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Numeri
al study of two dimensionalsto
hasti
 NLS equationsMar
 BARTON-SMITH�, Arnaud DEBUSSCHEy and Laurent DI MENZAz� : CERMICS, ENPC, Cit�e Des
artes, 77455 Champ-sur-Marney : ENS Ca
han, Antenne de Bretagne, Campus de Ker-Lann, 35170 Bruzz : Analyse Num�erique et EDP, Universit�e Paris-Sud, 91405 OrsayAbstra
t: In this paper, we numeri
ally solve the two-dimensional sto
has-ti
 nonlinear S
hr�odinger equation in the 
ase of multipli
ative and additive whitenoises. The aim is to investigate their in
uen
e on well-known deterministi
 solu-tions: stationary states and blowing-up solutions. In the �rst 
ase, we �nd that amultipli
ative noise has a damping e�e
t very similar to di�usion. However, for smallamplitudes of the noise, the stru
ture of solitary state is still lo
alized. In the se
ond
ase, a lo
al re�nement algorithm is used to over
ome the diÆ
ulty arising for the
omputation of singular solutions. Our experiments show that multipli
ative whitenoise stops the deterministi
 blow-up whi
h o

urs in the 
riti
al 
ase. This extendsthe results of [15℄ in the one-dimensional 
ase.Keywords: Sto
hasti
 partial di�erential equations, multipli
ative and addi-tive noise, nonlinear S
hr�odinger equations, �nite di�eren
e s
hemes, re�nementpro
edure.1 Introdu
tionNonlinear S
hr�odinger equations (NLS) play an important role for the understand-ing of many physi
al phenomena. For instan
e, NLS appears in wave propagation innonlinear media, 
uid and quantum me
hani
s or plasma physi
s. It is well knownthat in some 
ases { in parti
ular in the 
ase of a fo
using power law nonlinearity {NLS equations possess solutions of spe
ial form whi
h are lo
alized in spa
e, prop-agating at a �nite 
onstant velo
ity and keeping the same shape. These are 
alledsolitary waves and in the parti
ular 
ase of a vanishing velo
ity these are 
alledstationary waves (see [10℄ and [29℄ for a review on NLS). Depending on the power ofthe nonlinearity, these solitary waves are stable or unstable. Under a 
riti
al valueof the nonlinear exponent, the nonlinearity is 
alled sub
riti
al and in this 
ase, thesolitary waves are stable. For larger values (that is in the 
riti
al and super
riti
al1




ases), the solitary waves be
ome unstable and the time evolution may exhibit blow-up. In this paper, we wish to investigate the in
uen
e of di�erent kinds of noises onsolitary wave propagation and on the blow-up me
hanism, in the two-dimensional
ase. Noisy terms might represent the e�e
ts of inhomogeneities in the medium inwhi
h the waves propagate, as well as noisy sour
es or of negle
ted terms in themodelization yielding to NLS equations. They 
an also be 
onsidered as a model ofperturbation and it is natural to investigate if the qualitative behaviors des
ribedabove are robust or not and how noise 
an 
hange them. Here two di�erent typesof noises will be studied: additive noise and multipli
ative noise. The �rst one a
tsas an additive random for
ing term added to the NLS equation and has the formi�dWdt ; the 
ase of additive noise is studied in [18℄ where 
olle
tive 
oordinates andlarge deviation arguments are used to get information on the in
uen
e of the noiseon the propagation of solitary waves. The se
ond one 
an be seen as a randompotential term of the form i�uÆ dWdt added to NLS equation. Multipli
ative noise hasbeen introdu
ed in the 
ontext of S
heibe aggregates (see [5℄ and [27℄). Then NLSis written as du� i�du dt� ijuj2�u dt = 8><>: i�u Æ dWi�dW; (1)where u = u(t; x; w); t � 0 being the time variable, x the spa
e variable and ! therandom variable.There are several studies on noisy nonlinear dispersive equations. In [23℄ forexample, thanks to inverse s
attering and perturbation te
hniques, the authors de-rive some qualitative informations for small noise for di�erent equations like NLS,Korteweg-de Vries, Sine-Gordon or Klein-Gordon. The relevan
e of numeri
al sim-ulations is also pointed out to obtain some results for more general noises. Su
hsimulations have been used in [16℄ and [28℄ to study the in
uen
e of a white noiseon the Korteweg-de Vries equation. NLS equations with random terms are des
ribedin [1℄, [2℄ and [19℄ (see also the referen
es therein). In these arti
les, the noise is ei-ther a potential or a perturbation of the dispersive term or the nonlinear 
oeÆ
ient,it has smooth paths and again an inverse s
attering transform is used. A numeri
alstudy of the in
uen
e of a noise on the blow-up for NLS has been performed in [15℄in the 
ase of a white noise in spa
e dimension one. Furthermore, many theoreti
alresults exist about the sto
hasti
 NLS (see for instan
e [11℄) but valid only for 
or-related additive or multipli
ative noises.In this arti
le, we want to do a similar study as in [15℄ in dimension two. We �rstre
all, in Se
tion 2, some basi
 
on
epts su
h as the sto
hasti
 framework and generalwell-posedness theoreti
al results. We also present the �nite di�eren
es numeri
almethod, emphasizing on the noise dis
retization. In Se
tion 3, we study the e�e
tsof both additive and multipli
ative noises on stationary waves in the sub
riti
al and2




riti
al 
ases. Let us re
all that, in the 
ase of spa
e dimension two 
onsidered here,the physi
al model 
orresponds to the 
riti
al 
ase, � = 1, and the stationary waveis not stable. It results that the propagation 
an be studied only on a short timeinterval. Thus, we have 
hosen to simulate also a sub
riti
al nonlinearity - � = 1=2- allowing the propagation over long time interval. We �nd that multipli
ative noisehas a damping e�e
t that 
an be 
ompared for large times with the damping observedfor Ginzburg-Landau models. In Se
tion 4, we numeri
ally investigate the noisein
uen
e on blow-up formation in the 
riti
al 
ase. Only multipli
ative noise willbe 
onsidered here, sin
e additive noise has no real e�e
t on the blow-up. Even forthe deterministi
 
ase, the numeri
al method has to be 
onsistent with small spatials
ales of the blow-up stru
ture. A lo
al re�nement algorithm is given, similar tothe one given in [15℄ in the one-dimensional 
ase, and tested �rst for deterministi
blow-up. Re�nement 
riteria have to give reasonable 
omputational 
osts in ourtwo-dimensional experiments. Note that a lot of works for the 
omputation of theblow-up of deterministi
 NLS (see [3℄, [4℄, [29℄, [30℄ and [31℄) or Korteweg-de Vrieshave been done ([7℄, [8℄). Even if they 
on
ern deterministi
 equations and are basedon �nite elements, they are very helpful to �nd the 
orre
t te
hniques to 
omputeblow-up in our sto
hasti
 
