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We look for signals of criticality in multifragment production in heavy-ion collisions using model-
independent universal fluctuations theory. The phenomenon is studied as a function of system
size, bombarding energy, and impact parameter in a wide range of INDRA data. For very central
collisions (b/bmax < 0.1) we find evidence that the largest fragment in each event, Zmax, plays
the role of an order parameter, defining two different “phases” at low and high incident energy,
respectively, according to the scaling properties of its fluctuations. Data for a wide range of system
masses and incident energies collapse on to an approximately universal scaling function in each phase
for the most central collisions. The forms of the scaling functions for the two phases are established,
and their dependence on the total mass and the bombarding energy is mapped out. Data suggest
that these phases are linked to the disappearance of heavy residues in central collisions.

I. INTRODUCTION

It has long been hoped that the study of nuclear multi-
fragmentation reactions as observed in intermediate en-
ergy heavy-ion collisions [1, 2, 3, 4, 5] can give valu-
able information on the nuclear matter phase diagram
and equation of state [6, 7, 8]. The principal guide-wire
for this research has been the search for signs of some-
thing analogous to a liquid-gas phase transition in data
on intermediate mass fragment (IMF) production, ever
since the observation of power laws in fragment mass-
yield distributions [9, 10], reminiscent of the condensa-
tion of liquid drops in a critical vapour [11]. This effort
was encouraged by the failure of statistical models of hot
nuclear decay [12, 13, 14] to explain the observed frag-
ment yields [2, 15] unless they suppose the break up of
the system at low densities [16, 17, 18] where the phase
transition may occur [6].

Signals of the phase transition in experimental data
on multifragmentation may be revealed by anomalously
large fluctuations of fragment observables [19, 20]. The
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main obstacles to such endeavours insofar as experimen-
tal data are concerned are the huge statistical fluctua-
tions inherent to small systems such as atomic nuclei,
and the still-open question of the mechanism(s) of frag-
ment production in heavy ion collisions at intermediate
energies [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38]. Indeed in all experimental studies
of the question, at the same time as one is searching for
evidence of the phase transition of a piece of hot nuclear
matter [34], one is (implicitly or not) obliged to eluci-
date the manner in which such an excited system may be
formed in the course of certain reactions [33]. The solid-
ity of any experimental evidence for a link between mul-
tifragmentation and the nuclear matter phase diagram
will be undermined by any remaining ambiguity about
the dominant mechanism of fragment production in the
selected sample of experimental events, and it would be
preferable to be able to address the question of “phases”
in nuclear multifragmentation independently of reaction
mechanism.

It is for this reason that the theory of the universal
character of order parameter fluctuations in finite sys-
tems proposed by Botet and P loszajczak [39, 40, 41, 42]
provides an attractive opportunity to address the ques-
tion of phase transitions induced by heavy-ion collisions
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in the least ambiguous way possible. According to their
work, it is possible to obtain pertinent information on the
relationship between the formation of clusters in a system
and the phase transition(s) of said system without need-
ing to characterise the state of the system under study to
the extent of, for example, supposing it to be in thermo-
dynamical equilibrium at the time of cluster formation.
One needs only to study the properties of the clusters:
specifically, all pertinent information can be obtained
from a sufficiently precise measurement of the event-by-
event distributions of cluster multiplicity and the size of
the largest cluster produced. The attractiveness of such
an approach in the domain of nuclear fragmentation re-
actions is obvious, for the reasons given above: although
the mechanism of fragment production remains an open
question, for several years now large solid-angle multide-
tector arrays such as INDRA have provided high-quality
data on the multiplicity and the size (charge) of the frag-
ments produced in such reactions.

A first application of the universal fluctuations theory
to INDRA data for central collisions of Xe+Sn from 25
to 50A MeV was published in [43]. In this paper we
will present the results of the same analysis applied to a
wide range of systems measured with INDRA. As in [43]
we observe a signature compatible with the existence of
different regimes at different bombarding energies. This
behaviour disappears for less central collisions. By ap-
plying the analysis to data for colliding systems with to-
tal mass number between 73 and 394 we will show the
mass dependence of the energy of transition between the
two regimes, as well as presenting a systematic study of
the universal scaling functions observed in the low- and
high-energy regimes.

II. UNIVERSAL FLUCTUATIONS OF THE
ORDER PARAMETER IN FINITE SYSTEMS

Universal scaling laws of fluctuations (the ∆-scaling
laws) have been derived for equilibrium systems, and
shown to apply also in certain out-of-equilibrium situ-
ations. In a system in which the second-order critical
behaviour can be identified, the relation between order
parameter, criticality and scaling law of fluctuations has
been established and the relation between the scaling
function and the critical exponents has been found. De-
tails can be found in [42].

Experimental observables that may be related to a crit-
ical order parameter can be identified through their ∆-
scaling behaviour. The ∆-scaling is observed when two
or more probability distributions PN [m] of the observable
m for a system of ’size’ N collapse onto a single scaling
curve Φ(z(∆)) independent of system size when plotted
in terms of the scaling variables:

< m >∆ PN [m] = Φ(z(∆)) = Φ

(

m− < m >

< m >∆

)

(1)

where < m > is the mean value of the distribution PN [m]
and 1

2 ≤ ∆ ≤ 1. < m > plays the role of a scale param-
eter and can replace N as a measure of the size of the
system. A less strong (necessary but not sufficient) condi-
tion for ∆-scaling is that the variance of the distribution
should scale with its mean value as

σ2
∼< m >2∆ (2)

so that in a log-log plot of σ2 versus < m >2 data should
fall on a straight line of slope ∆.

The scaling law Equation 1 with ∆ = 1
2 is associated

with low temperature (“ordered”) systems, or with ob-
servables which are not related to an order parameter.
Scaling with ∆ = 1 is seen at high temperature (“dis-
ordered” system) and also for critical systems. For m
to be an order parameter it must exhibit a correspond-
ing change of ∆-scaling regime when some suitable con-
trol parameter (e.g. available energy, temperature, bond-
breaking probability, etc.) is varied.

