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Abstract: In this paper, we numerically solve the two-dimensional stochas-
tic nonlinear Schrodinger equation in the case of multiplicative and additive white
noises. The aim is to investigate their influence on well-known deterministic solu-
tions: stationary states and blowing-up solutions. In the first case, we find that a
multiplicative noise has a damping effect very similar to diffusion. However, for small
amplitudes of the noise, the structure of solitary state is still localized. In the second
case, a local refinement algorithm is used to overcome the difficulty arising for the
computation of singular solutions. Our experiments show that multiplicative white
noise stops the deterministic blow-up which occurs in the critical case. This extends
the results of [15] in the one-dimensional case.

Keywords: Stochastic partial differential equations, multiplicative and addi-
tive noise, nonlinear Schrodinger equations, finite difference schemes, refinement
procedure.

1 Introduction

Nonlinear Schrodinger equations (NLS) play an important role for the understand-
ing of many physical phenomena. For instance, NLS appears in wave propagation in
nonlinear media, fluid and quantum mechanics or plasma physics. It is well known
that in some cases in particular in the case of a focusing power law nonlinearity

NLS equations possess solutions of special form which are localized in space, prop-
agating at a finite constant velocity and keeping the same shape. These are called
solitary waves and in the particular case of a vanishing velocity these are called
stationary waves (see [10] and [29] for a review on NLS). Depending on the power of
the nonlinearity, these solitary waves are stable or unstable. Under a critical value
of the nonlinear exponent, the nonlinearity is called subcritical and in this case, the
solitary waves are stable. For larger values (that is in the critical and supercritical



cases), the solitary waves become unstable and the time evolution may exhibit blow-
up.

In this paper, we wish to investigate the influence of different kinds of noises on
solitary wave propagation and on the blow-up mechanism, in the two-dimensional
case. Noisy terms might represent the effects of inhomogeneities in the medium in
which the waves propagate, as well as noisy sources or of neglected terms in the
modelization yielding to NLS equations. They can also be considered as a model of
perturbation and it is natural to investigate if the qualitative behaviors described
above are robust or not and how noise can change them. Here two different types
of noises will be studied: additive noise and multiplicative noise. The first one acts
as an additive random forcing term added to the NLS equation and has the form
76(1(1—1/;/ the case of additive noise is studied in [18] where collective coordinates and
large deviation arguments are used to get information on the influence of the noise
on the propagation of solitary waves. The second one can be seen as a random
potential term of the form jeu o ‘{i—VtV added to NLS equation. Multiplicative noise has
been introduced in the context of Scheibe aggregates (see [5] and [27]). Then NLS
is written as

ieu o dW
du — iAqudt — i|u|*udt = (1)

1edW,

where u = u(t,z,w); t > 0 being the time variable, x the space variable and w the
random variable.

There are several studies on noisy nonlinear dispersive equations. In [23] for
example, thanks to inverse scattering and perturbation techniques, the authors de-
rive some qualitative informations for small noise for different equations like NLS,
Korteweg-de Vries, Sine-Gordon or Klein-Gordon. The relevance of numerical sim-
ulations is also pointed out to obtain some results for more general noises. Such
simulations have been used in [16] and [28] to study the influence of a white noise
on the Korteweg-de Vries equation. NLS equations with random terms are described
in [1], [2] and [19] (see also the references therein). In these articles, the noise is ei-
ther a potential or a perturbation of the dispersive term or the nonlinear coefficient,
it has smooth paths and again an inverse scattering transform is used. A numerical
study of the influence of a noise on the blow-up for NLS has been performed in [15]
in the case of a white noise in space dimension one. Furthermore, many theoretical
results exist about the stochastic NLS (see for instance [11]) but valid only for cor-
related additive or multiplicative noises.

