi)i=1,2,3 ∈ P1(Q)
such that

∀ i = 1 . . . 3 Nn pn
i = c1Xi

2 + c2XiYi + c3Yi
2 (6.7)

Using these three relations, we shall show that c1, c2, c3 ∈ Q. If (Xi : Yi) = (Xj : Yj) for i 6= j,
then n = 2 and pj(Xi : Yi) = pi(Xj : Yj) ; since pgcd(pi, pj) = 1, αi ∈ piR, a contradiction
with relation (6.1) and Proposition 3.4. Thus (X1 : Y1), (X2 : Y2) and (X3 : Y3) are three
distinct points of P1(Q). By relation (6.7), we can write






X1
2 X1Y1 Y1

2

X2
2 X2Y2 Y2

2

X3
2 X3Y3 Y3

2











c1

c2

c3




 = Nn






p1
n

p2
n

p3
n




 ∈ Z3

The above Vandermonde matrix has a non-zero determinant
∏

i<j(YjXi − YiXj) ∈ Q∗ so that
c1, c2, c3 ∈ Q after inversion of the linear system. Thus relation (6.5) becomes

κpn = αX2 + βXY + γY 2 with p ∈ P\F X, Y ∈ Z (6.8)

with κ, α, β, γ ∈ Z. Then δ = β2 − 4αγ < 0 as the quadratic form in the previous relation
is positive definite ; moreover, by reduction modulo p of relation (6.8), we get

δ is a square modulo p (6.9)

Therefore, if p ∈ P\F satisfies

ordp(2abDD
′) = 0

(
a

p

)

= −1 and

(
δ

p

)

= −1 (6.10)

we have according to relations (6.1) and (6.9)

∀N ∈ F ∀α ∈ R(Np) ∪Rpr(N2p2) α.x1 6= x1 (6.11)

whence, by Proposition (5.2)

∀α ∈ R(p) ∪Rpr(p2) ∀ i ∈ {1, . . . , l} α.x1 6= xi (6.12)

By Proposition 3.2, a and δ being strictly negative integers, there exists infinitely many primes
p /∈ F satisfying relations (6.10) and – as a consequence – (6.12). Together with relation (6.6)
this leads to

Proposition 6.1 Let x1, . . . , xl be points of H3. There exists infinitely many primes p

such that
∀α ∈ R(p) ∪Rpr(p2) ∀ i ∈ {1, . . . , l} α.x1 6= xi (6.12)
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7 The geodesics

This time, the proof presented in [9] still applies ; we shall associate to any geodesic of H3 a
proportionality class of complex (instead of real) binary quadratic forms. Therefore, using the
Proposition (3.1) we obtain

Proposition 7.1 Let L1, . . . , Lr be geodesics of H3. There exists infinitely many primes p

such that
∀α ∈ R(p) ∪Rpr(p2) ∀ j ∈ {1 . . . r} α.L1 6= Lj (7.1)

8 Case of the Γ
R
- closed Itgs

Keep in mind that the itgs of H3 are half-spheres centered on (and orthogonal to) C and
half-planes orthogonal to C. Only such half-spheres and half-planes will be considered in the
sequel of this section, without need for us to mention it.

Definition Given an itgs S of H3, we define its trace C on C to be the set of its limit

points in C, that is C = S ∩C in R3.

The trace of an itgs of H3 is then either a circle, either a straight line of C – id est a circle ofP1(C) ; moreover each itgs its uniquely defined by its trace on C whence

Proposition There is a bijection between the itgs of H3 and the circles of P1(C)

As a consequence, the action of an isometry on an itgs in H3 will be entirely determinated by
the former’s action on the latter’s trace in C, much more easy to deal with. In particular

Proposition 8.1 Let S1 and S2 be two itgs of H3 whose traces on C are C1 and C2

respectively. Then

∀ γ ∈ SL(2,C) γ.S1 = S2 ⇐⇒ γ(C1) = C2

Now to obtain a separation result on a finite set of itgs Γ
R

- closed of H3 – like relations
(6.12) or (7.1) – we just have, by application of Proposition 5.2, to deal with the invariance of
such an itgs under elements of the form α ∈ Rpr(N p)∪Rpr(N2p2), where p ∈ P\F , N ∈ F

and F is the finite subset of P provided by Proposition 5.2.

We shall do this in the two next sections, and prove by the way the existence of infinitely
many Γ

R
- closed itgs for a manifold X

R
of class

(
KS

2

)
.

8.1 Of the half-planes

Proposition 8.2 Let the half-plane P be an itgs of H3 and D be its trace. Consider an

element γ =

(
a b
c d

)

∈ SL(2,C) with a+ d 6= 0 and c 6= 0 :

γ.P = P ⇐⇒







a

c
∈ D ,

−d
c

∈ D : D is given by relation (8.1)

(a+ d)2 ∈ R
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Proof : we have, from the considerations of the previous section,

γ.P = P ⇐⇒ γ(D) = D

. If γ(D) = D then γ(∞) = a/c ∈ D and γ−1(∞) = −d/c 6= a/c ∈ D ; so

z ∈ D ⇐⇒ ∃λ ∈ R, z = λ
(a

c

)

+ (1 − λ)

(−d
c

)

=
λ a+ (λ− 1) d

c
=
λ (a+ d) − d

c

⇐⇒ cz + d

a+ d
∈ R ⇐⇒ cz − a

a+ d
∈ R

whence

D =

{

z ∈ C /

Im

(
cz

a+ d

)

= Im

(
a

a+ d

)

= Im

( −d
a+ d

) }

(8.1)

Moreover a/c ∈ D so that

γ
(a

c

)

∈ D ⇐⇒ a2 + bc

c(a + d)
∈ D

⇐⇒ Im

(
a2 + bc

(a+ d)2

)

= Im

(
a

a+ d

)

= Im

(
a2 + ad

(a+ d)2

)

⇐⇒ Im

(
ad− bc

(a+ d)2

)

= Im

(
1

(a+ d)2

)

⇐⇒ (a + d)2 ∈ R
. Reciprocally, assume that a/c ∈ D , −d/c ∈ D and (a + d)2 ∈ R : by relation (8.1),

we still have γ(a/c) ∈ D ; besides

γ
(a

c

)

=
a2 + bc

c(a+ d)
6= a

c
since ad− bc = 1 6= 0

Therefore the isometry γ takes the three distinct points ∞, a/c, −d/c of D into a/c,
γ(a/c) and ∞, which also are distinct points of D : any circle of P1(C) being uniquely
defined by three points, we have de facto γ(D) = D , which ends the proof.

Keep in mind for any hyperbolic element γ = ξ + ηΩ ∈ Γ
R
, we have Tr(γ) = Tr(ξ) 6= 0

and η 6= 0 (cf. proof of Proposition 4.3) : those elements, which are the only interesting ones
for us, will satisfy the hypothesis of the above Proposition.