Here it is worth saying a word about the comparison of
experimental distributions using Eq.1 and the determina-
tion of ∆-scaling regimes for data. As the transformation
from experimental observable to the scaling variable z(∆)

is a linear transformation, the form of the Φ(z(∆)) dis-
tribution is the same as that of PN [m]. However, the
presence of the exponent ∆ in the scale factor < m >∆

means that two identical distributions will appear differ-
ent (their widths will be different) if they are scaled using
a value of ∆ which is not the one relating the mean values
and variances of the two distributions via Eq.2. For ex-
ample, consider two Gaussian distributions whose widths
and mean values are related via Eq.2 with ∆ = 1. In this
case the use of Eq.1 with, for example, ∆ = 1

2 would not
lead to a universal scaling function: the widths of the
two scaled distributions would be different, and, because
of the normalisation of Φ(z(∆)), the height of the distri-
butions would differ also. It should also be noted that
the relationship between the mean and the variance of
a set of distributions, i.e. the value of ∆ if Eq.2 holds,
is quite independent of the form of the distributions: a
given value of ∆ does not imply a certain type of distri-
bution, and vice versa.

More detailed information on the state of the system
and the fragmentation process may be found in the form
of the scaling functions Φ(z(∆)), Eq. 1. For systems
far from a critical point, the central limit theorem tells
us that for an observable m being the sum of uncorre-
lated random variables, one should observe asymptoti-
cally a Gaussian distribution for fluctuations of m about
its mean value. If on the other hand m is an extremal
value such as the largest among a set of uncorrelated
random variables, then asymptotically its distribution
should be that of Gumbel’s first asymptote [44]. For
critical systems such general results do not exist, as, due
to the presence of correlations at all length-scales, the
order parameter distribution must depend on the precise
details of the interaction in this case. An asymptotic
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form of the large-m scaling function tail was derived in
[41], where close to a critical point the order parameter
distribution was expected to fall off like exp−mν̂ with
3 ≤ ν̂ ≤ 6, meaning that large deviations of the order
parameter from its mean value are strongly suppressed.

There are two generic families of fragment produc-
tion scenarios for which the second-order phase transition
has been identified, with two different order parameters.
These are

• the fragment multiplicity for fragmentation scenar-

ios such as the fragmentation-inactivation binary
(FIB) model [45].

• the size of the largest cluster or fragment in the so-
called aggregation scenarios such as percolation or
Fisher droplet models [41].

Therefore the elimination of one of these two easily mea-
surable experimental quantities as not having the order
parameter ∆-scaling behaviour described above should
give important information on the fragment production
process, by allowing to exclude one of the two scenarios.

III. PRESENTATION OF DATA

A. Experimental details

In order to study as exhaustively as possible the ques-
tion of the existence of an order parameter or other
“phase-like” behaviour in heavy-ion collisions, we have
profited from the wide range of very high quality data
which has been obtained with the INDRA 4π array
[46, 47, 48] at the GANIL (Caen) and GSI (Darmstadt)
accelerator facilities. This charged product detector cov-
ers about 90% of the 4π solid angle. The total number
of detection cells is 336 arranged according to 17 rings
centred on the beam axis. The first ring (2o − 3o) was
composed of 12 fast NE102/NE115 phoswich detectors
during the experiments at the GANIL facility. For the
GSI experiments these were replaced by 12 telescopes
composed of a 300 µm thick silicon detector and a 14 cm
thick CsI(Tl) scintillator. Rings 2 to 9 cover the angular
range from 3o to 45o and are made of three detector lay-
ers: a low pressure gas-ionization chamber (5cm of C3F8

at 20 to 50 mbar, depending on the experiment and the
polar angle), a 300 µm thick silicon detector and a 14 to
10 cm thick CsI(Tl) scintillator. The remaining 8 rings
cover the angular range from 45o to 176o and have two de-
tection layers: ionization chamber and 7.6 to 5 cm thick
CsI(Tl) scintillator. Fragments with Z up to the charge
of the projectile are identified with unit resolution in the
forward region, when they are stopped in the scintillator
detectors. Beyond 45o, the charge resolution is one unit
up to Z = 16, and a few charges for larger Z. Over the
whole angular range, a very good isotope identification
is obtained for Z = 1 to Z = 3, except for particles with
low energies where ambiguities are unresolved.

The energy calibration of the CsI(Tl) scintillators was
obtained for light charged particles (LCP) by means of
the elastic and inelastic scattering of secondary LCP
beams (p,d,t,3He,4He) produced by the fragmentation of
a 95A MeV 16O beam in a thick C target. These par-
ticles were then momentum selected by the “alpha mag-
netic spectrometer” of GANIL and scattered in a C or
Ta target installed in the INDRA reaction chamber. A
typical energy resolution was about 4%. Typical identi-
fication thresholds are a few 100 keV for light particles,
0.7A MeV for Z = 3, and 1.4A MeV for Z = 35. A com-
plete technical description of INDRA, its calibration and
its electronics can be found in [46, 47, 48, 49, 50, 51, 52].

B. Overview of data
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Figure 1: Experimental correlations between the size of the
largest detected fragment Zmax and the total transverse en-
ergy of light charged particles divided by the available c.m.
energy, for Xe+Sn collisions. A minimum of 4 well-identified
charged particles was required in the off-line analysis. Loga-
rithmic contour levels are shown corresponding to the number
of events (darker tones indicate larger numbers).

The data presented here cover a wide range of quasi-
symmetric systems studied with the INDRA array, with
different total masses and bombarding energies. They
are:

Ar+KCl 32, 40, 52 and 74A MeV;

Ni+Ni 32, 40, 52, 63, 74, 82 and 90A MeV;

Xe+Sn 25, 32, 39, 45, 50, 65*, 80* and 100*A MeV;

Au+Au 40*, 60* and 80*A MeV.
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The systems marked with an asterisk were measured dur-
ing the experimental campaign at the GSI facility. We
have concentrated on symmetric colliding systems in or-
der to benefit from the maximum overall efficiency of the
INDRA array in this case. Before presenting the analy-
sis of this data set in terms of universal fluctuations we
will give an overview of the chief characteristics of these
reactions.

Figure 1 shows experimental data for the Xe+Sn sys-
tem. The contour plots show the number of events
measured corresponding to each value of the size of the
largest detected fragment, Zmax, and of the fraction of
the available energy converted into transverse energy of
light charged particles, Et12/Eavail. This latter quantity
has been shown [28, 30, 53, 54] to be principally related
to the geometry of heavy-ion collisions in this energy do-
main, and is particularly well-suited to sorting events
measured with the INDRA detector with little bias, be-
cause the efficiency of the array for light charged parti-
cle detection is ≈ 90% whatever the centrality/reaction
mechanism. The data shown were recorded with an on-
line trigger requiring that at least four detectors fired in
coincidence, while in the off-line analysis we required at
least four correctly identified charged products in each
considered event. Very similar plots were obtained for
all other data studied in this paper, as for example the
data for the Ni+Ni system shown in Figure 2. They give
an overview of the evolution of reaction mechanisms with
beam energy and impact parameter.