In this article, we want to do a similar study as in [15] in dimension two. We first
recall, in Section 2, some basic concepts such as the stochastic framework and general
well-posedness theoretical results. We also present the finite differences numerical
method, emphasizing on the noise discretization. In Section 3, we study the effects
of both additive and multiplicative noises on stationary waves in the subcritical and



critical cases. Let us recall that, in the case of space dimension two considered here,
the physical model corresponds to the critical case, 0 = 1, and the stationary wave
is not stable. It results that the propagation can be studied only on a short time
interval. Thus, we have chosen to simulate also a subcritical nonlinearity - o = 1/2
- allowing the propagation over long time interval. We find that multiplicative noise
has a damping effect that can be compared for large times with the damping observed
for Ginzburg-Landau models. In Section 4, we numerically investigate the noise
influence on blow-up formation in the critical case. Only multiplicative noise will
be considered here, since additive noise has no real effect on the blow-up. Even for
the deterministic case, the numerical method has to be consistent with small spatial
scales of the blow-up structure. A local refinement algorithm is given, similar to
the one given in [15] in the one-dimensional case, and tested first for deterministic
blow-up. Refinement criteria have to give reasonable computational costs in our
two-dimensional experiments. Note that a lot of works for the computation of the
blow-up of deterministic NLS (see [3], [4], [29], [30] and [31]) or Korteweg-de Vries
have been done ([7], [8]). Even if they concern deterministic equations and are based
on finite elements, they are very helpful to find the correct techniques to compute
blow-up in our stochastic cases. Stochastic tests are finally performed with different
kinds of blowing-up solutions. The two dimensional case studied here is much more
difficult than the one dimensional case studied in [15], especially for the computation
of singular solutions. Indeed, the refinement method is much more difficult to derive
here. Bad criteria for refinements yield expensive computational costs or very poor
results. In Section 4, we try to give details on the difficulties encountered and the
remedies we found. Moreover, the blow-up is much more severe in dimension two
and it is difficult to detect the effect of a noise. We expect that a multiplicative noise
always prevents the formation of singularities. However, if the blow-up is too strong
we first have to simulate a strongly focusing solution reaching very high amplitudes
and in some cases we have not been able to establish this fact.

2 General considerations on the equations and on
the numerical scheme

2.1 Set up of the problem

The equations which will be studied here are the following:

ieu o dW
du — iAgu dt — ilu[*udt =

redW, (2)
u(0) = up.

Dirichlet boundary conditions will be considered on a square domain D of R?, ug is
the initial condition, W is a real valued Wiener process on L?(D) associated with a
filtered probability space (2, F, P, {F; };>0). The first kind of noise is referred as the



multiplicative case, where ieuodW has to be understood as a Stratonovitch product
(see [5]), whereas the second one is referred as the additive case. When the noise W
is a cylindrical Wiener process, it can be written as

o

W(t, z,w) = Zﬁk(t,w)ek(m), t>0, €D, we. (3)

k=0

where (0Bi)ken are real independent brownian motions (fy)ren and (ex)ren is an
orthonormal Hilbert basis of L?(D).

More generally, for a linear operator ® on L?(D), a Wiener process with covari-
ance operator @ is given by

o

OW(t,z,w) = Zﬂk(t,w)éek(m), t>0,xeD,we .

k=0

In general, the series above do not converge in L?*(D). This is true only when @ is
a Hilbert-Schmidt operator.
If @ is defined through a kernel K

du(x) = / K(z,y)u(y)dy, for wue€ H,
Jp

then the spatial correlation function is given by:

Co(r,y) = ./D K(z,2)K(z,y)dz.

The space and time correlation of ®W being formally given by E [ (P4 (¢, ), LY (s, y))]
and, still formally, we have:

dw aw
E [(@W(tﬂ”), QW(% y)>:| = C<T>(may)5tfs-

We see that this type of noise is always uncorrelated - or white - in time. If & = I,
i.e. if W is a cylindrical Wiener process, the noise is also white in space and the
spatial correlation Cg (2, y) is the Dirac mass d,_,,.

The correlation function is a physically measurable quantity; a correlation which
is the Dirac mass 6, ,0; , indicates a white noise both in time and space.

Let us also remark that it is often written 1) = 92 so that equation (2) becomes:
du ieu O ’I']
— — iAqu — i|u[*u = 4
ar B il . 4)
i€n.

For NLS, the energy and mass are respectively defined by:

Hu) = 5 / ||Vu(x)||2dx—ﬁ / fu() o+ dr,



M(u) = /D lu(z) da.