• We are now able to show easily the existence of infinitely many Γ
R

- closed itgs in H3.
Take any hyperbolic element γ = ξ+ηΩ ∈ Γ

R
: z1 = γ−1(∞) and z2 = γ(∞) are two distinct

points of C, since Tr(γ) 6= 0. Let us define the itgs Pγ by Pγ = Dγ ⊕R∗
+j where

Dγ = (z1, z2) =
{

z ∈ C / Im(b η z) = Im(ξ)
}

(8.2)

Since Tr(γ) ∈ Z ⊂ R, we have γ(Dγ) = Dγ and γ.Pγ = Pγ by Proposition 8.2 : our
half-plane Pγ is a Γ

R
- closed itgs of H3. Furthermore :

Proposition 8.3 There exist infinitely many Γ
R

- closed itgs in H3, e.g. the half-planes

P(t) = D(t) ⊕R∗
+j = R(1 + t

√
a
)
⊕R∗

+ j for t ∈ Z.
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Proof : let us fix t ∈ Z and look for an arbitrary element γ = ξ + ηΩ ∈ Γ
R

of the form
γ = x + y(1 + t

√
a) Ω, with x, y ∈ Z∗ : then γ is hyperbolic as y 6= 0, and relation (8.2)

provides Dγ = R (1 + t
√
a
)

= D(t). For such a γ

N(γ) = 1 ⇐⇒ x2 − b (1 − at2) y2 = 1 (8.3)

and by Fermat’s Theorem on the Equation of Pell, as soon as d = b (1 − at2) is not a square
in Z, we can solve this equation for non-trivial x, y. But

b (1 − at2) is a square in Z =⇒ 1 − at2 ≡ 0 [b] =⇒
(a

b

)

= 1

a contradiction with the definition of the
(
KS

2

)
- manifolds. So for each t ∈ Z, the rational

integer d = b (1 − at2) is not a square and we can find γt = ξt + ηt Ω ∈ Γ
R

such that
Dγt

= D(t) = R (1 + t
√
a
)
. This fullfills the proof.

Let us take for example a = −2 and b = 13 (cf. section 4) :

. for t = 0, d = 13, γ0 = 649 + 180Ω ∈ Γ
R

and P(0) = R⊕R∗
+ j.

. for t = 1, d = 39, γ1 = 25 + 4(1 + i
√

2)Ω ∈ Γ
R

and P(1) = R(1 + i
√

2
)
⊕R∗

+j.

. for t = 2, d = 117, γ2 = 649 + 60(1 + 2i
√

2)Ω ∈ Γ
R

and P(2) = R(1 + 2i
√

2
)
⊕R∗

+j.

We shall see other examples of Γ
R

- closed itgs in Appendix B, half-planes that do not containR∗
+j and miscellaneous half-spheres. Moreover we shall prove that

Proposition 8.4 There exist infinitely many Γ
R

- closed itgs in X
R
.

• Let us finally state the main result of this section :

Proposition 8.5 Let P1 be a Γ
R

- closed half-plane of H3 and F a finite subset of P.

There exists infinitely many primes p ∈ P\F such that

∀N ∈ F ∀α ∈ Rpr(Np) ∪Rpr(N2p2) α.P1 6= P1 (8.4)

Proof : we denote by D1 the trace of P1 on C. As P1 is Γ
R

- closed, there exists a
hyperbolic element γ1 = ξ1 + η1 Ω ∈ Γ

R
such that γ1.P1 = P1 whence γ.D1 = D1. Moreover

η1 6= 0, Tr(γ1) 6= 0 and we can apply Proposition 8.2 : by relation (8.1), we have

D1 =
{

z ∈ C /

Im(b η1 z) = Im(ξ1)
}

(8.5)

Let us consider a prime p ∈ P\F satisfying the assumptions of Proposition 3.5

ordp(2abDD
′) = 0 and

(
a

p

)

= −1 (8.6)

and assume that for n = 1 or 2,

∃N ∈ F ∃α = ξ + ηΩ ∈ Rpr(Nnpn) α.P1 = P1 i.e. α(D1) = D1 (8.7)

Then η 6= 0 and relation (8.7) implies that α−1(∞) = −ξ/bη ∈ D1 which means that

−Im

(
η1 ξ

η

)

= Im

(
η1 ξ

η

)

= Im(ξ1) and ∃λ ∈ R, ξ

η
=
λ+ i Im(ξ1)

η1
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In fact λ ∈ Q because all the complex numbers considered belong to the number field F.
From the norm equation N(α) = Nnpn we deduce that

Nnpn = |ξ|2 − b |η|2 = |η|2
( |ξ|2
|η|2 − b

)

=
|η|2
|η1|2

[

λ2 + Im(ξ1)
2 − b |η1|2

]

From |ξ1|2 − b |η1|2 = N(γ1) = 1 we get Im(ξ1)
2 − b |η1|2 = 1 − Re(ξ)2 so that

Nnpn =
|η|2

4|η1|2
[

4λ2 + 4 − Tr(γ1)
2
]

(8.8)

By Proposition 3.5, ordp|η|2 = 0 ; we shall moreover impose the condition ordp|η1|2 = 0.

As Tr(γ1) ∈ Z, relation (8.8) provides ordp(4λ
2) ≥ 0 whence 4λ2 + 4−Tr(γ1)

2 ≡ 0 [p] so that

Tr(γ1)
2 − 4 is a square modulo p.

Assume now that the integer Tr(γ1)
2 − 4 is a square. Then Tr(γ1) = m ∈ Z and ∃n ∈ Z

such that m2 − 4 = n2, whence m2 − n2 = (|m| + |n|) × (|m| − |n|) = 4 = 2 × 2 = 4 × 1.

Because |m| + |n| ≥ |m| − |n| > 0 we have the following alternative :

. either |m| + |n| = |m| − |n| = 2 so that n = 0 and m = Tr(γ1) = ±2, a contradiction
with γ1 hyperbolic.

. or |m| + |n| = 4 and |m| − |n| = 1 so that |m| = 5/2 ∈ N, a contradiction.

Hence c = Tr(γ1)
2 − 4 is not a square. Moreover γ1 being hyperbolic, c > 0.

Finally, we see that ∀ (x, y) ∈ Z2, axcy square in Z =⇒ ax > 0 =⇒ x ≡ 0 [2] as a < 0,
whence cy square in Z =⇒ y ≡ 0 [2] because c is not a square in Z. Thus a and c are
2-independent and there exists by Theorem 3.1 infinitely many primes p ∈ P such that

(
a

p

)

=

(
Tr(γ1)

2 − 4

p

)

= −1

If we restrict to the primes p ∈ P\F such that ordp(2abDD
′) = 0 = ordp|η1|2, we obtain

by relation (8.8) infinitely many primes for which relation (8.7) can’t be satisfied. Hence they
satisfy relation (8.4), which ends the proof of the Proposition.

8.2 Of the half-spheres

• We shall begin with a characterization of the half-spheres of H3 that are Γ
R

- closed
itgs. Let S = S(a1, r) be such an itgs and C = C(a1, r) be its trace on C : there exists a
hyperbolic element γ ∈ Γ

R
such that γ.S = S whence γ(C ) = C . Using this relation, we

obtain a system of three algebraic equations that lead to

Proposition 8.6 Let S(a1, r) 6= So be a Γ
R

- closed itgs : a1 6= 0. If q = 1+b (|a1|2−r2) 6= 0,

then ζ =
a1

q
∈ F∗ and ∃ (X, Y ) ∈ Z×Q, a (1 − 4b|ζ |2) = (X2 − 4) Y 2 > 0.