For the least violent collisions (small Et12/Eavail) two
strong contributions to the total cross-section are ob-
served, depending on whether the projectile-like fragment
was detected (Zmax ≈ Zproj) or not (Zmax < 10). For
most of these collisions the target-like residue is too slow-
moving to be detected and/or correctly identified by the
INDRA array. With increasing beam energy, the contri-
bution from projectile-like fragments appears to decrease
in importance. This is due to the increasingly forward-
focused kinematics of the reactions and the smaller graz-
ing angle at higher energy, which mean that projectile-
like fragments from peripheral collisions are more likely
to be deflected to angles too small for them to be detected
in the first ring of the INDRA array (see III A).

For more central collisions (larger Et12/Eavail) the out-
come of the reaction depends on bombarding energy and
the mass of the colliding nuclei. For the Xe+Sn sys-
tem at the lowest incident energies (Figures 1a-b), the
cross-section for all but the most peripheral collisions is
dominated by events for which the heaviest detected frag-
ment has around one half of the charge of the projectile
nucleus, and there is a discontinuous evolution in cross
section between the most peripheral collisions and these
events. This is due to the onset of fission of projectile-like
nuclei above a certain threshold excitation energy which
is attained in mid-peripheral and more central reactions
[54]. At higher bombarding energies (Figures 1c-d) a
more continuous evolution of projectile-like residue size
with the collision violence is seen. For a lighter system
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Figure 2: Experimental correlations between the size of the
largest detected fragment Zmax and the total transverse en-
ergy of light charged particles divided by available c.m. en-
ergy, for Ni+Ni collisions. A minimum of 4 well-identified
charged particles was required in the off-line analysis. Loga-
rithmic contour levels are shown corresponding to the number
of events (darker tones indicate larger numbers).

such as Ni+Ni (Figures 2a-b) a continuous ridge goes
from the most peripheral toward more central collisions
showing that the size of the projectile-like residues de-
crease continuously with decreasing impact parameter,
as fission is not a predominant decay channel even at
high excitation energies for such light nuclei. The cor-
relations between Zmax and Et12/Eavail for the Ar+KCl
system (not shown) are very similar to those for Ni+Ni,
whereas for the Au+Au system they resemble those for
Xe+Sn at 50 and 100A MeV except that for the most
peripheral collisions a clear contribution from the fission
of gold quasiprojectiles is seen.

Finally let us remark the similarity between Figures
1a and 2a, concerning the production of heavy residues
at low incident energy. Both figures show that there are
two distinct contributions to the total yield for residues
with Z close to that of the projectile. The first was dis-
cussed in the previous paragraph and is due to projectile-
like fragments produced in peripheral collisions (small
Et12/Eavail values). This is the dominant contribution.
Nevertheless there is a second contribution which is as-
sociated with a broad distribution of large residue sizes
Zproj/2 < Zmax . Zproj as well as an equally broad dis-
tribution of Et12/Eavail values corresponding to mid- to
central collisions. The appearance of these experimental
correlations suggests that the mean value of the charge of
the heaviest detected fragment, < Zmax >, first decreases
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with increasing collision violence and then increases for
the most “central” collisions at the lowest beam energy
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Figure 3: The mean charge of the largest fragment detected in
each event, Zmax, as a function of the total transverse energy
of light charged particles (normalised to the available centre
of mass energy) for Xe+Sn collisions between 25 and 50A
MeV. Vertical bars show the estimated statistical error on the
mean. It should be noted that events with Et12/Eavail & 0.2
correspond to only 1% of the total measured cross-section.

for these two systems.

According to Figures 1 and 2 such reactions make a
relatively important contribution to the production of
heavy residues in central collisions of Ni+Ni and Xe+Sn
at 32 and 25A MeV respectively. When the incident en-
ergy increases (40A MeV for Ni+Ni, Figure 2b, and 32A
MeV for Xe+Sn, Figure 1b) the size and yield of the asso-
ciated residues decrease making this contribution harder
to distinguish. From Figures 2c-d and Figures 1c-d it
appears that the cross-sections associated with these re-
actions become very small above ∼ 40A MeV, for the
Ni+Ni system, or above ∼ 32A MeV, for the Xe+Sn sys-
tem (for the Ar+KCl system, not shown here, this con-
tribution is discernible up to 52A MeV). However, more
sensitive analyses (e.g. see below for Xe+Sn) can reveal
the survival of such reactions at higher incident energies.

Figure 3 shows the evolution of < Zmax > with colli-
sion centrality for the Xe+Sn system between 25 and 50A
MeV. It can be seen that the mean charge of the heaviest
fragment produced in each event increases with increas-
ing centrality for 25, 32, and, very slightly, 39A MeV. It
should be noted that this tendency is observed whether
one considers all (Figure 3 left panel) or only well-
measured (right panel - ratio of total detected charge,
Zdet, to total charge of projectile and target required
to be at least 80%) events. The requirement of well-
measured events reveals the monotonous decrease of the
mean charge of projectile-like fragments in peripheral col-
lisions (Et12/Eavail < 0.1) by excluding from the average
those events where neither target-like nor projectile-like

fragments were detected (compare Figure 1).

Figure 4: Collisions from the most peripheral with detection
of a quasi-projectile residue (furthest right-hand side of the
figure) to the most central (indicated by a ring) are classed
into bins corresponding to 1% of the total measured cross
section.