It is well-known (see for example [29]) that these quantities are invariant for the de-
terministic NLS. With an additive noise, none of them is conserved. For a Stratono-
vitch multiplicative noise, only the mass is conserved.

2.2 Main theoretical results

We think that it is important to recall the theoretical results on the NLS equation.
Hopefully, this enables the reader to understand the issue at stake. We begin with
the deterministic NLS equation.

Theorem 2.1. For ug € H'(R?), the deterministic NLS equation (that is e = 0)
on D = R is locally well-posed if 0 < o < % ford > 2 or for any o if d =1 or
2. Besides the solution is global if od < 2. Moreover, for od > 2 and uy € H'(R?)
such that H(ug) < 0 and zug € L2(R?), then the solution blows-up at a finite time.

The proof of this result as well as many improvements can be found in [10]
and [29]. Note that if od > 2 there also exist solutions such that H(ug) > 0 but
blow up in a finite time. For evident reasons, it is not possible to simulate the NLS
equation on R? and we have to restrict our computations to a bounded domain.
However, if we only simulate spatially localized solutions and the computational
domain D is sufficiently large, we expect that the numerical solution is very close to
the solution on R?. Another point is that in the case d = 2 considered in this article,
it can be shown that in the subcritical case the NLS equation admits a unique global
solution on bounded star-shaped domains (see [9]). Moreover, Kavian has shown in
[22] that an initial data with negative energy on a star-shaped domain with Dirichlet
condition also gives a blowing-up solution in the critical and supercritical cases.

For the NLS equations with additive noise ie®dW, with & a Hilbert-Schmidt
operator from L*(R?) to H'(R?), we have the following theorem, proved in [11, 12]:

Theorem 2.2. Assume that 0 < o < ﬁ ifd>2o0r0<oifd<2 Ifuyisal
measurable random variable with values in H*(R?), then there exists a unique solu-
tion u(ug,.) to NLS with additive noise with continuous H*(R?) valued paths. This
solution is defined on a random interval [O,T(Ug,w)), where T(ug,w) is a stopping
time such that we almost surely have limy_ (o w) |u(t)| g1 = 00 or 7(ug,w) = o0.

If od < 2 then T(ug,w) = oo almost surely. Moreover, if od > 2, then for any
uy € HY(R?) such that zuy € L*(R?) and any t > 0

P(7(ug) < t) > 0.

For multiplicative noise ieuo®dW, we have to assume that ® a Hilbert-Schmidt
operator from L?(R?) to H*(R?) and also that ® is y-radonifying operator from H
to WHo(R?) (with a > 2d), then we have the following theorem (see [11, 14]):



Theorem 2.3. Assume that% <0< A oro< d%] ifd >3, 0r0 <o <2ifd=3,

a2
or 0 < o ifd=1 or 2, then there exist r > 2 and p be such that % =d(3 - ;7) and

for any ug with values in H'(R?) there exists a stopping time 7(ug,w) and a unique
solution of NLS with multiplicative noise starting from ug which is almost surely in
C([0,T], H'(RY)) N L"((0,T), W'P(R%)) for any T < 7. Moreover we almost surely
have: im sup;_,;(,, o) [(t) |1 = oc or 7(ug,w) = oo. If od < 2 then 7(up, w) = o0
almost surely. Moreover, if od > 2 and ® is Hilbert-Schmidt from L*(R?) to H?*(R?),
then for any uy € H*(R?) such that |z|*ug € L*(R?) and any t > 0

P(7(ug) < t) > 0.

If od = 2, for uy as above with sufficiently negative enerqgy, there exists t > 0 such
that
P(r(ug) < t) > 0.

Again, these results do not correspond with our situation since our simulations
will be performed on a bounded domain. However, we think that the results pre-
sented below give a good idea of the behavior of the solutions of NLS equations on
R?.

Note that, the noise has a strong effect on the blow-up mechanism. Contrary to
the deterministic situation, in the supercritical case, any initial data gives a singular
solution. This is also true in the critical case with additive noise. However, this
assumes a spatially smooth noise. We will see in Section 4 that if the noise is white
in space, the situation is completely different.