Applying Proposition 8.6 to S1, we obtain relations on a1 and r (the same notations q
and ζ are used). Let F be a finite subset of P and n = 1, 2. Then, for N ∈ F and
p ∈ P\F , consider α = ξ + ηΩ ∈ Rpr(Nnpn) such that α.S1 = S1. The case η = 0 is
straightforward. If η 6= 0, we proceed as in the proof of Proposition 8.6 and obtain a similar
system of three algebraic equations. ¿From this system we deduce that except for finitely many
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primes p : if q 6= 0 then a (1− 4 b |ζ |2) is a square modulo p ; if q = 0 then b |η1|2 is a square
modulo p, where η1 is a fixed non nul integer of F that depends only on a1. Therefore, after
proving that the above quantites are not squares in Q, we deduce from Theorem 3.1 that

Proposition 8.7 Let S = S(a1, r) 6= So be a Γ
R

- closed itgs of H3 and F be a finite

subset of P. There exists infinitely many primes p ∈ P\F such that

∀N ∈ F ∀α ∈ Rpr(Np) ∪Rpr(N2p2) α.S 6= S (8.9)

• First we need a technical lemma for both Propositions :

Lemma 8.1 Let C1 = C(a1, r1) and C2 = C(a2, r2) be two circles of C, N ∈ Z and

α = ξ + ηΩ ∈ Rpr(N) with η 6= 0 such that α(C1) = C2. Then

∃ ε = ±1







b
(
r1 η a2 − ε r2 η a1

)
=

(
r1 + εr2

)
ξ (8.15)

b2 r2
1 |η|2 − |ξ + b η a1|2 = Nε

r1
r2

(8.16)

|ξ|2 − b|η|2 = N (8.17)

Proof : assume the hypothesis of the Lemma. We have

∀ z ∈ C, α(z) =
ξz + η

bηz + ξ
=

ξ

bη
+

b|η|2 − |ξ|2
bη
(
bηz + ξ

) =
ξ

bη
− N

bη
(
bηz + ξ

)

so that

∀ z ∈ C, α(z) =
ξ

bη
+

k

z − ζ
where k = − N

b2η2 and ζ = −ξ/bη (8.10)

r1

a1

r2

a2

αI

ζ ζ̂

A2

B′A′

B2

A1 B1

αR

α

a′

r2

C2

C0

C ′
C1

Figure 4: Action of α on C1
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Note that ζ /∈ C1 otherwise α(ζ) = ∞ ∈ C2 and that cannot happen. Relation (8.10) implies
that α = αR ◦ αI where αI : z 7−→ ζ + |k|/(z − ζ) is an inversion of center ζ and αR is
an orientation reversing euclidean isometry of C.

First we assume that ζ 6= a1. We denote by InvC1 the inversion of circle C1. Let us set
ζ̂ =InvC1(ζ) = a1 +r2

1/(ζ−a1) : all the circles passing through ζ and ζ̂ are then orthogonal to
C1 because they are invariant under InvC1 . Let C0 be such a circle : αI .C0 is a line orthogonal
to αI .C1 = C ′, hence it is a diameter. Therefore αI(ζ̂) = a′ – intersection of all the diameters
of C ′ – is the center of C ′, so that α(ζ̂) = a2 is the center of C2. Now we set

(
ζ, a1

)
∩ C1 =

{
A1, B1

} (
ζ, a1

)
∩ C

′ =
{
A′, B′}

We take here as a convention that the points A1 and ζ are on the same side of a1 on the line
(ζ, a1), and that B1 and ζ are on opposite sides. We have A′ = αI(B1), B

′ = αI(A1) and

A1 − ζ =
a1 − ζ

|a1 − ζ |
(
|a1 − ζ | − r1

)
, B1 − ζ =

a1 − ζ

|a1 − ζ |
(
|a1 − ζ |+ r1

)
(8.11)

whence

A′ = ζ +
|a1 − ζ |
a1 − ζ

|k|
|a1 − ζ |+ r1

and B′ = ζ +
|a1 − ζ |
a1 − ζ

|k|
|a1 − ζ | − r1

(8.12)

Therefore 2r2 = |A′ − B′| = 2|k|r1/ ||a1 − ζ |2 − r2
1|. We set ε = 1 if ζ is inside of C1 and

ε = −1 otherwise, so that
r2
r1

=
ε|k|

r2
1 − |a1 − ζ |2 (8.13)

We have ζ̂− ζ = a1 − ζ + r2
1/
(
ζ−a1

)
=
(
r2
1 −|a1 − ζ |2

)
/
(
ζ −a1

)
= ε|k|r1/r2

(
ζ−a1

)
. Thus,

according to relation (8.10),

α(ζ̂) =
ξ

bη
+
ε
(
ζ − a1

)
k r2

r1 |k|

Besides we have |k| = N/b2|η|2 so that k/|k| = −|η|2/η2 = −η/η and

α(ζ̂) =
ξ

bη
− ε

η

η

r2
r1

(
ζ − a1

)
= a2 (8.14)

whence
b
(
r1ηa2 − ε r2ηa1

)
=
(
r1 + εr2

)
ξ (8.15)

Injecting ζ = −ξ/bη and | k| = N/b2|η|2 in relation (8.13) we deduce that

b2r2
1|η|2 − |ξ + bηa1|2 = Nε

r1
r2

(8.16)

Finally the computation of the norm of α provides the relation

|ξ|2 − b|η|2 = N (8.17)

In the case ζ = a1 = −ξ/bη, we have ε = 1, ζ̂ = ∞ and α(ζ̂) = ξ/bη = a2 so that
the relation (8.15) is still satisfied. Moreover C ′ = C(a1, r2) : as αI .C(a1, r1) = C(a1, r2) ,
then we have |k| = r1r2 = N/b2|η|2 whence relation (8.16). So in each case we finally obtain
the system of three equations (8.15), (8.16) and (8.17), which ends the proof of the Lemma.
We shall prove a converse in Appendix B.
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• Proof of Proposition 8.6 : consider a hyperbolic element γ = ξ + ηΩ ∈ Γ
R

such that
γ(C ) = C = C(a1, r). If a1 = 0, then γ.C(0, r) = C(0, r) i.e. ∀ θ ∈ R,

∣
∣γ(r eiθ)

∣
∣ = r.

Therefore
∀ θ ∈ R ∣

∣ξ r eiθ + η
∣
∣ = r

∣
∣ξ + b η r e−iθ

∣
∣ =

∣
∣ξ r eiθ + b r2 η

∣
∣ (8.18)

By taking the maxima of both sides of this equality considered as functions of eiθ ∈ S1, we get

r |ξ| + |η| = r |ξ| + b r2 |η|. As η 6= 0 by hyperbolicity of γ, then 1 = b r2 so that r = 1/
√
b

and S = So, a contradiction with the definition of S . Hence a1 6= 0. We assume in the
sequel that q = 1 + b (|a1|2 − r2) 6= 0.