ases. Sto
hasti
 tests are �nally performed with di�erentkinds of blowing-up solutions. The two dimensional 
ase studied here is mu
h morediÆ
ult than the one dimensional 
ase studied in [15℄, espe
ially for the 
omputationof singular solutions. Indeed, the re�nement method is mu
h more diÆ
ult to derivehere. Bad 
riteria for re�nements yield expensive 
omputational 
osts or very poorresults. In Se
tion 4, we try to give details on the diÆ
ulties en
ountered and theremedies we found. Moreover, the blow-up is mu
h more severe in dimension twoand it is diÆ
ult to dete
t the e�e
t of a noise. We expe
t that a multipli
ative noisealways prevents the formation of singularities. However, if the blow-up is too strongwe �rst have to simulate a strongly fo
using solution rea
hing very high amplitudesand in some 
ases we have not been able to establish this fa
t.2 General 
onsiderations on the equations and onthe numeri
al s
heme2.1 Set up of the problemThe equations whi
h will be studied here are the following:8>>>><>>>>: du� i�du dt� ijuj2�u dt = 8><>: i�u Æ dWi�dW;u(0) = u0: (2)Diri
hlet boundary 
onditions will be 
onsidered on a square domain D of R2 , u0 isthe initial 
ondition, W is a real valued Wiener pro
ess on L2(D) asso
iated with a�ltered probability spa
e (
;F ;P; fFtgt�0). The �rst kind of noise is referred as the3



multipli
ative 
ase, where i�uÆdW has to be understood as a Stratonovit
h produ
t(see [5℄), whereas the se
ond one is referred as the additive 
ase. When the noise Wis a 
ylindri
al Wiener pro
ess, it 
an be written asW (t; x; !) = 1Xk=0 �k(t; !)ek(x); t � 0; x 2 D; ! 2 
: (3)where (�k)k2N are real independent brownian motions (�k)k2N and (ek)k2N is anorthonormal Hilbert basis of L2(D).More generally, for a linear operator � on L2(D), a Wiener pro
ess with 
ovari-an
e operator � is given by�W (t; x; !) = 1Xk=0 �k(t; !)�ek(x); t � 0; x 2 D; ! 2 
:In general, the series above do not 
onverge in L2(D). This is true only when � isa Hilbert-S
hmidt operator.If � is de�ned through a kernel K�u(x) = ZDK(x; y)u(y)dy; for u 2 H;then the spatial 
orrelation fun
tion is given by:C�(x; y) = ZDK(x; z)K(z; y)dz:The spa
e and time 
orrelation of �W being formally given by E ���dWdt (t; x);�dWdt (s; y)��and, still formally, we have:E ���dWdt (t; x);�dWdt (s; y)�� = C�(x; y)Æt�s:We see that this type of noise is always un
orrelated - or white - in time. If � = Id,i.e. if W is a 
ylindri
al Wiener pro
ess, the noise is also white in spa
e and thespatial 
orrelation C�(x; y) is the Dira
 mass Æx�y.The 
orrelation fun
tion is a physi
ally measurable quantity; a 
orrelation whi
his the Dira
 mass Æx�yÆt�s indi
ates a white noise both in time and spa
e.Let us also remark that it is often written _� = d�Wdt so that equation (2) be
omes:dudt � i�du� ijuj2�u = 8><>: i�u Æ _�i� _�: (4)For NLS, the energy and mass are respe
tively de�ned by:H(u) = 12 ZD kru(x)k2dx� 12(� + 1) ZD ju(x)j2(�+1)dx;4



M(u) = ZD ju(x)j2dx:It is well-known (see for example [29℄) that these quantities are invariant for the de-terministi
 NLS. With an additive noise, none of them is 
onserved. For a Stratono-vit
h multipli
ative noise, only the mass is 
onserved.2.2 Main theoreti
al resultsWe think that it is important to re
all the theoreti
al results on the NLS equation.Hopefully, this enables the reader to understand the issue at stake. We begin withthe deterministi
 NLS equation.Theorem 2.1. For u0 2 H1(Rd), the deterministi
 NLS equation (that is � = 0)on D = Rd is lo
ally well-posed if 0 � � < 2d�2 for d > 2 or for any � if d = 1 or2. Besides the solution is global if �d < 2. Moreover, for �d � 2 and u0 2 H1(Rd)su
h that H(u0) < 0 and xu0 2 L2(Rd), then the solution blows-up at a �nite time.The proof of this result as well as many improvements 
an be found in [10℄and [29℄. Note that if �d � 2 there also exist solutions su
h that H(u0) > 0 butblow up in a �nite time. For evident reasons, it is not possible to simulate the NLSequation on Rd and we have to restri
t our 
omputations to a bounded domain.However, if we only simulate spatially lo
alized solutions and the 
omputationaldomain D is suÆ
iently large, we expe
t that the numeri
al solution is very 
lose tothe solution on Rd . Another point is that in the 
ase d = 2 
onsidered in this arti
le,it 
an be shown that in the sub
riti
al 
ase the NLS equation admits a unique globalsolution on bounded star-shaped domains (see [9℄). Moreover, Kavian has shown in[22℄ that an initial data with negative energy on a star-shaped domain with Diri
hlet
ondition also gives a blowing-up solution in the 
riti
al and super
riti
al 
ases.For the NLS equations with additive noise i��dW , with � a Hilbert-S
hmidtoperator from L2(Rd) to H1(Rd), we have the following theorem, proved in [11, 12℄:Theorem 2.2. Assume that 0 � � < 2d�2 if d > 2 or 0 � � if d � 2. If u0 is a F0measurable random variable with values in H1(Rd), then there exists a unique solu-tion u(u0; :) to NLS with additive noise with 
ontinuous H1(Rd) valued paths. Thissolution is de�ned on a random interval [0; �(u0; !)�, where �(u0; !) is a stoppingtime su
h that we almost surely have limt!�(u0;!) ju(t)jH1 = 1 or �(u0; !) = 1.If �d < 2 then �(u0; !) = 1 almost surely. Moreover, if �d � 2, then for anyu0 2 H1(Rd) su
h that xu0 2 L2(Rd) and any t > 0P(�(u0) < t) > 0:For multipli
ative noise i�uÆ�dW , we have to assume that � a Hilbert-S
hmidtoperator from L2(Rd) to H1(Rd) and also that � is 
-radonifying operator from Hto W 1;�(Rd) (with � > 2d), then we have the following theorem (see [11, 14℄):5