2.3 The numerical method

Our scheme is based on a Crank-Nicolson finite difference scheme in space and time
on a uniform grid with (M +1)? points on the square domain [0, Z,,4,]*. This implicit
scheme was chosen because the energy and the mass are conserved in deterministic
case (see below for the definition of the numerical energy and mass). The time step is
0t and u"™ is the numerical solution at the discrete time ndt. The step of the square
grid is h and wy; is the numerical solution at the point (kh, jh). The numerical
scheme is the following:

n+1 n
urTt —u, 1
-k j kj n—+1 n—+1 n—+1 n n n
t 5 + 2 ((“k+1j = 2wy oy A Uy — 2w+ “ka')
t 2h
1
n+1 n+1 n+1 n n n n+gy
+ (upi — 2upy g F gy — 2up + up; ) + NL;
_ nt}
= —eij
where
n+1|20+2 n 2042
ntl 1 Jug; | — Jug;]
Nij b= 2( + 1) ; n+1|2 n] 2 (“‘Z}—l + U’Zj)
o ‘ukj 2 - |Uk7|



and

W/ Wy, ; 2( up; +uy;) for multiplicative noise
n+s
W, = (5)
n+—

for additive noise.

S

1
The wZ;Z are independent real normal random variables. Actually, for additive an
delta correlated - or equivalently a space-time white - noise, this numerical noise

W,:'] : should be the approximation of

1 (n+1)5t
S dW dzx 6
MRAMA& " (6)

where Dy ; is the elementary square domain around zy; given by

Dij = (k= o e on < G- n. 5+ 3n].

Then with the definition (3) of Section 2.1 we get,

n+] n+]
aWdr - () dBn
2ot /D / Wr 2ot / / ZP B

meN

1 (n+1)dt
= mmz@:\] (/ij em(x)daj> /nat dBm($).

Let us choose the Hilbert basis such that the e, are the functions e;; = %kaj
vanishing outside Dy ;, completed by an infinite number of functions in order to
have a Hilbertian basis. Then by orthogonality, we have

/ erm(x)dr =0
Dy ;

if (I,m) # (k,7) and we get

(n+1)d 1 (n+1)dt
h%t/Dk/ dex = 5 /ij erj(z)dz /Mt df;(s)

1 (n+1)5t
= ot ) B () (7)
U J not

1
= 5= (B (n+ 1)61) — Bij(nét)).



Since (ﬁm((n—l—l) t) = Bm(n6t))/V/6t is a random variable with normal law N(0, 1), it

can be set wk] = (B j((n+1)6t) — B ;(ndt)) //6t, so that the numerical stochastic
term becomes

n+— n-l——
kj /_ Uk ™

1
2

where the random variables w,:'j are simulated thanks to an appropriate random
procedure. Thus, we see that, in the additive case, the numerical noise is the exact
projection of the space-time white noise. However it is not delta correlated and it is
only an approximation of the white noise. Indeed it is easily seen that the numerical
noise corresponds also to the projection of €®,,,,,dW, where ®,,,, is the orthogonal
projector onto the space spanned by (e ;) (x,j)en1,m—1)2. In other words we also have:

1 (n+1)5t 1 (n+1)5t
S, umdWdx = / D, umem (z)dx / dBm(s
L o3 ([ meatts) [ i

1 (n+1)6t
= — e dx / dB,(s).
h26t Z /D,” k]( ) nét ( )

(k,j)€[1,n—1]2

The numerical noise space correlation is Cyym (2, y) = h—lz if x and y belong to the
same Dy ; and Cyym(x,y) = 0 otherwise. This is only an approximation of the Dirac
mass 0(z — y).

For multiplicative noise the approximation of the numerical noise is similar.
However the stochastic integral is calculated with two different methods for Ito
noise and Stratonovitch noise. Starting from (7), we can approximate the stochastic
Ito integral by:

(n+1)dt
[ o, 0Bus(s) = o ndt)(Bus((n+ 1050 B (nt)
= 11,”11),”\/7

which follows the definition of an Ito product, whereas for a Stratonovitch integral,
we have

(n+1)dt
[ w9 0dbisle) = 5l k) Gesltn+ 1030 = (o)

5t
1
~ = (up; + 11"“)11)2;2 Vst

N | — DN =

which corresponds to the approximation given in (5). It is well-known that the
Stratonovitch product u o dW has an Ito equivalent with a correction term %iUFq),
where Fg only depends on the covariance operator, see [11]. But Fg is not well-
defined for a space time white noise and what is more important, a discretization of
this equivalent Ito equation would not keep the numerical mass M,, constant (see the



notation just below). Thus we have chosen to approximate directly the Stratonovitch
product. The price to pay is that the random term is implicit.