Another way of excluding poorly-measured events is
to keep only those for which most of the momentum of
the incident beam particles is reconstructed from the de-
tected nuclei. This gate on data has the effect of retaining
all events for which at least a good reconstruction of the
quasi-projectile residue and products was obtained, for
the most peripheral collisions, whilst in the most central
collisions we achieve an almost complete reconstruction
of the event. In this way we can follow, in Figure 4,
the correlated evolution of the variance and the mean of
the Zmax distribution as a function of collision violence:
from peripheral collisions leading to a slightly excited
quasi-projectile (large < Zmax > and small variance) to
the most central collisions (indicated by a ring around
the last data point for each beam energy). Each point
in this figure corresponds to Et12 cuts defined by slicing
the minimum-bias distribution into 100 bins, each con-
taining an equal number of events. Thus each point rep-
resents 1% of the measured cross-section, although due
to our requirement of well-measured events the most pe-
ripheral (least well measured) events are absent. It allows
to see how in the most central collisions two different be-
haviours are observed depending on the incident beam
energy: below 39A MeV in the 3-5% most central col-
lisions the mean charge of the largest fragment actually
begins to increase again, whilst the correlation between
this mean value and the variance of the distribution is not
the same as for the majority of other impact parameters.

This figure suggests that at beam energies .39A
MeV the origin of the heaviest fragment is not the same
in central collisions as for the rest of the reactions. The
increase of < Zmax > for the most central collisions at
these energies suggests a contribution from (incomplete)
fusion reactions where the heaviest fragment detected is
an evaporation residue. The disappearance of this phe-
nomenon for &39A MeV can be interpreted as signalling
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the disappearance of fusion-evaporation residues, and
marking the onset either of fusion-multifragmentation
[33] or of transparency in central collisions (incomplete
stopping) [29, 55, 56].

IV. ANALYSIS OF DATA IN TERMS OF
UNIVERSAL FLUCTUATIONS

A. Selection of central collisions

We begin our analysis by extending the results of [43],
for central collisions of Xe+Sn, to a wider range of sys-
tems measured with the INDRA multidetector array. As
was discussed in Sec. I, the analysis of universal fluc-
tuations in multifragmentation data does not require to
know (or to suppose) how fragments are formed. How-
ever the comparison of events with very different col-
lision geometries is unlikely to give meaningful results.
Therefore we will limit our study to very central colli-
sions for which the geometrical overlap between projec-
tile and target is as close as possible to total. The need
to select equivalent classes of events for a large range of
system masses and beam energies with as little depen-
dence as possible on detector efficiency led us to use the
total transverse energy of light charged particles, Et12.
Et12 is well-suited to this task and allows to estimate a
geometrical impact parameter for collisions following the
prescription of [57]. In addition, in this way we avoid any
direct link between the studied observables (size of the
largest fragment in each event and fragment multiplicity)
and the variable used for the selection of events. The data
analysed in the following with the largest values of Et12

correspond to 1% of the total number of events recorded
during the experiment with a minimum-bias condition
(b < 0.1bmax in the geometrical approximation of [57]
where the maximum impact parameter bmax is smaller
than the sum of the radii of projectile and target due
to the experimental trigger condition). We were able to
check whether the largest detected charged fragment of
each event is really the largest, using the total detected
charge of the event, Ztot.

B. Establishing an “order parameter” for nuclear
multifragmentation with no model-dependent

hypotheses

Generic models of cluster production may be classed
into two types. The first, the class of ”fragmentation”
scenarios in which a system is broken up by a series of
binary splittings or some other physical process, has for
its order parameter the number or multiplicity of clus-
ters. For such models, it is the multiplicity which ex-
hibits different ∆-scaling regimes if the system has differ-
ent phases. The second class of models, in which clusters
are built up by ”aggregation” of smaller constituents, has
for its order parameter the size of the largest cluster. As
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Figure 5: Data for the total multiplicity of charged prod-
ucts with Z ≥ 1, Mtot, for well-measured central collisions of
Xe+Sn (b < 0.1bmax, Zdet ≥ 0.8(Zproj + Ztarg)). (a) Log-log
plot of the variance versus the squared mean value of the dis-
tribution of Mtot for each bombarding energy. The straight
line represents Eq. 2 with ∆ = 1

2
. (b) Experimental distribu-

tions of Mtot expressed in the variables of the second scaling
law, i.e. Equation 1 with ∆ = 1

2
. The dashed curve is a

Gaussian fit to all the data.

INDRA does not measure the mass but only the atomic
number of fragments, we will assume in the following that
the largest fragment of each event corresponds to Zmax,
the fragment with the largest atomic number.

Figure 5 shows the data for the total multiplicity of
charged products with Z ≥ 1, Mtot, for central collisions
of Xe+Sn from 25 to 100A MeV. In Figure 5a we plot the
natural logarithm of the variance of the measured Mtot

distributions as a function of the natural logarithm of the
square of the mean value. The estimated statistical errors
of these quantities are smaller than the symbols used. If
fluctuations obey the universal scaling law Eq. 2, then
the data must fall on a straight line of slope ∆ in this
plot. It can be seen in Figure 5a that this is true to a fair
approximation, and that the variance of the multiplicity
distribution grows with increasing bombarding energy as
< Mtot >.

Figure 5b shows that the multiplicity distributions for
different bombarding energies collapse to a unique distri-
bution (scaling function) when expressed in terms of the
second scaling law (Equation 1 with ∆ = 1

2 ), as suggested
by Figure 5a. It should be noted that examination of an
observable’s scaling properties in this way is far more
constraining than that of Fig. 5a, when the statistics
of the data samples allow it. The observed scaling func-
tion is very well approximated by a Gaussian distribution
(dashed curve on the figure). The scaling properties of
total multiplicity fluctuations are therefore the same for
all bombarding energies in the range 25–100A MeV. This
is true not only for the Xe+Sn data but also for all the
data we have studied in this paper: see for example the
data for 58Ni+58Ni collisions in Figure 7a. Therefore the
total multiplicity of charged particles for central colli-
sions in this energy range does not show any evidence of
’anomalous’ or ’critical’ behaviour.

The multiplicity Mtot is dominated by the multiplicity
of light charged particles, MLCP , which is typically 3–4
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Figure 6: As Figure 5 but now for the multiplicity of frag-
ments with Z ≥ 3, MZ≥3. (b) Data for bombarding energies
32–65A MeV expressed in the variables of the second scaling
law, i.e. Equation 1 with ∆ = 1

2
.

times greater than the multiplicity of IMF (Z ≥ 3). How-
ever, similar conclusions as for Mtot can be drawn for the
IMF multiplicity, MZ≥3, for which the Xe+Sn data are
presented in Figure 6, the Ni+Ni data in Figure 7b. Fig-
ure 6a shows that the widths of MZ≥3 distributions for
Xe+Sn at bombarding energies 32 to 65A MeV increase
with the mean multiplicity according to a ∆ = 1

2 scaling
law, and this is confirmed by Figure 6b. The width for
the 25A MeV system falls below this “systematic” trend,
which may indicate that this energy is close to the thresh-
old for multifragmentation in central collisions (the mean
multiplicity for this system is approximately 3 fragments
with Z ≥ 3), leading to reduced fluctuations of the frag-
ment multiplicity. Recent data obtained with INDRA for
the same system at bombarding energies from 8 to 20A
MeV will allow to study this point in more detail.