Theorem 2.3. Assume that 12 < � < 2d�2 or � < 1d�1 if d > 3, or 0 < � < 2 if d = 3,or 0 < � if d = 1 or 2, then there exist r � 2 and p be su
h that 2r = d(12 � 1p) andfor any u0 with values in H1(Rd) there exists a stopping time �(u0; !) and a uniquesolution of NLS with multipli
ative noise starting from u0 whi
h is almost surely inC([0; T ℄; H1(Rd)) \ Lr((0; T );W 1;p(Rd)) for any T < � . Moreover we almost surelyhave: lim supt!�(u0;!) ju(t)jH1 = 1 or �(u0; !) = 1. If �d < 2 then �(u0; !) = 1almost surely. Moreover, if �d > 2 and � is Hilbert-S
hmidt from L2(Rd) to H2(Rd),then for any u0 2 H2(Rd) su
h that jxj2u0 2 L2(Rd) and any t > 0P(�(u0) < t) > 0:If �d = 2, for u0 as above with suÆ
iently negative energy, there exists �t > 0 su
hthat P(�(u0) < �t) > 0:Again, these results do not 
orrespond with our situation sin
e our simulationswill be performed on a bounded domain. However, we think that the results pre-sented below give a good idea of the behavior of the solutions of NLS equations onR2 . Note that, the noise has a strong e�e
t on the blow-up me
hanism. Contrary tothe deterministi
 situation, in the super
riti
al 
ase, any initial data gives a singularsolution. This is also true in the 
riti
al 
ase with additive noise. However, thisassumes a spatially smooth noise. We will see in Se
tion 4 that if the noise is whitein spa
e, the situation is 
ompletely di�erent.2.3 The numeri
al methodOur s
heme is based on a Crank-Ni
olson �nite di�eren
e s
heme in spa
e and timeon a uniform grid with (M+1)2 points on the square domain [0; xmax℄2. This impli
its
heme was 
hosen be
ause the energy and the mass are 
onserved in deterministi

ase (see below for the de�nition of the numeri
al energy and mass). The time step isÆt and un is the numeri
al solution at the dis
rete time nÆt. The step of the squaregrid is h and uk j is the numeri
al solution at the point (kh; jh). The numeri
als
heme is the following:iun+1k j � unk jÆt + 12h2 �(un+1k+1 j � 2un+1k j + un+1k�1 j + unk+1 j � 2unk j + unk�1 j)+ (un+1k j+1 � 2un+1k j + un+1k j�1 + unk j+1 � 2unk j + unk j�1)�+NLn+ 12k j= ��W n+ 12k jwhere NLn+ 12k j = 12(� + 1)  jun+1k j j2�+2 � junk jj2�+2jun+1k j j2 � junk jj2 !�un+1k j + unk j�6



and
W n+ 12k j = 8>>>>><>>>>>:

12hpÆtwn+ 12k j (un+1k j + unk j) for multipli
ative noise1hpÆtwn+ 12k j for additive noise. (5)
The wn+ 12k j are independent real normal random variables. A
tually, for additive andelta 
orrelated - or equivalently a spa
e-time white - noise, this numeri
al noiseW n+ 12k j should be the approximation of1h2Æt ZDk j Z (n+1)ÆtnÆt dWdx; (6)where Dk j is the elementary square domain around xk j given byDk j = �(k � 12)h ; (k + 12)h�� �(j � 12)h ; (j + 12)h� :Then with the de�nition (3) of Se
tion 2.1 we get,1h2Æt ZDk j Z (n+1)ÆtnÆt dWdx = 1h2Æt ZDk j Z (n+1)ÆtnÆt Xm2N em(x)d�m(s)dx= 1h2Æt Xm2N ZDk j em(x)dx!Z (n+1)ÆtnÆt d�m(s):Let us 
hoose the Hilbert basis su
h that the em are the fun
tions ek j = 1h�Dk jvanishing outside Dk j, 
ompleted by an in�nite number of fun
tions in order tohave a Hilbertian basis. Then by orthogonality, we haveZDk j el;m(x)dx = 0if (l; m) 6= (k; j) and we get1h2Æt ZDk j Z (n+1)ÆtnÆt dWdx = 1h2Æt  ZDk j ek j(x)dx!Z (n+1)ÆtnÆt d�k j(s)= 1hÆt Z (n+1)ÆtnÆt d�k j(s) (7)= 1hÆt(�k j((n+ 1)Æt)� �k j(nÆt)): (8)7



Sin
e (�m((n+1)Æt)��m(nÆt))=pÆt is a random variable with normal lawN (0; 1), it
an be set wn+ 12k j = (�k j((n+1)Æt)��k j(nÆt))=pÆt, so that the numeri
al sto
hasti
term be
omes W n+ 12k j = 1hpÆtwn+ 12k j ;where the random variables wn+ 12k j are simulated thanks to an appropriate randompro
edure. Thus, we see that, in the additive 
ase, the numeri
al noise is the exa
tproje
tion of the spa
e-time white noise. However it is not delta 
orrelated and it isonly an approximation of the white noise. Indeed it is easily seen that the numeri
alnoise 
orresponds also to the proje
tion of ��numdW , where �num is the orthogonalproje
tor onto the spa
e spanned by (ek j) (k;j)2[1;M�1℄2. In other words we also have:1h2Æt ZDk j Z (n+1)ÆtnÆt �numdWdx = 1h2ÆtXm2N ZDk j �numem(x)dx!Z (n+1)ÆtnÆt d�m(s)= 1h2Æt X(k;j)2[1;n�1℄2 ZDk j ek j(x)dx!Z (n+1)ÆtnÆt d�m(s):The numeri
al noise spa
e 
orrelation is Cnum(x; y) = 1h2 if x and y belong to thesame Dk j and Cnum(x; y) = 0 otherwise. This is only an approximation of the Dira
mass Æ(x� y).For multipli
ative noise the approximation of the numeri
al noise is similar.However the sto
hasti
 integral is 
al
ulated with two di�erent methods for Itonoise and Stratonovit
h noise. Starting from (7), we 
an approximate the sto
hasti
Ito integral by:Z (n+1)ÆtnÆt u(xk j; s)d�k j(s) ' u(xk j; nÆt)(�k j((n + 1)Æt)� �k j(nÆt))' unk jwnk jpÆt;whi
h follows the de�nition of an Ito produ
t, whereas for a Stratonovit
h integral,we haveZ (n+1)ÆtnÆt u(xk j; s) Æ d�k j(s) ' 12�unk j + un+1k j �(�k j((n+ 1)Æt)� �k j(nÆt))' 12�unk j + un+1k j �wn+ 12k j pÆt;whi
h 
orresponds to the approximation given in (5). It is well-known that theStratonovit
h produ
t u Æ dW has an Ito equivalent with a 
orre
tion term 12 iuF�,where F� only depends on the 
ovarian
e operator, see [11℄. But F� is not well-de�ned for a spa
e time white noise and what is more important, a dis
retization ofthis equivalent Ito equation would not keep the numeri
al massMn 
onstant (see the8