By Lemma 8.1, the relation γ(C ) = C leads to

∃ ε = ±1






b
(
η a1 − ε η a1

)
=

(
1 + ε

)
ξ (8.15′)

b2 r2 |η|2 − |ξ + b η a1|2 = ε (8.16′)

|ξ|2 − b|η|2 = 1 (8.17′)

If ε = 1 , then from (8.15′) we get ξ = i b Im(η a) so that Re(ξ) = 0, which contradicts
the hyperbolicity of γ. Therefore ε = −1 and relation (8.15′) implies that Re(η a1) = 0.
From relations (8.16′) and (8.17′) we deduce that

|ξ + b η a1|2 − b2r2|η|2 = 1 = |ξ|2 − b|η|2
and

|ξ|2 + 2 bRe(ξ η a1) + b2 (|a1|2 − r2) |η|2 = |ξ|2 − b |η|2

As 2 bRe(ξ η a1) = b
(
ξ η a1 + ξ η a1

)
= b

(
ξ − ξ

)
η a1 and η 6= 0, we deduce from the above

equation that (
ξ − ξ

)
a1 +

[
1 + b (|a1|2 − r2)
︸ ︷︷ ︸

q

]
η = 0 (8.19)

De facto ξ− ξ 6= 0 : ζ = a1/q = η/(ξ− ξ) ∈ F∗ and η = (ξ− ξ) ζ = −2iIm(ξ) ζ . Injecting
this in (8.17′) we obtain

1 = Re(ξ)2 + (1 − 4 b |ζ |2) Im(ξ)2

Setting 2 Re(ξ) = X ∈ Z and 2 Im(ξ)/
√−a = Y −1 ∈ Q∗, we get X2 − a (1− 4 b |ζ |2) Y −2 = 4

whence
∃ (X, Y ) ∈ Z×Q a (1 − 4 b |ζ |2) = Y 2 (X2 − 4) > 0 (8.20)

because Y 6= 0 and X2 = Tr2(γ) > 4 as γ is hyperbolic. This ends the proof.

• Proof of Proposition 8.7 : fix n = 1, 2 ; let us consider a prime p ∈ P\F such that
ordp(2abDD

′) = 0 and

∃N ∈ F ∃α = ξ + ηΩ ∈ Rpr(Nnpn) α.S = S = S(a1, r) (8.21)

Keep in mind that S being a Γ
R

- closed itgs of H3, a1 6= 0 by Proposition 8.6.

� If η = 0, then α.(z, t) = (ξz/ξt) for any (z, t) ∈ H3 : α acts as an euclidean rotation

of the space R3. Therefore a1 = α.a1 = ξ a1/ξ 6= 0 and ξ/ξ = 1 : hence ξ ∈ R so that
α = ξ = ±Np ∈ pR and cannot be primitive in R, a contradiction.
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� Since η 6= 0, we can proceed as in the proof of Proposition 8.6 : we set C = C(a1, r) ;
then α(C ) = C whence by Lemma 8.1

∃ ε = ±1






b
(
η a1 − ε η a1

)
=

(
1 + ε

)
ξ (8.15′′)

b2 r2|η|2 − |ξ + b η a1|2 = εNnpn (8.16′′)

|ξ|2 − b|η|2 = Nnpn (8.17′′)

� If ε = −1 then from relation (8.15”) we get η a1 + η a1 = 2 Re(η a1) = 0. We proceed as
with relation (6.3) : there exists η1 ∈ OF fixed (depending only on a1) such that

∃λ ∈ Q η = λ η1 (8.22)

Using the relations (8.16”) and (8.17”), we get |ξ + b η a1|2 − b2 r2|η|2 = |ξ|2 − b |η|2 whence

2 bRe(ξ η a1) + b |η|2
[
1 + b (|a1|2 − r2)

]
= 0 i.e. 2 Re(ξ η a1) + q |η|2 = 0 and

2 Re (ξ η1 a1) = −λ q |η1|2 (8.23)

Let us assume for the moment that q 6= 0. By Proposition 8.6, we have ζ = a1/q ∈ F and

ξ η1 ζ ∈ F, so that ∃µ ∈ Q, 2 i Im(ξ η1 ζ) = µ
√
a. Therefore 2 ξ η1 ζ = −λ |η1|2 + µ

√
a and

4 |ξ η1 ζ |2 = λ2|η1|4 − a µ2. Injecting this in relation (8.17”) we get

4Nn pn |η1|2|ζ |2 = 4 |ξ η1 ζ |2 − 4 b |η|2|η1|2|ζ |2
= −a µ2 + λ2|η1|4

(
1 − 4 b |ζ |2

)

For λ = l/r, µ = m/r ∈ Q with integers l,m, r satisfying l∧m∧ r = 1, this relation becomes

after multiplication of both sides by a r2

a
(
1 − 4 b |ζ |2

)
(l |η1|2)2 = 4 a |η1|2|ζ |2 r2Nn pn + a2m2 (8.24)

We know that 1 − 4 b |ζ |2 6= 0. For a prime p such that ordp(1 − 4 b |ζ |2) = ordp|ζ |2 =

ordp|η1|2 = 0, we see from relation (8.24) that l ≡ 0 [p] if and only if m ≡ 0 [p]. If l ≡ 0 [p]

then 2 r ξ η1 ζ =
(
− l |η|2 + m

√
a
)

∈ pOF, with r 6≡ 0 [p] because l ∧ m ∧ r = 1, and

r η = l η1 ∈ pOF : hence α = ξ + ηΩ ∈ pR, which contradicts the choice of α primitive.

Therefore l 6≡ 0 [p] and relation (8.24) implies that a
(
1 − 4 b |ζ |2

)
is a square modulo p.

If q = 0 then from relation (8.23) we get Re(ξ η1 a1) = 0 = −Im(ξ) Im(η1 a1) whence
Im(ξ) = 0 (because η1 a1 ∈ iR\{0}). Therefore we have ξ = µ ∈ Q and η = λ η1 so that
Nnpn = µ2 − b |η1|2 λ2 by relation (8.17”) whence

∃ (l,m, r) ∈ Z3, l ∧m ∧ r = 1 and r2Nnpn = m2 − b |η1|2 l2 (8.25)

Given a prime p such that ordp|η1|2 = 0 we have l ≡ 0 [p] ⇐⇒ m ≡ 0 [p] ⇐⇒ α ∈ pR as in

the case q1 6= 0, in contradiction with the primitivity of α. Thus l 6≡ 0 [p] and relation (8.25)
implies that the integer b |η1|2 is a square modulo p.

� If ε = 1 then relation (8.15”) implies ξ = b (η a1 − η a1)/2 = i b Im(η a1) ∈ iR and

ξ + b η a1 = b (η a1 + η a1)/2 = bRe(η a1) ∈ R. Using relations (8.16”) and (8.17”) we get

Nnpn = b2 r2
1 |η|2 − b2 Re2(η a1) = b2 Im2(η a1) − b |η|2 so that b2 |η|2

(
r2
1 − |a1|2

)
= −b |η|2 6= 0

whence
b
(
|a1|2 − r2

1

)
= 1 and q = 2 (8.26)
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Therefore, a1 = 2 ζ ∈ F∗ (cf. Proposition 8.6). We can set η a1 = X + Y
√
a with X, Y ∈ Q.

After multiplication of both sides by |a1|2, relation (8.17”) becomes

|a1|2Nnpn = −a b2 |a1|2 Y 2 − b
(
X2 − a Y 2

)
= b

[

a
(
1 − b |a1|2

)
Y 2 −X2

]

For a prime p such that ordp|a1|2 = 0 = ordp(1 − b |a1|2), we can as before conclude that
a
(
1 − b |a1|2

)
= a

(
1 − 4 b |ζ |2

)
is a square modulo p.

� We can now end the proof of the Proposition : if q = 0, η1 ∈ F∗ and by Lemma 4.1 that
ordb(|η1|2) is even, whence b |η1|2 is not a square in Q. Therefore there exists infinitely many
primes p such that b |η1|2 is not a square modulo p (cf. section 3.1.2).