Nevertheless the multiplicity of fragments does show
some slightly more interesting features than Mtot: let us
remark the “back-bending” in Figure 6a for bombarding
energies > 65A MeV, indicating the decrease of mean
fragment multiplicity at the highest bombarding ener-
gies. The same behaviour is seen more clearly in Figure
7b for Ni+Ni collisions above 52A MeV. Let us note in
passing that the available energy for the maximum of
fragment production in the Ni+Ni system is here much
lower (13A MeV) than that reported in [58] (17.5A MeV).

This type of “rise and fall” behaviour has been ob-
served in many different data sets [3, 4, 5, 58]. The ab-
solute value of the maximum mean multiplicity and the
energy at which it occurs in central collisions are not only
system-dependent [58] but also selection-dependent [15]
and detector-dependent. It should be noted that in the
framework of the universal fluctuations theory this rise
and fall is not consistent with the fragment multiplicity
being an order parameter. Rather, in the energy domain
for which fluctuations of MZ≥3 show a regular scaling
behaviour (32–65A MeV for Xe+Sn), it can be seen that
this scaling is always of the second kind (∆ = 1

2 ) and in
this domain the multiplicity distributions all collapse to
a unique, quasi-Gaussian scaling function (Figure 6b).

Therefore, neither the total charged multiplicity nor
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Figure 7: Data for well-measured central collisions of Ni+Ni
(b < 0.1bmax, Zdet > 0.8(Zproj + Ztarg)). (a) Distributions of
Mtot expressed in the variables of the second scaling law, i.e.
Equation 1 with ∆ = 1

2
. The dashed curve refers to a global

Gaussian fit to the data (dashed curve). (b) Log-log plot of
the variance versus the squared mean value of the distribution
of fragment multiplicity, MZ≥3, for each bombarding energy.

the fragment multiplicity have fluctuations which indi-
cate the presence of different ’phases’ for central collisions
in this energy range. It should be noted, however, that
we cannot exclude the possibility of a different behaviour
of observables to which we do not have access in this
data, for example the true total multiplicity including
neutrons. Neither does our result exclude the possibil-
ity that in other fragmentation reactions, e.g. at higher
bombarding energies and/or in spectator decays rather
than central collisions, the total or fragment multiplic-
ity may be the pertinent order parameter. For our data
on central collisions between 25 and 100A MeV however
we will from now on only consider the other possible or-
der parameter for fragmentation, the size of the largest
fragment.
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Figure 8: As Figure 5 (well-measured central Xe+Sn colli-
sions) but for the charge Zmax of the heaviest fragment de-
tected event-by-event, and ∆ = 1.

Looking at the log-log plot of the first two cumulant
moments of Zmax (Figure 8a) we can suspect some evo-
lution of the scaling behaviour of this observable’s fluc-
tuations with increasing beam energy: the data do not
appear to fall on a single straight line, but rather seem
to be grouped into two “branches” with different slopes.
Although most of the data in Figure 8a lie close to a line
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of slope ∆ = 1, this does not correspond to a univer-
sal scaling law, as all data in Figure 8b do not collapse
onto a single universal curve under the first scaling law
(Equation 1 with ∆ = 1). This confirms that there is a
change in the scaling behaviour of Zmax fluctuations with
increasing energy. The charge of the largest fragment
in each event, and not the fragment multiplicity, seems
therefore to be a good candidate for the order param-
eter of multifragmentation in central collisions at these
energies.

C. Evolution of the scaling behaviour of “order
parameter” fluctuations with incident energy:

definition of “phases”
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Figure 9: (a) Zmax distributions for Xe+Sn collisions at 25–
39A MeV, scaled according to Equation 1 with ∆ given by a
linear fit to the data of Figure 8a of the form σ ∼< m >∆.
The dashed curve is a best fit to scaled data using a Gaussian
distribution. (b) As (a) but for bombarding energies 39–100A
MeV. The dashed curve is a best fit to scaled data using the
Gumbel distribution, Eq.5.

Figure 8b shows that the scaled Zmax distributions
for Xe+Sn collisions from 45A MeV upwards are nearly
identical even in the large-Zmax tails which are 2 orders
of magnitude less probable than the most probable value
of Zmax. The 39A MeV data can also be included in this
group if the small differences in the tail of the distribution
are neglected. However, the 32A MeV distribution is
clearly significantly narrower, while the distribution for
25A MeV is evidently of a different form, as can be seen
both in the tails and around the maximum (see comments
on the comparison of experimental distributions with this
technique in Sec.II).

Using the values of ∆ extracted from Fig.8a using a
linear fit to the two ’branches’ (25-39A MeV and 39-
100A MeV) we find a good scaling of distributions using
σ ∼< Zmax >1/2 at the lowest beam energies (Figure 9a),
whereas for the higher energies the fluctuations of the
size of the largest fragment increase like σ ∼< Zmax >
(Figure 9b). An approximately equally good scaling for
39A MeV data is achieved in both cases, and this energy
may be considered as close to a transition between the
two regimes. Figure 9 also shows that the shape of the

scaling function changes with increasing beam energy: it
is nearly Gaussian at low energy (the dashed curved in
Figure 9a represents a best fit to all data with a Gaussian
distribution), but at higher energies it is rather asymmet-
ric with a near-exponential tail for Zmax greater than its
most probable value (see Sec. IV E).

These observations establish the size (or charge) of the
largest fragment as the most likely “order parameter” for
fragment production in central collisions in this energy
range. They also show that data can be assigned to one
of two “phases” depending on the ∆-scaling properties of
this order parameter. At low energies systems obey the
second-scaling law associated with an “ordered” phase,
while at higher energies the first-scaling law is observed,
typical of a “disordered” phase (large fluctuations) [41].
It should be noted that these “phases” are defined, not
by the average size of the largest fragment produced for
a given incident energy (which would be a typical way
to define, say, “liquid” and “gas” phases), but rather by
the way in which the fluctuations of this quantity evolve
compared to its mean value. The identification of the
largest fragment size as order parameter also indicates
some similarity between fragment production in central
collisions and the aggregation models with the second-
order phase transition mentioned in Sec. II, whereas the
monotonous behaviour of total and fragment multiplici-
ties excludes “shattering” fragmentation models such as
FIB [45].
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Figure 10: As Figure 8 but for collisions of Ni+Ni from 32 to
90A MeV bombarding energy.