If we denote by L the linear operator

(Lu)ks = g (g — 2 + o1 j + Ujan — 20k + Ukjo),

the nonlinear system

utt — 2y 1
ZT + 5L(7Ln+] + U,n) + NLn+% = *EW”+%

has to be solved at each time step. The system can be rewritten as

l 1 1 1 1 1
—I+-L)u"t =T =L |u"—eW""2 - NL""2 9
<6t + 5 ) U (615 5 ) u" — € 9)

and will be solved using a fixed point method. The matrix M = %I + %L does not
depend on the unknown and is easy to invert. This is the reason for leaving the
linear contribution of the noise in the right hand side in the multiplicative case. At
each time step, a fixed point algorithm is used and the matrix M is inverted with
a conjugated gradient method. Besides M is diagonally preconditioned before being
inverted, which is often sufficient to fasten the calculation since the next time step
solution is quite close to the previous time step solution. The iteration number for
the convergence of the conjugated gradient remains small (less than 4 or 5 iterations
for the gradient and the fixed point in all the subcritical cases).

It can be seen that system (9) has at least one solution u"*! (see [13] in the semi
discrete case). However, we do not know if it is unique and we have no guarantee
that the iteration converges. In [24], it is proposed to avoid this problem by a cut-
off of the simulated random variables. Since we never encountered any trouble of
this type and the fixed point iteration always converges, we decided not to use this
cut-off.

The numerical mass and energy are respectively given by

n 1 n n n n h2 n a
H" = 3 Z(‘uk'jﬂ - uk'j‘Q + gy — uk'j‘Q) BRI Z ‘uk'j‘Q( )
J kj

kj
M" = hQZ‘qu‘Q
kj

It is well-known that these discrete quantities are also numerically conserved in the
case of the deterministic NLS with the scheme (9). In the case of a multiplicative
noise the mass M™ also remains constant (see [15]).

In our stochastic computations, it is important to compute several trajectories
in order to have an idea of the generic behavior of the solutions and to compute
expectations. To compute an approximation of expectations of the solutions and
other quantities, an average is made on 50 or 100 trajectories. This might seem not



sufficient, but each trajectory can take a certain time of computation. Therefore an
accurate approximation of the expectation would require a very long computational
time. This explains why the different curves of expectations shown below are not as
smooth as they should be. Nevertheless an average computed on 50 or 100 trajecto-
ries gives a sufficient idea of what the expectation is. We use the notation < - > for
the empirical average which approximates the mathematical expectation E(-). For
instance, if /V is the number of computed trajectories, we have:

1 1
< fuft.mng) >= 1 D0 ub, ()] and < ultzg,) > = +

I<I<N

Z Uf;g(t)

1<U<N

for the numerical approximation of the averaged amplitude E(|u(¢, z)|) and the am-
plitude of the average |E(u(t,x))|.

This scheme was coded in a C++ language, all the operations are guaranteed
to be optimum. More details about this code, its UML diagram and the definitions

n 1 .
of its elements, can be found in [6]. The Gaussian random variable wk? are simu-
lated thanks to a random generator routine whose period is 10%° ((©1993,4,6: R. B.

1
Davies). For every n, k and j, the wZ';_Q are independent. This length of the period

is sufficient to guarantee the independence of each random draw. Indeed the grid
has a maximum of 500 x 500 points and the maximum number of time iterations in
our simulations is 5000 and there were never more than 200 trajectories calculated
to approach the average solution. In this worst case, the number of random draws
is 250.10° which is still very small compared to the period.

Let us remark that, in the deterministic case, this scheme is known to be stable
and consistent. It keeps the energy and mass conserved and is convergent of order 1
in time and 2 in space (see [21], [26]). Convergence results for the stochastic scheme
are delicate to obtain. For the stochastic Schrodinger equation (see [13]), it has
been proved that the numerical solution of the semi-discrete equation (time discrete
equation) converges in probability in different spaces. The study of the fully discrete
scheme is under progress.