notation just below). Thus we have 
hosen to approximate dire
tly the Stratonovit
hprodu
t. The pri
e to pay is that the random term is impli
it.If we denote by L the linear operator(Lu)k j = 12h2 (uk+1 j � 2uk j + uk�1 j + uk j+1 � 2uk j + uk j�1);the nonlinear systemiun+1 � 2unÆt + 12L(un+1 + un) +NLn+ 12 = ��W n+ 12has to be solved at ea
h time step. The system 
an be rewritten as� iÆtI + 12L� un+1 = � iÆtI � 12L� un � �W n+ 12 �NLn+ 12 (9)and will be solved using a �xed point method. The matrix M = 1ÆtI + 12L does notdepend on the unknown and is easy to invert. This is the reason for leaving thelinear 
ontribution of the noise in the right hand side in the multipli
ative 
ase. Atea
h time step, a �xed point algorithm is used and the matrix M is inverted witha 
onjugated gradient method. Besides M is diagonally pre
onditioned before beinginverted, whi
h is often suÆ
ient to fasten the 
al
ulation sin
e the next time stepsolution is quite 
lose to the previous time step solution. The iteration number forthe 
onvergen
e of the 
onjugated gradient remains small (less than 4 or 5 iterationsfor the gradient and the �xed point in all the sub
riti
al 
ases).It 
an be seen that system (9) has at least one solution un+1 (see [13℄ in the semidis
rete 
ase). However, we do not know if it is unique and we have no guaranteethat the iteration 
onverges. In [24℄, it is proposed to avoid this problem by a 
ut-o� of the simulated random variables. Sin
e we never en
ountered any trouble ofthis type and the �xed point iteration always 
onverges, we de
ided not to use this
ut-o�.The numeri
al mass and energy are respe
tively given byHn = 12Xk j (junk j+1 � unk jj2 + junk+1 j � unk jj2)� h22(� + 1)Xk j junk jj2(�+1)Mn = h2Xk j junk jj2It is well-known that these dis
rete quantities are also numeri
ally 
onserved in the
ase of the deterministi
 NLS with the s
heme (9). In the 
ase of a multipli
ativenoise the mass Mn also remains 
onstant (see [15℄).In our sto
hasti
 
omputations, it is important to 
ompute several traje
toriesin order to have an idea of the generi
 behavior of the solutions and to 
omputeexpe
tations. To 
ompute an approximation of expe
tations of the solutions andother quantities, an average is made on 50 or 100 traje
tories. This might seem not9



suÆ
ient, but ea
h traje
tory 
an take a 
ertain time of 
omputation. Therefore ana

urate approximation of the expe
tation would require a very long 
omputationaltime. This explains why the di�erent 
urves of expe
tations shown below are not assmooth as they should be. Nevertheless an average 
omputed on 50 or 100 traje
to-ries gives a suÆ
ient idea of what the expe
tation is. We use the notation < � > forthe empiri
al average whi
h approximates the mathemati
al expe
tation E (�). Forinstan
e, if N is the number of 
omputed traje
tories, we have:< ju(t; xk;j)j >= 1N X1�`�N juk̀;j(t)j and j< u(t; xk;j) >j = 1N ����� X1�`�N uk̀;j(t)�����for the numeri
al approximation of the averaged amplitude E (ju(t; x)j) and the am-plitude of the average jE (u(t; x))j.This s
heme was 
oded in a C++ language, all the operations are guaranteedto be optimum. More details about this 
ode, its UML diagram and the de�nitionsof its elements, 
an be found in [6℄. The Gaussian random variable wn+ 12k j are simu-lated thanks to a random generator routine whose period is 1026 ( 

1993,4,6: R. B.Davies). For every n; k and j, the wn+ 12k j are independent. This length of the periodis suÆ
ient to guarantee the independen
e of ea
h random draw. Indeed the gridhas a maximum of 500� 500 points and the maximum number of time iterations inour simulations is 5000 and there were never more than 200 traje
tories 
al
ulatedto approa
h the average solution. In this worst 
ase, the number of random drawsis 250:109 whi
h is still very small 
ompared to the period.Let us remark that, in the deterministi
 
ase, this s
heme is known to be stableand 
onsistent. It keeps the energy and mass 
onserved and is 
onvergent of order 1in time and 2 in spa
e (see [21℄, [26℄). Convergen
e results for the sto
hasti
 s
hemeare deli
ate to obtain. For the sto
hasti
 S
hr�odinger equation (see [13℄), it hasbeen proved that the numeri
al solution of the semi-dis
rete equation (time dis
reteequation) 
onverges in probability in di�erent spa
es. The study of the fully dis
retes
heme is under progress.Finally, we note that the strategy we use to simulate a white noise is not theonly possibility. For instan
e, it would be possible to use a Fourier basis to de�nethe Wiener pro
ess W . Then a Fast Fourier Transform would give the values of thenoise in the spatial domain. In a forth
oming work, we will study the in
uen
e onthe dis
retization of the noise on the numeri
al solutions.Note also that a split step algorithm is often used to simulate NLS equations.However, it is known that these s
hemes do not respe
t the balan
e between di�ra
-tive and nonlinear e�e
ts and thus perturbs the propagation. We think that withsu
h a s
heme it would be diÆ
ult to understand the real e�e
t of a noise on thepropagation. We have preferred the Crank-Ni
olson s
heme, for whi
h the problemdoes not o

ur. 10



3 Noise e�e
ts on S
hr�odinger stationary solitarywavesIn this Se
tion, we want to investigate the noise e�e
ts on stationary solutions indi�erent 
ases. As mentioned in the introdu
tion, stationary waves play an impor-tant role in physi
s and the e�e
t of white noise on propagation is not well-known.Noise e�e
ts on solitary waves have already been studied for NLS equation and forKorteweg-de Vries equation (see [15℄, [16℄, [25℄, and [28℄), these are equations indimension one. Here we try to see if in dimension two a similar behavior is observed.Two di�erent types of solitary waves are going to be investigated: stationary(stable) waves in the sub
riti
al 
ase � = 0:5, and stationary (unstable) waves in the
riti
al 
ase � = 1. The stationary waves are given by the time-periodi
 solutionsu(x; t) = u0(x)ei!t; ! > 0;where u0 is a real valued fun
tion and is expli
itly known in the 
ase d = 1. Ford = 2, it 
an be 
omputed separately with a shooting method using Maple, assumingthat the solution u0 is radial (see [29℄ for further details). The period for this solutionis then T = 2�! and will be set to 2� (that is ! = 1) in the following (see �gure 1 forthe stationary pro�le obtained with d = 2, � = 0:5 and ! = 1). The numeri
al testswill be made with various noise amplitudes �.
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0.0
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2.5