Another, not necessarily incompatible, interpretation
of the different ∆ regimes is suggested by Fig. 4. As we
remarked in Sec. III B this figure suggests that at beam
energies .39A MeV the heaviest fragment in central col-
lisions is an evaporation residue of an (incomplete) fusion
reaction. The data presented in Fig. 8a for incident ener-
gies 25-50A MeV correspond to the points highlighted by
a circle in Fig. 4. Therefore the transition from a ∆ ∼

1
2

to a ∆ ∼ 1 branch can be interpreted as being linked
to the disappearance of fusion-evaporation residues, and
signalling either the onset of fusion-multifragmentation
(phase transition) or the onset of transparency in central
collisions (incomplete stopping).

It should be noted that the transition energy of around
39A MeV for the Xe+Sn system is slightly higher than
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that found in [43] (32A MeV). This is due to the different
method of selection of ’central collisions’. In this paper
we define central collisions based on the amount of en-
ergy deposited into the light charged particles’ degrees
of freedom (Et12). As we are dealing with finite sys-
tems this reduces the energy available for the fragment
degrees of freedom, due to energy conservation. This is
consistent with the fact that when central collisions are
selected based on fragment degrees of freedom (the frag-
ment kinetic energy flow angle selection of [27, 33, 59])
the multifragmentation regime is observed at lower inci-
dent energy for the same system (32A MeV for Xe+Sn
in [34]), as is the transition to the ∆ = 1 scaling regime.

The observed scaling properties of Zmax fluctuations
are confirmed by the Ni+Ni data, as shown by Figure
10 and Figure 11. Most data follow a ∆ ≈ 1 scaling
law for Zmax fluctuations, except at the lowest energies.
The data do not all collapse to a single scaling function in
terms of a ∆ = 1 law (Figure 10b), but only for bombard-
ing energies E ≥ 52A MeV (Figure 11b). The similarity
between the scaling functions observed for the two dif-
ferent systems should be noted, both in the “ordered”
(∆ ∼

1
2 ) and “disordered” (∆ ∼ 1) “phases” (Figures 9

& 11 and Table I).
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Figure 11: (a) Zmax distributions for Ni+Ni collisions at 32–
52A MeV, scaled according to Equation 1 with ∆ given by a
linear fit of the form σ ∼< m >∆. The dashed line is a best
fit using a Gaussian distribution. (b) As (a) but for energies
52–90A MeV. The dashed line is a best fit using the Gumbel
distribution, Eq.5.

D. System-size dependence of energy of transition
from “ordered” to “disordered” phase

We observe for the Xe+Sn and Ni+Ni data that the
energy ranges corresponding to the different “phases” are
not the same for two systems of different total mass, the
“transition” occurring around 39A MeV for Xe+Sn and
52A MeV for Ni+Ni. The “disordered phase” begins at
lower incident (or available) energy for the heavier sys-
tem. This tendency is confirmed by the data for Ar+KCl
and Au+Au (figures 12 and 13). The former has a total
mass smaller than both Xe+Sn and Ni+Ni. The largest
fragments produced in central collisions of 36Ar+KCl fol-
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Figure 12: As Figure 8 but for collisions of Ar+KCl from 32
to 74A MeV bombarding energy.

low quite closely a ∆ ∼
1
2 scaling behaviour for beam

energies up to at least 52A MeV (Figure 12a), while
the data for 74A MeV, which deviate from the overall
trend, may indicate a transition to the ∆ ∼ 1 regime
occurs somewhere between these last two available data
points. The data for 32–52A MeV exhibit very simi-
lar near-Gaussian probability distributions. Although we
can not have much confidence in a scaling law established
for only two data points let us remark in passing that the
scaling behaviour observed for data at 52 and 74A MeV is
approximately a ∆ ∼ 1 scaling with a scaling function of
a form similar to that observed for the other “disordered
phase” data, indicating that the transition energy for this
system is probably somewhere between 52 and 74A MeV,
higher than for the heavier systems.

On the other hand, for the much heavier 197Au+197Au
system a ∆ = 1 scaling law is observed for fluctuations
of the size of the largest fragment in each event for all
studied beam energies (Figure 13). Even at the lowest
energy (40A MeV) the scaling of the entire Zmax dis-
tribution with the other energies is excellent. For this
system it may be that the beam energy of the transition
from the ∆ = 1

2 “phase”, if it exists, to ∆ = 1 occurs at
a lower energy than the lowest energy available for study
in our data, which may explain why we do not observe an
“ordered phase” for this system. Of course it is equally
possible that no such regime exists for this system. In-
deed, following the interpretation of Sec.IV C in terms
of the disappearance of fusion-evaporation residues, we
would not expect fusion to occur for a system as heavy
as Au+Au at any incident energy.

We therefore observe that the bombarding energy (or
available energy) at which there is a transition from the
“ordered” to the “disordered” phase decreases with in-
creasing total mass of the system under study. This is
represented in Figure 14. If one interprets our results in
the framework of the universal fluctuations theory, i.e.
in terms of a 2nd order phase transition, one would ex-
pect the energy at which one phase is replaced by the
other to be related to the “critical temperature” of the
corresponding system. The definition of this quantity for
finite, charged, systems such as nuclei has received much
theoretical attention. On the one hand, in the absence
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Figure 14: Dependence on bombarding energy and total sys-
tem mass of the frontier between the two ∆-scaling regimes
observed in this work for very central collisions.

of Coulomb forces, a pseudo-critical temperature (cor-
responding to a large peak in the finite system specific
heat) may be defined which is smaller than the infinite
matter value TC , and increases as the size of the system
approaches the infinite matter limit [60]. On the other
hand, calculations including the Coulomb repulsion show
that the maximum temperature that an equilibrated hot
nucleus can support , Tlim, decreases for heavier nuclei,
due to their increasing nuclear charge [61]. A recent sys-
tematic study of a wide range of data on so-called caloric
curves by Natowitz et al [62] has shown that the tem-
perature and excitation energy at which a plateau is ob-
served in these curves decreases with increasing mass of
the primary excited nucleus, and that such behaviour
is consistent with theoretical predictions for the limiting
temperatures, Tlim.