Finally, we note that the strategy we use to simulate a white noise is not the
only possibility. For instance, it would be possible to use a Fourier basis to define
the Wiener process W. Then a Fast Fourier Transform would give the values of the
noise in the spatial domain. In a forthcoming work, we will study the influence on
the discretization of the noise on the numerical solutions.

Note also that a split step algorithm is often used to simulate NLS equations.
However, it is known that these schemes do not respect the balance between diffrac-
tive and nonlinear effects and thus perturbs the propagation. We think that with
such a scheme it would be difficult to understand the real effect of a noise on the
propagation. We have preferred the Crank-Nicolson scheme, for which the problem
does not occur.
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3 Noise effects on Schrodinger stationary solitary
waves

In this Section, we want to investigate the noise effects on stationary solutions in
different cases. As mentioned in the introduction, stationary waves play an impor-
tant role in physics and the effect of white noise on propagation is not well-known.
Noise effects on solitary waves have already been studied for NLS equation and for
Korteweg-de Vries equation (see [15], [16], [25], and [28]), these are equations in
dimension one. Here we try to see if in dimension two a similar behavior is observed.

Two different types of solitary waves are going to be investigated: stationary
(stable) waves in the subcritical case o = 0.5, and stationary (unstable) waves in the
critical case 0 = 1. The stationary waves are given by the time-periodic solutions

wt

u(z,t) = up(z)e™, w >0,

where ug is a real valued function and is explicitly known in the case d = 1. For
d = 2, it can be computed separately with a shooting method using Maple, assuming
that the solution ug is radial (see [29] for further details). The period for this solution
is then T = 2% and will be set to 2r (that is w = 1) in the following (see figure 1 for
the stationary profile obtained with d = 2, 0 = 0.5 and w = 1). The numerical tests
will be made with various noise amplitudes e.

25

8.0 10.0
r

Figure 1: The stationary wave in the case d =2, 0 = 0.5 and w = 1.

3.1 Stationary solution in the subcritical case (o = 1)

The solution is stable and we can perform simulations on long time intervals. In our
deterministic simulation, the solitary wave stays the same with a relative precision of
102 during a period and a half. Consequently we can consider that the deterministic
solution is stationary for our simulations whose time calculations will not go over
this limit 7' = 37. The computations have been made on D = [0, 14]* with a uniform

11



grid 140 x 140, 6t = 5.1072 and o = %, with a stationnary state uy centered at the
point (7,7).

We first look at the effect of noise on one trajectory. Figure 2 shows the profile of
the solution with multiplicative (left) and additive (right) noise at different instants.
The first observation is that the profile is not destroyed by the noise. However, as was
already observed in dimension one, the multiplicative noise damps the profile: the
final amplitude is clearly much smaller than the initial amplitude. On the contrary,
the amplitude of the solution seems to oscillate with additive noise If the noise level
is increased, we see on figure 3 that the damping effect in the multiplicative case
is really strong and the wave has been completely destroyed at time 10. But, for
additive noise, even with this very high level, the wave is still clearly there. Other
solutions corresponding to other paths of the noise have been simulated and each
time a similar behavior was observed. We recover here the strong stability of the
propagation in the presence of an additive noise already observed in the case of the
Korteweg-de Vries equation (see [16]).

With these long computations, the solution becomes non negligible at the
boundary. Since we do not want boundary reflections to change the general behav-
ior of the stationary wave, solutions in a larger domain (see figure 4) and solutions
with periodic boundary conditions (see figure 5) have also been simulated. No major
difference can be seen here for the solution of NLS with multiplicative noise. For
additive noise no comparison are shown, but also in this case no real difference were
observed. Moreover the comparisons of figures 5 are done with the same path of
the noise and the same irregularities on the profiles can be observed. In addition to
that, a few simulations were also done to compare Dirichlet and periodic boundary
conditions on averages - such as E(max,cp |u(t, x)|) or any other quantity studied
below - and no relevant difference in the solution behavior could be observed. For
these reasons, our next simulations will only be performed in the domain [0, 14]* with
Dirichlet conditions and we think that this particular choice of boundary conditions
does not have any effect on the general behavior.