Figure 1: The stationary wave in the 
ase d = 2, � = 0:5 and ! = 1.3.1 Stationary solution in the sub
riti
al 
ase (� = 12)The solution is stable and we 
an perform simulations on long time intervals. In ourdeterministi
 simulation, the solitary wave stays the same with a relative pre
ision of10�2 during a period and a half. Consequently we 
an 
onsider that the deterministi
solution is stationary for our simulations whose time 
al
ulations will not go overthis limit T = 3�. The 
omputations have been made on D = [0; 14℄2 with a uniform11



grid 140� 140, Æt = 5:10�3 and � = 12 , with a stationnary state u0 
entered at thepoint (7; 7).We �rst look at the e�e
t of noise on one traje
tory. Figure 2 shows the pro�le ofthe solution with multipli
ative (left) and additive (right) noise at di�erent instants.The �rst observation is that the pro�le is not destroyed by the noise. However, as wasalready observed in dimension one, the multipli
ative noise damps the pro�le: the�nal amplitude is 
learly mu
h smaller than the initial amplitude. On the 
ontrary,the amplitude of the solution seems to os
illate with additive noise If the noise levelis in
reased, we see on �gure 3 that the damping e�e
t in the multipli
ative 
aseis really strong and the wave has been 
ompletely destroyed at time 10. But, foradditive noise, even with this very high level, the wave is still 
learly there. Othersolutions 
orresponding to other paths of the noise have been simulated and ea
htime a similar behavior was observed. We re
over here the strong stability of thepropagation in the presen
e of an additive noise already observed in the 
ase of theKorteweg-de Vries equation (see [16℄).With these long 
omputations, the solution be
omes non negligible at theboundary. Sin
e we do not want boundary re
e
tions to 
hange the general behav-ior of the stationary wave, solutions in a larger domain (see �gure 4) and solutionswith periodi
 boundary 
onditions (see �gure 5) have also been simulated. No majordi�eren
e 
an be seen here for the solution of NLS with multipli
ative noise. Foradditive noise no 
omparison are shown, but also in this 
ase no real di�eren
e wereobserved. Moreover the 
omparisons of �gures 5 are done with the same path ofthe noise and the same irregularities on the pro�les 
an be observed. In addition tothat, a few simulations were also done to 
ompare Diri
hlet and periodi
 boundary
onditions on averages - su
h as E (maxx2D ju(t; x)j) or any other quantity studiedbelow - and no relevant di�eren
e in the solution behavior 
ould be observed. Forthese reasons, our next simulations will only be performed in the domain [0; 14℄2 withDiri
hlet 
onditions and we think that this parti
ular 
hoi
e of boundary 
onditionsdoes not have any e�e
t on the general behavior.Another way to understand the e�e
t of a noise on the solutions of the NLSequation is to simulate average quantities, whi
h 
orresponds to mathemati
al ex-pe
tations. In order to keep a reasonable 
omputational 
ost, only 100 traje
torieswere used to simulate these averages. This is not suÆ
ient to have a good pre
isionbut it gives a good idea of the in
uen
e of a noise. In �gure 6, we show the se
tiona
ross the x axis of the averaged amplitude < juj > at time 0 and �=2. The shapeof the solitary wave is well 
onserved and the damping e�e
t of the multipli
ativenoise is 
on�rmed. Moreover, it is ampli�ed when the level of noise is in
reased. Itseems that the additive noise also has a damping e�e
t however it is rather weakeven with a very high noise level. Figure 7 shows the same quantity at time T = 8,the damping e�e
t of the additive noise is now 
lear. This e�e
t has been 
alled"soliton di�usion" in the 
ontext of the Korteweg-de Vries equation (see [28℄) and
an be justi�ed in some 
ases (see [23℄). 12
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X Figure 2: Evolution of the se
tions at times t = 2; 4; 6; 8; 10 for NLS with multi-pli
ative noise (left) and with additive noise (right), (� = 12 ; � = 0:03).13
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X Figure 3: Evolution of the se
tions at times T = 2; 4; 6; 8; 10 for NLS withmultipli
ative noise (left) and additive noise (right), (� = 12 ; � = 0:05).14
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Figure 4: Evolution of the se
tions at times t = 2; 4; 6; 8; 10 for NLS with multi-pli
ative noise with Diri
hlet boundary 
onditions on [0; 14℄ (left) and [0; 18℄ (right)(� = 12 ; � = 0:05, h = 0:1). 15
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tions at T = �2 for NLS with multipli
ative (left) and additive(right) noise, (� = 12 ; � = 0:05; 0:025).
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X Figure 7: Comparison of the �nal se
tion of < ju(t; x)j > at di�erent times for NLS withmultipli
ative (left) and additive (right) noise , (� = 12 ; � = 0:03).We also see that < juj > does not vanish near the boundary. In fa
t, < juj > is
onstant outside the region where the wave is lo
alized. This 
onstant in
reases with� and re
e
ts the averaged amplitude of the ba
kground noise. If the amplitude ofthe average j < u > j is 
omputed instead of the average of the amplitude, < juj >,we see on �gure 8 that j < u > j vanishes outside the solitary wave pro�le. This isdue to the fa
t that the ba
kground noise has zero average. Ex
ept for this point,the two quantities behave similarly.
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Figure 8: Comparison of the �nal se
tion of < ju(t; x)j > or j < u(t; x) > j at time T = 5and T = 8 for NLS with multipli
ative (left) and additive (right) noise , (� = 12 ; � = 0:05).We have seen that the maximum of the averaged amplitude de
reases in boththe multipli
ative and additive 
ase. We now investigate in more details this quantitymaxx2D E (ju(t; x)j) and 
ompare it to the average of the maximum E (maxx2D ju(t; x)j).Figure 9 displays the evolution of these quantities as well as E (ju(t; x
)j), x
being the 
enter of the domain. A �rst observation is that maxx2D E (ju(t; x)j) andE (ju(t; x
)j) are very 
lose and we dedu
e that E (ju(t; x
)j) is a very good approxima-tion of maxx2D E (ju(t; x)j). This is important sin
e maxx2D E (ju(t; x)j) is naturallyapproximated by maxk;j < ju(t; xk;j)j > where xk;j are the grid points and the 
om-putation of this quantity requires to save ju(t; xk;j)j for all points xk;j and for ea
htime and for ea
h traje
tory. Thus, a lot of memory storage is ne
essary. In thefollowing we often show the evolution of E (ju(t; x
)j) whi
h is 
heaper to 
ompute.Also, we see that maxx2D E (ju(t; x)j) monotoni
ally de
reases. On the 
ontrary,E (maxx2D ju(t; x)j) in
reases �rst on a small interval of time and then de
reases formultipli
ative noise and monotoni
ally in
reases for additive noise. A possible ex-planation is that the noise has two e�e
ts: it inje
ts energy and indu
es a damping.At the beginning, the inje
tion of energy dominates be
ause the damping me
ha-nism is not settled. Then, after some time, the situation 
hanges and the dampingdominates in the multipli
ative 
ase. However, in the additive 
ase, the damping istoo weak and 
annot 
ounterbalan
e the inje
tion of energy.18