If q 6= 0, we know by Proposition 8.6 that a
(
1− 4 b |ζ |2

)
= (X2 − 4) Y 2 > 0 with (X, Y ) ∈Z × Q. As we saw in the proof of Proposition 8.5, X2 − 4 is a square in Z if and only if

X = ±2 i.e. X2 − 4 = 0, which cannot happen here. Hence a
(
1 − 4 b |ζ |2

)
is not a square

in Q, and there exists once again infinitely many primes p such that a
(
1 − 4 b |ζ |2

)
is not

a square modulo p.

Therefore, after the exclusion of the prime factors of a finite set of rational numbers,
we still have infinitely many primes p for which relation (8.21) cannot be satisfied, whence
∀N ∈ F , ∀α ∈ Rpr(Nnpn), α.S 6= S . This ends the proof of the Proposition.

8.3 Synthesis

• Let us take Σ1, . . . , Σl Γ
R

- closed itgs of X
R

admitting itgs S1, . . . , Sl as liftings to H3,
with S1 6= So, to which we apply Proposition 5.2. Let F be the finite subset of P given
by this Proposition. We know by Propositions 8.5 and 8.7 – whether S1 is a half-plane or
a half-sphere – that there are infinitely many primes p ∈ P\F such that

∀N ∈ F ∀α = ξ + ηΩ ∈ Rpr(Np) ∪Rpr(Nnpn) α.S1 6= S1 (8.27)

whence, by Proposition 5.2

Proposition 8.8 Let S1, . . . ,Sl – with S1 6= So – be Γ
R

- closed itgs of H3. There exists

infinitely many primes p ∈ P such that

∀α ∈ R(p) ∪ Rpr(p2) ∀ i ∈ { 1 . . . l } α.S1 6= Si (8.28)
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9 Conclusion

Proof of Proposition 5.1

We consider a manifold X
R

of class (KS
2 ) and Λ ⊂ X

R
a non-empty set that has not type

(So) such that
Λ ⊂ z1 ∪ . . . ∪ zl ∪ L1 ∪ . . . ∪ Lr ∪ Σ1 ∪ . . . ∪ Σs

where the zi are points, the Lj are closed geodesics and the Σk are Γ
R

- closed itgs of X
R
.

We assume moreover that area(Λ) 6= 0 if s ≥ 1. We look for a modular correspondence Cp

separating Λ (see section 1.1 for definitions).

• Λ is finite : then we have Λ = {z1, . . . , zl}. Let us denote by z̃1, . . . , z̃l liftings of
these points of X

R
to H3. By Proposition 6.1

∃ p ∈ P ∀α ∈ R(p) ∪ Rpr(p2) ∀ i = 1 . . . l α z̃1 6= z̃i (9.1)

As in section 1.4, we deduce that there exists a prime p such that Cp separates Λ.

• Λ is infinite and contained in a finite union of closed geodesics : then we can write
Λ ⊂ L1 ∪ . . . ∪ Lr where the Lj are closed geodesics, and assume that Λ ∩ L1 is infinite.
Let the geodesics L̃1, . . . , L̃r be liftings to H3 of the Lj . By Proposition 7.1

∃ p ∈ P ∀α ∈ R(p) ∪Rpr(p2) ∀ j = 1 . . . r α.L̃1 6= L̃j (9.2)

As in section 1.4, we deduce that there exists a prime p such that Cp separates Λ.

• Λ is contained in a finite union of Γ
R

- closed itgs and area(Λ) 6= 0 : as Λ has not
type (So), we can write Λ ⊂ Σ1 ∪ . . . ∪ Σs where the Σk are Γ

R
- closed itgs, Σ1 6= So and

area(Σ1 ∩Λ) 6= 0. Let the itgs S1, . . . , Ss be liftings of the Σk to H3 . As S1 6= So, then by
Proposition 8.8

∃ p ∈ P ∀α ∈ R(p) ∪ Rpr(p2) ∀ k = 1 . . . r α.S1 6= Sk (9.3)

Let p ∈ P be such a prime : Cp(Σ1) and Cp2(Σ1) consist of Γ
R

- closed itgs all distinct from
the Σk. Therefore by Lemma 4.3 the sets

µ1 = Cp(Σ1) ∩ (Σ1 ∪ . . . ∪ Σl) and µ2 = Cp2(Σ1) ∩ (Σ1 ∪ . . . ∪ Σl)

have zero area. Hence

ν1 =
{
z ∈ X

R

/
Cp(z) ∩ µ1 6= ∅

}
and ν2 =

{
z ∈ X

R

/
Cp2(z) ∩ µ2 6= ∅

}

have zero area, so that there exists z ∈ Λ ∩ Σ1\(ν1 ∪ ν2). Let z̃ be a lifting of z to H3 and

w = Γ
R
α1z̃ ∈ Cp(z) ⊂ Cp(Σ1). As in section 1.4 (infinite case), we show that w /∈ Λ and

Cp(w) ∩ Λ = {z} : Cp separates Λ. This ends the proof of Proposition 5.1.

Proof of Theorem 5.1

Let us take Λ ⊂ X
R

satisfying the statement of Proposition 5.1 : there is a modular
correspondence C separating Λ. Let ν be a quantum limit on X

R
which is – we make the

same assumption as in section 1.4 – associated to a sequence of eigenfunctions of ∆ and {Tn},
hence of T = TC . From Proposition 1.1, we deduce that singsupp ν 6= Λ, which finally proves
Theorem 5.1.
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A Of closed itgs in X
R

Let us assume that S 6= So is a closed itgs of H3 for Γ
R

: by Proposition 4.3, there exists
a compact subset F ⊂ S and a subgroup Γ0 ⊂ Γ

R
such that S = Γ0.F i.e.

∀x ∈ S ∃ γ ∈ Γ0 γ.x ∈ F (1.1)

We set t0 = inf
{
t
/

(z, t) ∈ F
}

= min
{
t
/

(z, t) ∈ F
}
> 0 since F is compact in H3.

A.1 The half-spheres

We shall write S = S(a1, r), with a1 ∈ C and r > 0. By Proposition 8.6, a1 6= 0 ; we fix

(z, t) =

(

a1

[

1 +

√
r2 − t2

|a1|

]

, t

)

∈ S with 0 < t < t0

Now take any γ = ξ + ηΩ ∈ Γ0. If η 6= 0, we deduce from relation (8.15’) – see the proof of
Proposition 8.6 – that ηa1 ∈ iR∗ ; moreover

γ.(z, t) = (z̃, t̃) =

(

∗ , t

|ξ + bηz|2 + b2|η|2t2
)

(1.2)

by relation (2.3). As ηz ∈ iR, we have |ξ + bηz|2 ≥ Re(ξ)2 > 1 by hyperbolicity of γ : hence
t̃ < t < t0 so that γ.(z, t) = (z̃, t̃) /∈ F . If η = 0 then γ = ±I2 and γ.(z, t) = (z, t) /∈ F .
Therefore ∃x ∈ S ∀ γ ∈ Γ0 γ.x /∈ F

a contradiction with relation (1.1).