In the present analysis we chose not to study this ques-
tion in more detail, as to do so would require: (i) to
show that the fragment production is thermally-driven;
(ii) to identify the thermal (sub-)system in each case;
and (iii) to deduce the mass, charge, excitation energy
and temperature of this (sub-)system. Each step would
require us to make important hypotheses about the for-

mation and decay properties of fragments in the colli-
sions under study, taking us far from our initial goal of
determining as much information as possible on the na-
ture of fragment production with a minimum number
of suppositions. Moreover, the observed effect, which
depends on the entrance channel total mass and avail-
able/bombarding energy may have a completely different
origin. Therefore we will limit ourselves to the observa-
tion that the “transition” from “ordered” to “disordered”
phase takes place at a lower available energy for systems
of greater total mass.

E. Detailed study of the form of the scaling
functions

The results of the analysis for all the systems pre-
sented here are summarized in Table I. Systems have
been grouped according to their observed ∆-scaling be-
haviour, ∆ ∼ 1

2 at the lowest beam energies and ∆ ∼ 1
at the highest. In order to get some quantitative infor-
mation on the form of the scaling function in each case,
we calculated the overall coefficient of skewness, γ, and
the kurtosis, κ, for each system in each “phase”, using
the following definitions [63]

γ =
< z3

(∆) >

σ3
(3)

κ =
< z4

(∆) >

σ4
− 3 (4)

Larger skewness values indicate more asymmetric distri-
butions, while the kurtosis measures the deviation of the
distribution from the Gaussian form (κ = 0 being a per-
fect Gaussian). The values shown in the table confirm
our observation that the higher-energy, ∆ ∼ 1-scaling
data present more asymmetric, less Gaussian probabil-
ity distributions than those at lower energy. It can also
be seen that, quantitatively, the scaling functions cor-
responding to the two “phases” for systems of different
masses have very similar forms, confirming the fact that
data for different systems do indeed collapse on to a sin-
gle distribution.

In the “ordered phase” the fluctuations of the size of
the largest fragment show a significant deviation from a
Gaussian distribution, on the contrary to the near-perfect
Gaussian distributions that we observe for total and frag-
ment multiplicities (Figures 5, 6 and 7). For the “disor-
dered phase” the deviation from the Gaussian form is
large and the shape of the distribution function is well
reproduced by a Gumbel distribution,

Φ(z∆) ∼ exp−
(

z − e−z
)

(5)

This is shown by the dashed curves in Figures 9b and
11b, and the grey curve in Figure 13b, which represent
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Table I: Fluctuation scaling exponent ∆, coefficient of skewness γ, kurtosis κ, χ2 for global fits to data with Gaussian (∆ ∼ 1

2
)

and Gumbel (∆ ∼ 1) distributions, and scaling function tail exponent ν̂(χ2) (see Section II), for the scaling functions shown in
Figures 9, 11, 12 and 13.

System Einc (AMeV) ∆ γ κ χ2 ν̂(χ2)

Xe+Sn 25–39 0.48 0.45 0.66 27 –

Ni+Ni 32–52 0.61 0.48 0.64 72 –

Ar+KCl 32–52+ 0.46 0.33 0.64 63 –

Au+Au 40–80 1.00 0.83 1.39 1.8 0.92±.09(1.3)

Xe+Sn 39–100 0.89 0.85 1.20 11 1.20±.03(1.2)

Ni+Ni 52–90 0.88 0.84 1.30 45 1.54±.04(7)

the best fits to these data using Equation 5. The overall
agreement can be seen to be quite good, and excellent for
the Au+Au data where χ2 = 1.8 is achieved. Some sig-
nificant deviations can be seen however in the tail of the
distributions for the lighter systems Ni+Ni and Xe+Sn:
the data seem to have a faster-than-exponential fall-off
for large (positive) fluctuations about the mean value.

To confirm this in a quantitative manner we per-
formed fits to the tails of these functions with the asymp-
totic scaling function form exp−zν̂ (see Table I). They
show that the exponent ν̂ is very close to 1 for the
Au+Au data, confirming the observation of an exponen-
tial tail compatible with the Gumbel distribution, while
for Ni+Ni and Xe+Sn data we find 1 < ν̂ < 2. Let us re-
mark in passing that, just as ∆ seems to increase toward
the asymptotic value of 1 with increasing system mass in
the “disordered phase”, it is possible that ν̂ also has a
systematic mass dependence, and decreases towards an
asymptotic value of 1 (exponential tail) for the heaviest
system.

We have clearly and quantitatively established the
form of the scaling functions in the two “phases”, and
in the data presented here we do not observe any de-
viation from these “canonical” forms, quasi-Gaussian at
low energy and quasi-Gumbel at high energy. We do
not, therefore, have any information on the nature of the
transition between the two “phases”: as we discussed in
Section II we cannot be certain of the form of the scaling
function at the critical point, but one may see a sharp
decrease of the large-z tails (faster than exp−z2), or an
order parameter distribution (OPD) with an exponential
large-z tail but significantly different from the Gumbel
distribution around the maximum and below [64]. On the
other hand, for a first-order phase transition with a pas-
sage through the coexistence region, although the scaling
behaviour of the OPD is not well established [41], by def-
inition in this case the order parameter should present
a bimodal (double-humped or very wide) distribution.
More detailed study of existing and new data around the
transition energy of 39A MeV (for the Xe+Sn system)
may yet reveal such features.

F. Dependence of the observed scaling behaviour
on the violence/centrality of collisions
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Figure 15: As Figure 8, but for collisions with an estimated
centrality of b < 0.2bmax.