The inje
tion of energy 
annot be seen on E (ju(t; x
)j), or on maxx2D E (ju(t; x)j),be
ause it is inje
ted at points whi
h are random. When a point is �xed, the energyis inje
ted there for very few traje
tories so that it has no in
uen
e on the average.This explains why we obtain de
reasing 
urves whi
h only re
e
t the damping e�e
t.
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Figure 9: Evolutions of E [max ju(t; x)j℄, max E ju(t; x)j and < ju(t; x
)j > for NLSwith multipli
ative (left) and additive (right) noise , (� = 12 ; � = 0:03; 0:05).In [15, 16, 28, 23℄, the de
rease of maxx2D E (ju(t; x)j) is referred as "solitondi�usion" and it is shown that for intermediate time it behaves like t�
 where 
does not depend on the noise level. In our two dimensional simulations, we have notbeen able to �t the observed de
rease with t�
 .3.2 Stationary solution in the 
riti
al 
aseWe now 
onsider the 
riti
al 
ase � = 1. Due to instability, in the deterministi
 
asethe solution is stationary with a good pre
ision only on a quarter period, T = �=2.The solution amplitude is numeri
ally 
onstant with a relative pre
ision of 10�2 onthat interval, see �gure 10. Afterwards instability e�e
ts dominate and the amplitudein
reases. Sin
e, in this Se
tion, we do not want to mix noise e�e
ts and instability,our simulations will be performed on this time interval [0; �=2℄.
19



0

50

100

150

0

50

100

150
0

0.5

1

1.5

2

2.5

0

50

100

150

0

50

100

150
0

0.5

1

1.5

2

2.5

Figure 10: Initial Surfa
e (left) and surfa
e solution of deterministi
 NLS at T = �=2(right), (� = 1, � = 0).The 
omputational parameters are the following: the spa
e domain is 
 =℄0; 10[�℄0; 10[, with a grid 140� 140 and the number of time iterations is 314 withÆt = 5:10�3, 
orresponding to the �nal time limit 
lose to T .We �rst investigate the additive and multipli
ative noise e�e
t on a single tra-je
tory. Figures 11 and 12 show the pro�le at T = �=2 with two di�erent noiselevels. The behavior is very similar to the sub
riti
al 
ase.
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es solutions of sto
hasti
 NLS at T = �=2 for multipli
ative noise(left) and additive noise (right) (� = 1; � = 0:025).
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Figure 12: Surfa
es solutions of sto
hasti
 NLS at T = �=2 for multipli
ative noise(left) and additive noise (right) (� = 1, � = 0:05).In �gure 13, we show the se
tion a
ross the x axis of the averaged amplitude< juj > after a quarter period. The shape of the solitary wave is again well 
onserved,even with a very high noise level su
h as � = 0:05. The paths in this 
ase are really
haoti
, see �gure 12, but the averaged pro�le is a smooth 
urve.The damping e�e
t of the multipli
ative noise is 
on�rmed and it is 
learlyampli�ed when the level of noise is in
reased. On the 
ontrary, the additive noisedoes not seem to have a signi�
ant e�e
t here.
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tions of < juj > at T = �=2 for NLS with multipli
ative noise (� = 1,� = 0:05; 0:025; 0:01) on the left and additive noise (� = 1, � = 0:05) on the right.In �gure 14, we show the evolution of E (maxx2D ju(t; x)j), the expe
tation ofthe maximum amplitude, for various levels of multipli
ative noise and 
ompare itto E (ju(t; x
)j) for � = 0:025 - re
all that E (ju(t; x
)j) is a very good approximationof maxx2D E (ju(t; x)j). We see that again E (ju(t; x
)j) monotoni
ally de
reases andE (maxx2D ju(t; x)j) in
reases �rst on a small interval of time. Thus the me
hanismdes
ribed above seems to work also in the 
riti
al 
ase.21
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)j(right) for NLS with additive noise, (� = 1; � = 0:05).3.3 Comparison of the damping e�e
ts with a di�usionWe have seen that a noise has a tenden
y to damp the solution. In the probabilisti
vo
abulary, the solution of a sto
hasti
 equation is also 
alled a di�usion. This isrelated to the fa
t that the probability density evolves a

ording to a paraboli
equation. Thus this meaning of the word di�usion is totally di�erent to what adi�usive term in an equation means. If we add su
h a di�usion to the NLS equation,we obtain the so-
alled 
omplex Ginzburg-Landau equation (CGL). We intend now22



to see if the damping due to the multipli
ative noise is 
omparable to the dampingdue to a di�usive term. In other words, we 
ompare the solutions of the NLS equationin the multipli
ative 
ase and the CGL equation,�u�t � (�+ i)�du+ (� � i)juj2�u = 0; (10)where � and � are small nonnegative parameters.
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Figure 16: Comparison of the evolution of the se
tions of the solution for CGL(� = � = 0:055, left 
olumn) and NLS with multipli
ative noise (� = 0:05): se
tionof j < u > j (
enter 
olumn) and se
tion of < juj > (right 
olumn), for t = 0; t =2; t = 4; t = 6; t = 8; t = 9 (� = 1). 23



We 
ompute solutions of (10) starting from the same Cau
hy data as the onetaken in sto
hasti
 simulations of NLS. We have 
hosen the various parameters , �,�, �, so that the solution are as 
lose as possible. The pro�les of the CGL solutionand of one path of the sto
hasti
 NLS with multipli
ative noise at di�erent times areshown in �gure 16. The evolutions are very similar and the two e�e
ts 
ould easily be
onfused. The superposition of the CGL and sto
hasti
 pro�les in �gure 17 is reallyamazing. We insist however that the two perturbations of NLS are mathemati
ally
ompletely di�erent even if it seems diÆ
ult to see the di�eren
e on the solutionbehavior.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

T=0 

Figure 17: Se
tions of < u > at t = 0 and t = 6 for NLS with multipli
ative noise(� = 0:05) 
ompared with CGL (� = � = 0:055).Nevertheless, a slight di�eren
e 
an be seen on the evolution of the maximumamplitude (see �gure 18): in the 
ase of the multipli
ative noise, an in
e
tion point
an be observed in the < ju(t; x
)j > evolution, whereas the evolution for the CGLequation mimi
s a dissipative pro�le. This di�eren
e is related to the fa
t that thesto
hasti
 NLS equation is 
onservative - the L2 norm is 
onserved - whereas CGLequation is dissipative - the L2 norm de
reases.
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Figure 18: Comparison of the evolution of the maximum of the solution for CGL(� = � = 0:055) and < ju(t; x
)j > for NLS with multipli
ative noise (� = 0:05),(� = 12 ; � = 0=0:05 � = � = 0; 0:055; K = 0).4 Noise e�e
t on the blow-up4.1 The numeri
al study of singular solutionsAs already mentioned, the 
omputation of singular solution is deli
ate and requires a
areful treatment. In [3℄ and [4℄ - see also [7℄, [8℄ for the Korteweg-de Vries equation -sharp 
riteria for re�nement are derived. Let us �rst re
all that it is absolutelyne
essary to re�ne the grid when 
omputing a singular solution for the deterministi
NLS equation. Indeed, the H10 norm in
reases strongly whereas the L2 norm remainsinvariant. This is in 
ontradi
tion with the well known inverse inequalitykukH10 � Ch kukL2; (11)valid for a dis
rete fun
tion u. Thus, if the grid is uniform, it is impossible to simulateblow-up.Figure 20 shows the 
omputed solution with and without re�nement in the 
aseof an initial data 
orresponding to a singular solution. Due to the inverse inequality,the maximum norm 
annot rea
h high values and os
illates on the �xed grid. Onthe 
ontrary, with re�nement, the 
omputed pro�le shows a singularity.In the arti
les 
ited above, the re�nement strategy is the following. The timestep is divided by 2 when the energy 
onservation fails and the spatial re�nemento