A.2 The half-planes

We shall write S = D ⊕ R∗
+ j. Let γ0 = ξ0 + η0 Ω ∈ Γ0 with η0 6= 0 : by relation (8.2)

we have
D =

{

z ∈ C / Im(b η0 z) = Im(ξ0)
}

We set
∀λ ∈ R zλ =

−ξ0
bη0

+
λ

bη0

∈ D

Take any γ = ξ + ηΩ ∈ Γ0. If η 6= 0 then

ξ + bηzλ = ξ − ξ0η

η0

+
λη

η0

= η

[
ξ

η
− ξ0
η0

+
λ

η0

]

(1.3)

Since γ ∈ R, D′2|η|2 ∈ N whence D′2|η|2 ≥ 1 : therefore

N(γ) = |ξ|2 − b|η|2 = 1 =⇒
∣
∣
∣
∣

ξ

η

∣
∣
∣
∣

2

= b+
1

|η2| ≤ b+D′2

and

∀ γ ∈ Γ
R

∣
∣
∣
∣

ξ

η
− ξ0
η0

∣
∣
∣
∣

2

≤ 2
(
b+D′2) (1.4)

Now fix λ >
[√

2 (b+D′2) + D′]|η0| and t ∈]0, t0[ ; by relations (1.4) and (1.3) we have
|ξ + bηzλ|2 > D′2|η|2 > 1 : therefore – by relation (1.2) – γ.(zλ, t) /∈ F . If η = 0 then
γ.(zλ, t) = (zλ, t) /∈ F and we finally get the same contradiction with (1.1) as before.
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A.3 Synthesis

So we have just proved that for any (KS
2 ) - manifold X

R
, there is only one possible closed

itgs, the projection of So = S(0, 1/
√
b) in X

R
.

We shall prove that this itgs is indeed closed : Γ
R

acts on the hyperbolic surface So –
which is equivalent to H2 – as a subgroup of its direct isometries ; we proceed exactly the same
way as in [2] to prove that Γ

R
\So is compact for R a maximal order in an indefinite division

quaternion algebra over Q.

• Set I = Z [i1, i2, i3, i4] and J = R [i1, i2, i3, i4] = I ⊗ R = A ⊗ R ; for the mapping ϕ

defined in section 3.2 we have Γ
R

ϕ≃ I(1) and G
R

ϕ≃ J(1) where

G
R

=

{(
ξ η

bη ξ

)

∈ M(2,C)
/

|ξ|2 − b |η|2 = 1

}

(1.5)

is the group of isometries induced by A ⊗ R. We already know from relation (4.6) that

∀ γ ∈ Γ
R
, γ.So = So whence γ.

(

0, 1/
√
b
)

∈ So. Further :

Lemma 1.1 We define by
ψ : G

R
−→ So

γ 7−→ γ.
(

0, 1/
√
b
)

a continuous surjection. Set Mc =
{
ξ + ηΩ ∈ G

R

/
|ξ| ≤ c, |η| ≤ c

}
: for every

c > 0, the set ψ(Mc) is compact.

Proof : For γ = ξ + ηΩ ∈ G
R
, |ξ|2 = 1 + b |η|2 so that

γ.





0

1/
√
b



 =







ξ

bη
− 1

bη

ξ

|ξ|2 + b|η|2
1√

b (|ξ|2 + b|η|2)







=








ξ

bη

(

1 − 1

1 + 2 b |η|2
)

1√
b (1 + 2 b |η|2)








whence

∀ γ ∈ G
R

ψ(γ) =

(
2 ξ η

1 + 2 b |η|2 ,
1√

b (1 + 2 b |η|2)

)

∈ So (1.6)

It is easy to see that we obtain all the points of So when ( |η|, Arg ξη ) runs [0,+∞]× [−π, π],
so that ψ is a surjection. From its above expression, it is moreover obvious that ψ is continuous
on G

R
. For all c > 0, Mc is a compact subset of M(2,C) so that ψ(Mc) is compact.

Note that ∀ γ1, γ2 ∈ G
R
, ψ(γ1.γ2) = γ1.ψ(γ2) from the definition of ψ.

• Let us now consider elements ξ = x1i1 + x2i2 + x3i3 + x4i4 with ∀ j, xj ∈ R such that
N(ξ) = 1, and set Mc =

{
ξ ∈ A ⊗R / ∀ j, |xj| ≤ c

}
∩ { ξ : N(ξ) = 1 } for c > 0. Then

we have (see [2])

Lemma 1.2 Let A be an indefinite division algebra over Q and I = Z [i1, i2, i3, i4]

a maximal order of A. There exists c > 0 fixed such that

∀ ξ ∈ A ⊗R with N(ξ) = 1 ∃ ε ∈ I(1) εξ = η ∈Mc
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By application of the mapping ϕ, we obtain from the above relation

∃ c > 0 ∀ γ ∈ G
R

∃γ0 ∈ Γ
R

γ0γ = γ1 ∈ Mc

so that

∃ c > 0 ∀ γ ∈ G
R

∃ γ0 ∈ Γ
R

γ0.ψ(γ) = ψ(γ0.γ) ∈ ψ(Mc)

By Proposition 1.1
∀x ∈ So ∃ γ ∈ G

R
x = ψ(γ)

and the set F = ψ(Mc) is a compact subset of So such that

∀x ∈ So ∃ γ0 ∈ Γ
R

γ0.x ∈ F i.e. So = Γ
R
F

which leads to

Proposition 1.1 For any (KS
2 ) -manifold X

R
, the half-sphere So = S(0, 1/

√
b) is the only

closed itgs of H3 for Γ
R

; its projection in X
R

is then compact.

A.4 Complement : the case a > 0

• One could think that the (arbitrary) choice of a < 0 made in section 4 is the cause of
the lack of closed itgs in X

R
. But that would be a mistake, as we shall see in the sequel.

We define a class (KS
1 ) of quotients manifolds X

R
by taking

a ∈ Z b ∈ P

(a

b

)

= −1

(−1

b

)

= 1

(−3

b

)

= 1 (1.7)

For example, we can take a = 2 and b = 13 ; in fact, we just have to take the opposite
of a to get from the (KS

2 ) - manifolds to the (KS
1 ) ones. We have the same properties as in

section 4 – they are consequences of relation (1.7) – except that the conjugation in F does not
coincide with the complex conjugation anymore. For the definition of the Γ

R
- closed itgs, we

shall moreover impose that the hyperbolic elements γ = ξ + ηΩ considered satisfy η 6= 0.

• This time, the particular itgs that is left invariant under the action of all the isometries
induced by A ⊗R is P o = R⊕R∗

+ j ≃ H2. Indeed, A ⊗R induces the group SL(2,R) since√
a ∈ R. The action of

γ =

(
a b
c d

)

∈ SL(2,R)

on P o is given by

∀ (x, t) ∈ R×R∗
+ γ .





x

t



 =







ax+ b

d

a t

d







=





x̃

t̃



 ∈ P o

if c = 0. Then

x̃+ it̃ =
a(x+ it) + b

d
= α(x+ it)

and we obtain the fractional linear action of SL(2,R) on H2. If c 6= 0

∀ (x, t) ∈ R×R∗
+ γ .






x

t




 =








a

c
− 1

c

cx+ d

(cx+ d)2 + c2t2

t

(cx+ d)2 + c2t2








=






x̃

t̃




 ∈ P o
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whence

x̃+ it̃ =
a

c
− c(x− it) + d

c |c(x+ it) + d|2
=

a

c
− 1

c [c(x+ it) + d]

=
a [c(x+ it) + d] − 1

c [c(x+ it) + d]
=

ac (x+ it) + bc

c [c(x+ it) + d]
since ad− 1 = bc

=
a (x+ it) + b

c(x+ it) + d
= α(x+ it)

and we obtain once again the fractional linear action of SL(2,R) on H2. Therefore the discrete
group Γ

R
⊂ SL(2,R) has the same action on P o and on H2 : as a consequence (cf. [2]), for a

maximal order R in an indefinite division quaternion algebra A over Q, the quotient Γ
R
\P o

is compact : the itgs P o is closed for Γ
R
. We shall now see that it is the only such itgs of H3.