The results presented above come from a wide-ranging
set of data concerning different system energies and
masses, but they represent only 1% of the total mea-
sured cross-section due to our centrality cut. The repre-
sentativity of the observed scaling behaviour is far from
certain in this case, as it is well known that data se-
lected by cuts in distribution tails are prone to serious
autocorrelation effects due to conservation laws [15, 65].
We therefore have to study the dependence of our find-
ings on the strictness of our centrality cuts. In Figure 15
the data for the same Xe+Sn collisions as in Figure 9b
have been analyzed with a slightly relaxed centrality cut,
b < 0.2bmax. The effect on the apparent value of ∆ can
be seen from the cumulant moments plot, Figure 15a: re-
laxing the centrality condition gives an apparent scaling
law with a smaller value of ∆, which is here ∆ ≈ 0.85 in-
stead of ∆ = 0.89 (see Table I). A similar dependence on
the estimated centrality of collisions was observed in [43],
and interpreted in terms of a smaller excitation energy
of fragmenting systems in less central collisions. How-
ever, as Figure 15b shows, the ∆-scaling actually begins
to break down for these less central data, as can be seen
in the high-z(∆) tail of the “scaling” function.

If the “centrality” condition is relaxed even further,
b < 0.4bmax (Figure 16), we first observe that now ap-
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Figure 16: As Figure 15, but for collisions with an estimated
centrality of b < 0.4bmax.

parently all of the data for Xe+Sn is compatible with
an approximate second-scaling law (∆ = 0.58), without
any change of scaling regime between 25 and 100A MeV.
However we can not assign the data to a single “ordered
phase” because in fact this is not true ∆-scaling: the
different distributions no longer collapse to a universal
curve (Figure 16b).

Therefore we observe universal fluctuations and be-
haviour of the Zmax observable compatible with it be-
ing an order parameter for nuclear multifragmentation
only for very central collisions of symmetric systems for
which one may suppose a near-to-total overlap of the
projectile and target in the entrance channel. We have
not, up to now, observed an equivalent scaling for quasi-
projectile residues in mid-peripheral to peripheral colli-
sions. This may be because in such reactions the frag-
ment production is far more sensitive to entrance channel
effects, which vary greatly as a function of the colliding
nuclei and their energies. If so, a meaningful comparison
between different systems is harder to achieve, at least
with our rather “global” approach. In head-on collisions,
on the other hand, the fragmentation of the projectile
and target may be virtually a statistical (although not
necessarily thermal) process, far less sensitive to the de-
tails of the reaction, and therefore more amenable to re-
veal features which are independent of the system under
study.

V. SUMMARY

We have studied nuclear multifragmentation data ob-
tained with the INDRA 4π array for collisions of symmet-
ric systems of total mass Atot ∼ 75− 400 at bombarding
energies from 25 to 100A MeV. Using the total transverse
energy of light charged particles, Et12, as a measure of
collision violence, we deduced the evolution of these re-
actions with beam energy, impact parameter and system
size from the experimentally measured correlations be-
tween the charge of the largest fragment detected in each
event, Zmax, and Et12. For all data presented in this
work these correlations are dominated by reactions lead-
ing to a projectile-like fragment whose size decreases with

increasing collision violence. In the case of the heavi-
est projectiles (Xe, Au) fission of the moderately excited
quasi-projectile modify this picture. For higher excita-
tion energies the opening of the quasi-projectile multi-
fragmentation channel may exhibit a bimodal behaviour
which has been evidenced [66] in selecting complete de-
tection events. On the other hand, in central collisions
for a few percent of the measured cross-section “heavy”
residues are produced in the systems Ar+KCl, Ni+Ni
and Xe+Sn, suggesting incomplete fusion of projectile
and target, for beam energies which are not too high
(≤ 52A MeV for Ar+KCl, ≤ 40A MeV for Ni+Ni, ≤ 32A
MeV for Xe+Sn).

Using a model-independent analysis based on the the-
ory of universal fluctuations of the order parameter for
finite systems, we tested the most violent collisions for
signals that the fragment production may be related to
a phase transition. Following the results of [43] we first
confirmed that, of the two possible order parameters for
a critical fragmentation process, it is the charge (size)
of the largest fragment, Zmax, and not the total or IMF
multiplicities Mtot or MZ≥3, which has a behaviour of the
scaling properties of its fluctuations compatible with its
being an order parameter for a critical fragmentation pro-
cess. Indeed, we have shown that the event-by-event dis-
tribution of Zmax allows to sort data into two fluctuation-
scaling regimes or “phases” defined by the value of the
scaling exponent ∆, which is approximately equal to 1

2
at low energies and tends towards the asymptotic value 1
at high energies with increasing total system size. These
“phases” are equally well characterised by a distinctive
form of the scaling function Φ(z(∆)). At low energies
this function, although more symmetric than that seen
at higher energy, is significantly different from the Gaus-
sian form. The deviation is quantitatively the same for
the three different-sized systems (Ar+KCl, Ni+Ni and
Xe+Sn) for which we observed this low-energy “phase”.
In the high-energy “phase” the scaling function is more
asymmetric and tends towards the asymptotic form of the
Gumbel distribution with increasing system mass. This
evolution concerns mainly the large-Zmax tail of the dis-
tribution which falls off more slowly for heavier systems,
becoming exponential. For the Au+Au system Φ(z(∆))
is an almost perfect Gumbel distribution.

The bombarding energy at which the passage from one
“phase” to the other is situated decreases as the total sys-
tem mass (and charge) increases. This is the contrary of
the expected behaviour if this “transition” were related
to the critical temperature of the systems under study,
which would increase with the mass, but is on the other
hand consistent with the observation of decreasing limit-
ing temperatures for finite nuclei [62] due to the increase
in Coulomb energy for heavy nuclei. However, we can
only speculate whether this is the reason for our obser-
vation, as our analysis does not depend on any model
of fragment production such as supposing it to be equili-
brated or thermally-driven, and therefore it does not give
any information on whether these conditions are met or



13

not. On the other hand, data strongly suggest that the
dependence on entrance channel mass and bombarding
energy of the two “phases” is closely linked to the disap-
pearance of heavy residues in central collisions.

Although this analysis allows to establish the existence
of two distinct “phases” in multifragmentation reactions
based on the scaling properties of the fluctuations of the
largest fragment, it has not given any information on
the passage from one “phase” to the other. In the data
studied so far we observe only order parameter distribu-
tions which are compatible with weakly-correlated sys-
tems, i.e. far from the critical point. It may be that the
general survey of a wide range of data presented here is
not sufficiently detailed to reveal such features, or that
data taken in small bombarding energy steps around the
“transition energy” is necessary to track the evolution of
the order parameter distribution. Such additional data
for the Xe+Sn system have been measured recently and
are currently under analysis. It is our feeling that the
present work constitutes a solid basis for further study of

the question of criticality in nuclear multifragmentation
data.
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