urs when the inverse inequality is 
lose to be
ome false. This gives the followingalgorithm: if krunk2 � 
1 Ch kunk2; then add points in the grid;if jH(un+1)�H(un)jjH(un)j � 
2 then divide Æt by 2;25



where 
1 is a positive 
onstant smaller than 1, C is the 
onstant in (11), and 
2is a positive 
onstant 
lose to 0. These have to be 
hosen in order to optimize there�nement algorithm. If 
1 and 
2 are small, the re�nements are too frequent andyields prohibitive 
omputational 
osts. In the worst 
ase, if the time step is re�nedtoo often, the simulation 
annot rea
h the blow-up time.Moreover, a global spa
e re�nement would also need very long 
omputationaltime. We observe that the solutions we are interested in remain lo
alized near the
enter of the square and in order to improve our 
omputations, we 
hose to re�nelo
ally in spa
e. Indeed, it is no use having a re�ned grid in spatial areas where thesolution is not singular. Sin
e the singularity will always o

ur at the 
enter of thedomain, we 
hose a re�nement pro
edure whi
h adds points only around the 
enter.Our re�nement pro
edure 
onsists in adding K points from the 
enter to the leftand K points to the right in x and in y dire
tions. The re�ned grid has the shapeof a 
entered 
ross. Figure 19 shows on the left the grid after the �rst re�nementand on the right the grid after the se
ond one. All lines interse
tions in this �gureare nodes of 
omputation. Another 
hoi
e would be to add points only on a small
entered square, this method has the advantage to re�ne only where the singularityappears and the re�ned grid has fewer points. However, the 
ode would be mu
hmore 
omplex to implement and the matrixM of our s
heme (see Se
tion 2.3) wouldloose its symmetry.The re�nement strategy des
ribed above 
annot be applied with our s
heme.Indeed 
ontrary to [3℄ and [4℄, the energy is exa
tly 
onserved in our 
ase and it
annot be used to de
ide when to re�ne. If the energy 
hanges, this means thatour �xed point algorithm does not 
onverge and it is in general already too late tore�ne in time. Based on this observation, we have de
ided to re�ne in time wheniterations in the �xed point is larger then a pres
ribed value. This 
riterium of timere�nement gives good results in the deterministi
 
ase for NLS. Another advantageis that the �xed point and 
onjugated gradient are eÆ
ient resulting in a quite fast
omputation. Furthermore, this 
riterium is also available in the sto
hasti
 
ase orfor the 
omplex Ginzburg-Landau. In these two 
ases, no invariant quantity su
h asthe energy exists. Con
erning spa
e re�nement, we keep the 
riterium based on theinverse inequality.It has to be emphasized that the matrix 
onditioning be
omes worse and worsewith the number of spa
e re�nement and the pre
onditioning is less and less eÆ
ient.Another point is that, when the spatial grid is re�ned, it is ne
essary to 
hoosevalues for the solution at the new nodes. A �rst try was to use linear interpolation.However, this produ
es a signi�
ant break in the evolution of the mass and energy.We have used interpolation with se
ond order polynomials in order to 
ure thisproblem.
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Figure 19: The grid 10 � 10 after one re�nement with K = 2 (left) and after these
ond one (right).The se
ond solution shown in �gure 20 has been 
omputed with this strategywith K = 20. We see that our 
ode is able to 
ompute singular solution in a veryeÆ
ient way. It is also important to make sure that the 
ode is able to 
ompute highamplitude solutions whi
h �nally de
rease after a strong fo
using phase. This mayhappen in the 
riti
al 
ase for the 
omplex Ginzburg-Landau equation. Indeed, it isknown that the solutions are global (see [17℄) but, for � and � small, they are very
lose to the NLS solutions. Consequently, for an initial data with negative energy,we expe
t to see numeri
ally a solution very 
lose to the blowing up solution of NLS,but whi
h stays global in time.Tests have been made in the 
riti
al 
ase � = 1 with a Gaussian initial 
onditionu0(x; y) = qe�((x�7)2+(y�7)2); (12)with q = 3 so that it has a negative energy. We have taken � = �. The programis supposed to stop when the amplitude of the solution is 5000 times higher thanthe initial amplitude. The initial number of point in ea
h dire
tion is 140 and wepres
ribed K = 20. The domain is the square [0; 14℄� [0; 14℄. When � = � = 10�2or � = � = 10�3, we indeed obtain a solution whi
h �rst fo
uses. Then the di�usiondominates and the amplitudes de
reases. In the se
ond 
ase, we 
ould believe fromthe �gure on the left that the solution is singular but the zoom on the right showsthat it is not not the 
ase. For � = � = 10�4 the amplitude of the solution goes overthe limit of 5000 q, and no stopping e�e
t of the blow up was numeri
ally established.More severe re�nement 
riteria would show that the solution is global. This showsthat one has to be very 
areful before 
on
luding that a solution is singular ! In oursituation, we 
an only 
on
lude that there is a threshold between � = � = 10�3 and10�4 and below this threshold no global solution 
ould be numeri
ally seen althoughwe know it exists. 27
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Figure 20: Comparison of the evolution of the maximum of a blowing-up solutionfor 
riti
al NLS with re�nement (K = 20) and without re�nement (K = 0).
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Figure 21: Amplitude pro�le of CGL solutions with negative initial energy for dif-ferent � and � (� = � = 0:0001; 0:001; 0:01, � = 1, q = 3, � = 0, K = 20).We now turn our attention to the sto
hasti
 
ase. We believe that the deter-ministi
 
riteria are still good to 
apture a singular solution in the presen
e of noise.Moreover, as shown in [15℄, re�nement is also ne
essary to get a 
orre
t dis
retiza-tion of a white noise. A noise dis
retized on a grid with a �xed mesh size 
annotbe white. Its 
orrelation length is of order of the mesh size. Sin
e blow-up is a phe-nomenon where all frequen
ies are important, a spa
e 
orrelated noise 
annot havea strong e�e
t on this me
hanism. If we want to understand the in
uen
e of a spa
e28



time white noise on blow-up, it is ne
essary to have arbitrarily small spa
e and timestep.We en
ountered new diÆ
ulties in the sto
hasti
 
ase. First, we had to 
hoosea larger 
onstant 
1. Indeed, the H1 norm in
reases due to the presen
e of noise and,if 
1 is too small, this yields unne
essary spatial re�nements.Another problem appeared. As mentioned previously, the 
ondition number ofthe matrix is worse and worse with the number of re�nements. In the presen
e ofnoise the number of iterations in the 
onjugate gradient algorithm 
an rea
h veryhigh values, as opposed to the deterministi
 