• For γ = ξ + ηΩ ∈ Γ
R

and x = (z, t) ∈ H3 we have

γ .

(

z

t

)

=

(

ξ2z

ξ2t

)

=






z̃

t̃




 (1.8)

if η = 0, and

γ .






z

t




 =









ξ

bηF − 1

bηF ξ
F

+ bηFz
|ξF + bηFz|2 + b(ηF)2t2

t

|ξF + bηFz|2 + b(ηF)2t2









=






z̃

t̃




 (1.9)

if η 6= 0. Since ξ, η ∈ F ⊂ R, we easily compute that in each case

Im(z̃)

t̃
=

Im(z)

t

def
= f(x) (1.10)

Let us consider an itgs S 6= P o that is closed for Γ
R

: there exists a compact subset
F ⊂ S and a subgroup Γ0 ⊂ Γ

R
such that S = Γ0.F i.e.

∀x ∈ S ∃ γ ∈ Γ0 γ.x ∈ F

As F is compact and f is continous on H3, this function is bounded on F ; we deduce from
both previous relations that

∃M > 0 ∀x ∈ S |f(x)| ≤ M (1.11)

We can now obtain the desired contradiction :

. If S is a half-plane different from P o, whose trace will be denoted by D , then there
exists z0 ∈ D\R : for all t > 0, xt = (z0, t) ∈ S and |f(xt)| → +∞ as t → 0,
a contradiction with relation (1.11).

. If S = S(a, r) is a half-sphere, we have – since r 6= 0 – a + ir /∈ R or a − ir /∈ R :
we may assume wlog that a+ ir /∈ R. Set xt = (a+ i

√
r2 − t2, t) for t ∈]0, r] : we have

f(xt) ∼ |Im(a) + r| /t→ +∞ as t→ 0, a contradiction again.
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Hence we have established

Proposition 1.2 For any (KS
1 ) -manifold X

R
, the half-plane P o = R ⊕ R∗

+j is the only

closed itgs of H3 for Γ
R

; its projection in X
R

is then compact.

De facto the lack of closed itgs is not specific to the (KS
2 ) - manifolds, as we could have

thought a priori. Moreover, for any (KS
1 ) - manifold, we see from (8.5) that there is only one

Γ
R

- closed half-plane, P o ; the closed geodesics are also particular, they necessarily link either
two real points or two conjugate points of C ; we shall also have restrictions on the Γ

R
- closed

half-spheres ; all those considerations justify a posteriori our choice to deal with the (KS
2 ) -

manifolds rather with the (KS
1 ) ones.

B Of Γ
R
- closed itgs

B.1 Proof of Proposition 8.4

Let us consider the particular Γ
R

- closed half-planes of H3 given by Proposition 8.3. To prove
Proposition 8.4, we just have to see that the set of their projections in X

R
is still infinite.

Let us take t1 and t2 ∈ N ; the half-planes P(t1) and P(t2) have respectively traces
D1 = (1+ t1

√
a)R and D2 = (1 + t2

√
a)R on C. A circle of P1(C) being entirely defined by

three distinct points, we have for γ = ξ + ηΩ ∈ Γ
R

(so that η 6= 0)

γ(D1) = D2 ⇐⇒







γ(∞) =
ξ

b η
∈ D2 (1)

γ(0) =
η

ξ
∈ D2 (2)

γ(1 + t1
√
a) ∈ D2 (3)

The relations (1) and (2) are equivalent since η/ξ = (b |η|2/|ξ|2) × ξ/b η. By relation (1),
we have ξ η ∈ D2 and

∃λ ∈ Q ξ = λ b η (1 + t2
√
a)

Relation (3) provides
ξ (1 + t1

√
a) + η

b η (1 + t1
√
a) + ξ

∈ D2

⇐⇒ [ξ (1 + t1
√
a) + η] [ξ + b η (1 − t1

√
a)] ∈ D2

⇐⇒ ξ2 (1 + t1
√
a) + b η2 (1 − t1

√
a) ∈ D2

⇐⇒ λ2 b (1 + t2
√
a) (1 + t1

√
a) η2

︸ ︷︷ ︸

z1

+

(
1 − t1

√
a

1 + t2
√
a

)

η2

︸ ︷︷ ︸

z2

∈ R
Note that the complex numbers z1 and z2 have opposite arguments : therefore either they

have the same module, either they are both reals. In that case, we would have

λ4 b2 (1 − at2
2) (1 − at1

2) |η|4 =
1 − at1

2

1 − at2
2 |η|4 id est b λ2 (1 − at2

2) = 1
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whence ordb(1 − at2
2) = ordb|1 + t1

√
a|2 is odd, a contradiction with Lemma 4.1. As a

consequence, z1 and z2 are real numbers and

∃µ ∈ Q η2 = µ (1 + t1
√
a) (1 + t2

√
a)

By taking the module, we get |η|4 = (|η|2)2
= µ2 (1 − at1

2) (1 − at2
2) with |η|2 ∈ Q, so that

(1 − at1
2) (1 − at2

2) is a square in Q. We have hence proved

∃ γ ∈ Γ
R

γ.P(t1) = P(t2) =⇒ (1 − at1
2) (1 − at2

2) is a square in N
To fullfill the proof of Proposition 8.4, we have to find an infinite subset I ⊂ N such that

∀ t1 6= t2 ∈ I (1 − at1
2) (1 − at2

2) is not a square in N (2.1)

and it seems reasonable to think that it is possible for every negative integer a. Take a = −2
for instance : we easily compute that all numbers between 0 and 24000 statisfy this relation,
except from 2, 11, 12, 70, 109, 225, 408, 524, 1015, 1079, 1746, 2378, 2765, 4120, 5859, 8030,
10681, 13860, 16647, 17615, 21994, . More generally, a conjectural theorem states

Conjecture Let A, B, C be integers relatively primes such that A is positive, A+B and

C are not both even and B2 − 4AC is not a perfect square. Then there are

infinitely many primes of the form An2 +Bn+ C with n ∈ Z.

So, according to this highly probable Conjecture, there are – given a negative integer a –
infinitely many primes of the form 1 − at2 with t ∈ N, whence the existence of an infinite set
of integers I satisfying relation (2.1).

B.2 Of families of Γ
R
- closed half-planes

We have seen in Proposition 8.3 the existence of infinitely many Γ
R

- closed half-planes inH3,
denoted by P(t) = R(1 + t

√
a
)
⊕ R∗

+ j for t ∈ Z. Note that they all contain the particular
half-line R∗

+ j.