ase. The reason is that, for deterministi
evolution problems, the solution is rather smooth in time and the 
onjugate gradientis initialized with a ve
tor 
lose to the solution so that the 
onvergen
e is very fast.However, this is no more the 
ase in the sto
hasti
 
ase where the solution is notvery smooth in time so that un+1 is often very di�erent from un and the 
onvergen
eof the 
onjugate gradient may be very long. We have 
hosen to re�ne in time also inthis 
ase, when the number of iterations in the 
onjugate gradient is too large. Thismight be bad and lead to very long 
omputations. However, we found that it was agood solution and 
ould always perform our simulations in a reasonable time.4.2 Numeri
al simulationsAll the simulations are done a

ording to the algorithm des
ribed above on thesquare [0; 14℄� [0; 14℄ with a 
riti
al nonlinearity. We will start our study of blow-upwith the Gaussian initial 
ondition (12), where q is su
h that H(u0) is slightly nega-tive or slightly positive but we know that the deterministi
 solution is singular. Wewill also use the deterministi
 stationary wave as initial 
ondition, due to instabilitythe deterministi
 numeri
al solution is also singular.For q = 3, the Gaussian initial data has negative energy. Figure 22 on the leftdisplays a path of the solution for two noise levels, � = 0:1 and 0:05. The blow-upis prevented with the high noise level whereas it still o

urs for � = 0:05. However,we believe that this is a numeri
al artefa
t and that in fa
t the sto
hasti
 solutionis not singular. Re
alling the deterministi
 simulation on the 
omplex Ginzburg-Landau equation, we know that this is possible. An indi
ation of that is that if wedo more and more re�nement, i.e if we take 
1 smaller and smaller, the blow-upis delayed, whi
h means that our simulations have not 
onverged. However, evenwith very severe re�nement 
riteria, we have not been able to establish that thesto
hasti
 solution is global. Note that we tried several random draws and ea
h timewe observed the same behavior.We tried to see for whi
h level level of noise we are able to establish that thesto
hasti
 solution does not develop singularities. In �gure 23, we see that up to� = 0:08 the blow-up is always prevented. With this noise level, the solution startsto fo
us very strongly but the re�nement algorithm works well, the noise is very
lose to a spa
e time white noise around the maximum and the blow-up does noto

ur. Below this level, we have not been able to obtain this behavior.
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Figure 23: Pro�le of the solution amplitude of NLS with multipli
ative noise withvarious noise level.We then 
hoose the initial data (12) with q = 2:8 that gives a blowing upsolution with a positive energy. In this 
ase, the noise in
uen
e is easier to observesin
e the deterministi
 blow-up is weaker. Our experiments have shown that 
ollapseis stopped when � is larger than 2:10�2. Indeed for � = 3:10�2, whi
h is quite small,the blow-up is early stopped. In fa
t, there was not even one re�nement in this 
ase.For � = 2:5:10�2, the blow-up is stopped after a high peak of amplitude (see Figure30



24). In this latter 
ase, the re�nement method is ne
essary to observe the globalsolution. Even for � = 2:0:10�2, the solution amplitude be
omes very large but theblow-up is still prevented. A fo
us on the solution near the singularity 
on�rms thatthe de
reasing of the amplitude is not due to a numeri
al instability. We indeed seein Figure 25 (right) that the 
omputation is good and that there is a real dampinge�e
t that o

urs in a very short time s
ale. Under the 
riti
al level � = 2:10�2, noglobal solution 
ould be seen numeri
ally.

0 0.5 1 1.5
2

4

6

8

10

12

14

16

18

20

T 

| u | 

deterministic 

noise=0.0025 

noise=0.003 

0 0.5 1 1.5
0

5

10

15

20

25

30

noise=0.002 

noise=0.0025 

(no blow−up) 

T 

| u | 

Figure 24: Pro�le of solution amplitude of NLS with multipli
ative noise for di�erent� (� = 1, Gaussian initial data with positive energy (q = 2:8), K = 0).
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Figure 25: Pro�le of solution amplitude of NLS with multipli
ative noise (� = 0:02)
ompared to the deterministi
 blow-up (left) and zoom around maximum intensityfor � = 0:02 (right). (� = 1, Gaussian initial data with positive energy (q = 2:8),K = 20).Finally, we 
onsider the stationary wave des
ribed in Se
tion 3 as initial 
ondi-tion. The solution is not stable and numeri
ally blows up after some time, see �gure31



26 (left). In this 
ase, the blow-up is very weak and easily prevented by the multi-pli
ative noise, even if � is very small, see �gures 26 and 27. Besides for � � 6:10�4,no re�nement pro
edure is ne
essary sin
e the stationary wave is really early pre-vented. Nevertheless, for � = 5:10�4, a severe fo
using happens and the lo
al spa
ere�nement pro
edure is ne
essary to see the damping e�e
ts of the noise on theblow-up. For smaller noise level, � < 5:10�4, no global solution 
ould be observed.As in the previous 
ases, we 
annot really 
on
lude whether there is still a globalsolution or not be
ause our 
omputation rea
hes its limit. However, we �rmly be-lieve that even if we 
annot see it in the simulations for very small �, the solution isalways global with multipli
ative white noise for any value of the noise level �.
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Figure 26: Evolution of the solution amplitude of NLS with multipli
ative noise fordi�erent � (� = 1, stationnary state, K = 0).
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Figure 28: Final se
tion of the solution for di�erent � (
riti
al S
hr�odinger unstablestationnary state, � = 1, K = 0).It is surprising that a very small noise 
an drasti
ally 
hange the solution be-havior although it is diÆ
ult to dete
t. We 
an see on �gure 29 the evolution of thesolution with the noise level � = 6:10�4. The noise is not visible on the pro�le butit is strong enough to prevent the blow-up. A 
loser look at the pro�le is shown in�gure 28. We see that, 
ontrary to the 
ase of larger values of �, it is very diÆ
ultto dete
t the noise.We 
on
lude that with a small noise it is possible to have a propagation for amu
h longer time 
ompared to the deterministi
 
ase. However, due to the damp-ing e�e
t of the noise, the wave disappears progressively. If we 
onsider that thepropagation is destroyed if the amplitude has been divided by two, we 
an 
omputethe life time of the wave as a fun
tion of the noise level. The 
orresponding 
urveis shown in �gure 30. We 
an see that, above a very small limit, the smaller � is,the longer the life time of the wave is. Table 1 shows that the L2 norm is veryweakly dissipated. Thus, the blow-up is really prevented by the noise and not bythe numeri
al dissipation of the s
heme.Time 0 2 4 6 8 10 12 14 16L2 norm 11.7 11.68 11.66 11.64 11.6 11.57 11.54 11.5 11.48Table 1: Evolution of the L2 norm for � = 6:10�4.
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