But it is easy to find other Γ
R

- closed half-planes : indeed, for γ = ξ + ηΩ hyperbolic,
we have 0 ∈ Dγ ⇐⇒ Im(ξ) = 0 by relation (8.2). Given t ∈ Z, we shall look for an hyperbolic
element in Γ

R
of the form γ = x+ y

√
a+ z(1 + t

√
a) Ω with x, y, z ∈ Z∗. For such a γ

N(γ) = 1 ⇐⇒ x2 − ay2 − b(1 − at2)z2 = 1 (2.2)

To prove that this equation has infinitely many solutions, we shall fix u ∈ Z and set y = uz :
then γt,u = x+ zu

√
a + z(1 + t

√
a) Ω and

N(γt,u) = 1 ⇐⇒ x2 −
[
au2 + b(1 − at2)
︸ ︷︷ ︸

d

]
z2 = 1 (2.3)

We have d ≡ au2 [b] and a is not a square modulo b – since X
R

is a manifold of class (KS
2 ) –

whence d cannot be a square in Z. Moreover d = b− a(bt2 − u2) > 0 as soon as |t|
√
b ≥ |u| :

in that case (cf. Pell-Fermat), we can solve the above equation for non-trivial x, z. Finally by
relation (8.2)

Dγt,u
= D(u, t) =

(R+
i Im(ξ)

b|η|2
)

η =

(R+
u
√
a

b(1 − at2)

)

(1 + t
√
a)
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which proves the following extension of Proposition 8.3 :

Proposition 2.1 There are infinitely many Γ
R

- closed half-planes in H3 that do not

contain R∗
+ j, the half-planes P(t, u) =

(R + u
√

a
b(1−at2)

)

(1 + t
√
a) ⊕ R∗

+ j

for t, u ∈ Z.

Let us take for example a = −2 and b = 13 as in section 4.

. γ0,1 = 10 + 3i
√

2 − 3Ω leaves P(0, 1) =
(R + i

√
2

13

)

⊕R∗
+ j invariant..

. γ1,4 = 8+12i
√

2+3(1+ i
√

2) Ω leaves P(1, 4) =
(R+ 4i

√
2

39

)

(1+ i
√

2)⊕R∗
+ j invariant.

. γ2,3 = 10+3i
√

2+(1+2i
√

2) Ω leaves P(2, 3) =
(R + i

√
2

39

)

(1+2i
√

2)⊕R∗
+ j invariant.

B.3 Families of half-spheres

• We shall first complete Lemma 8.1 to obtain

Proposition 2.2 Let C1 = C(a1, r1) and C2 = C(a2, r2) be two circles of C, N ∈ Z and

α = ξ + ηΩ ∈ Rpr(N) with η 6= 0. Then α(C1) = C2 if and only if

∃ ε = ±1







b
(
r1 η a2 − ε r2 η a1

)
=

(
r1 + εr2

)
ξ (8.15)

b2 r2
1 |η|2 − |ξ + b η a1|2 = Nε

r1
r2

(8.16)

|ξ|2 − b|η|2 = N (8.17)

Proof : we just have to prove the backward implication to fullfill the proof. Keep the
notations of Lemma 8.1. Relation (8.16) provides

∣
∣
∣
∣

ξ

b η
+ a1

∣
∣
∣
∣

2

− r1
2 6= 0 whence ζ = − ξ

b η
/∈ C1

Therefore αI(C1) = C ′ is a circle and α(C1) = αR(C ′) = C ′′ = C(a′′, r′′). We still have, by
relation (8.16), ε = 1 iff ζ is inside of C1. Applying the Lemma to C1 and C ′′ we get from
relation (8.13)

r′′

r1
=

ε|k|
r2
1 − |a1 − ζ |2 =

εN

b2 r2
1 |η|2 − |ξ + b η a1|2

=
r2
r1

since |k| = N/b2 |η|2 : then r′′ = r2. Finally αI(ζ̂) is the center of C ′ so that α(ζ̂) = a′′ ;
as (8.15) ⇐⇒ (8.14) ⇐⇒ α(ζ̂) = a2 then a′′ = a2 so that α(C1) = C2.

• Now we can use of the above Proposition in our quest for Γ
R

- closed half-spheres. Let S

be an half-sphere of H3, C = C(a1, r) its trace on C and α = ξ + ηΩ ∈ Γ
R

a hyperbolic element ; then α.S = S ⇐⇒ α(C ) = C and we apply Proposition 2.2
to the circle C = C(a1, r). Necessarily – as we already saw in the proof of Proposition 8.6 –
ε = −1 by hyperbolicity of α ; therefore

α.S = S ⇐⇒







η a1 + η a1 = 0

|ξ + b η a1|2 − b r2 |η|2 = 1

|ξ|2 − b |η|2 = 1
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whence

α.S = S ⇐⇒







η a1 + η a1 = 0

(ξ − ξ) a1 +
[
1 + b (|a1|2 − r2)

]
η = 0

|ξ|2 − b |η|2 = 1

(E)

For example, take any a1 ∈ F = Q[
√
a], define r ∈ R∗ by 1 + b (|a1|2 − r2) = 0 and

consider S = S(a1, r). For ξ = X ∈ Z and η = a1 Y
√
a with Y ∈ Z, we have η a1 + η a1 = 0

and ξ = ξ, so that
α.S = S ⇐⇒ |ξ|2 − b |η|2 = X2 + a b |a1|2 Y 2 = 1

From Lemma 4.1, we know that ordb(|a1|2) is even, so that the natural integer d = −a b |a1|2
cannot be a square in Q. Therefore the previous Pell equation is solvable for non-trivial integers
X and Y . As r =

√

|a1|2 + 1/b, we have proved

Lemma 2.1 Given any a1 ∈ F = Q[
√
a], the half-sphere S

(

a1,
√

|a1|2 + 1
b

)

is Γ
R

- closed.

Some examples in the case a = −2, b = 13 :

. α = 64425 + 1666i
√

2(2 + 5i
√

2) Ω leaves S
(

2 + 5i
√

2,
√

54 + 1
13

)

invariant.

. α = 96747 + 2318i
√

2(7 + 3i
√

2) Ω leaves S
(

7 + 3i
√

2,
√

67 + 1
13

)

invariant.

. α = 561835 + 11074i
√

2(7 + 5i
√

2) Ω leaves S
(

1
5

+ i
√

2
7
,
√

99
1225

+ 1
13

)

invariant.

More generally, for a1 ∈ F and r ∈ R such that r2 ∈ Q, the resolution of the system (E)
leads to {

ξ = X − 1
2
[1 + b (|a1|2 − r2)] Y

√
a

η = Y a1

√
a

with X, Y ∈ Z
and the norm equation provides

1 = X2 − a

4

{[
1 + b (|a1|2 − r2)

]2 − 4 b |a1|2
}

︸ ︷︷ ︸

d

Y 2

For r2 ∈ Q close enough to |a1|2, we have 4 b |a1|2 ≥ [1 + b (|a1|2 − r2)]
2

and the rational
number d is positive. Assume moreover that ordb |a1|2 ≥ 0 and ordb r

2 ≥ 0 : then d ≡ a/4 [b],
which is not a square modulo b for a (KS

2 ) - manifold, so that d is not a square in Q. Therefore
the above Pell equation is solvable for non-trivial X, Y ∈ Z – with d Y 2 ∈ Z – which proves

Proposition 2.3 Given any q1 ∈ F = Q[
√
a] and r2 ∈ Q such that |a1|2 and r2 are

inversible modulo b and 4 b |a1|2 ≥ [1 + b (|a1|2 − r2)]
2
, the half-sphere

S(a1, r) is a Γ
R

- closed itgs of H3.

Let us give some examples in the case a = −2, b = 13 :

. α = 359 + 168i
√

2 + 18i
√

2(2 + 3i
√

2) Ω leaves S
(

2
3

+ i
√

2,
√

3
)

invariant.

. α = 19603 − 51480i
√

2 + 2574i
√

2(5 + 2i
√

2) Ω leaves S
(
5 + 2i

√
2,
√

30
)

invariant.
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