Another way to understand the effect of a noise on the solutions of the NLS
equation is to simulate average quantities, which corresponds to mathematical ex-
pectations. In order to keep a reasonable computational cost, only 100 trajectories
were used to simulate these averages. This is not sufficient to have a good precision
but it gives a good idea of the influence of a noise. In figure 6, we show the section
across the z axis of the averaged amplitude < |u| > at time 0 and 7/2. The shape
of the solitary wave is well conserved and the damping effect of the multiplicative
noise is confirmed. Moreover, it is amplified when the level of noise is increased. It
seems that the additive noise also has a damping effect however it is rather weak
even with a very high noise level. Figure 7 shows the same quantity at time 7" = 8,
the damping effect of the additive noise is now clear. This effect has been called
"soliton diffusion” in the context of the Korteweg-de Vries equation (see [28]) and
can be justified in some cases (see [23]).

12



o 20 a0 60 80 100 120 x 140 o 20 0 60 80 100 120 140

o 20 0 60 80 100 120 x 140 o 20 0 60 80 100 120 x 140

x 140 o 20 40 60 80 100 120 x 140

0 20 a0 60 80 100 120, 140

Figure 2: Evolution of the sections at times ¢ = 2, 4, 6, 8, 10 for NLS with multi-

plicative noise (left) and with additive noise (right), (0 = 1, e = 0.03).
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Figure 3: Evolution of the sections at times 7" = 2, 4, 6, 8, 10 for NLS with
multiplicative noise (left) and additive noise (right), (o = 3, € = 0.05).
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Figure 4: Evolution of the sections at times ¢ = 2, 4, 6, 8, 10 for NLS with multi-
plicative noise with Dirichlet boundary conditions on [0, 14] (left) and [0, 18] (right)

oc=1€=005 h=0.1).
2
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Figure 5: Evolution of the sections at times ¢ = 2, 4, 6, 8, 10 for NLS with multi-
plicative noise with Dirichlet (left) and periodic (right) boundary conditions (o = 3,
e = 0.03).
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Figure 6: Average sections at 7' = % for NLS with multiplicative (left) and additive
(right) noise, (o0 = %, € = 0.05;0.025).

Figure 7: Comparison of the final section of < |u(t,z)| > at different times for NLS with
multiplicative (left) and additive (right) noise , (o = 3, € = 0.03).

We also see that < |u| > does not vanish near the boundary. In fact, < |u| > is
constant outside the region where the wave is localized. This constant increases with
e and reflects the averaged amplitude of the background noise. If the amplitude of
the average | < u > | is computed instead of the average of the amplitude, < |u| >,
we see on figure 8 that | < u > | vanishes outside the solitary wave profile. This is
due to the fact that the background noise has zero average. Except for this point,
the two quantities behave similarly.
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12 14

Figure 8: Comparison of the final section of < |u(t,z)| > or | < u(t,z) > | at time T'=5
and T = 8 for NLS with multiplicative (left) and additive (right) noise , (¢ = 3, € = 0.05).

We have seen that the maximum of the averaged amplitude decreases in both
the multiplicative and additive case. We now investigate in more details this quantity
maxgep E(|u(t, z)|) and compare it to the average of the maximum E(max ¢ p |u(t, z)|).

Figure 9 displays the evolution of these quantities as well as E(|u(t, x.)|), =,
being the center of the domain. A first observation is that max,ep E(|u(t, z)|) and
E(|u(t, z.)|) are very close and we deduce that E(|u(t, x.)|) is a very good approxima-
tion of max,ep E(|u(t, x)|). This is important since max,ep E(|u(t, z)|) is naturally
approximated by maxy ; < |u(t, zy ;)| > where z; ; are the grid points and the com-
putation of this quantity requires to save |u(t,zy ;)| for all points zj ; and for each
time and for each trajectory. Thus, a lot of memory storage is necessary. In the
following we often show the evolution of E(|u(, z.)|) which is cheaper to compute.

Also, we see that max,ep E(|u(t, 2)|) monotonically decreases. On the contrary,
E(max,¢cp |u(t,z)|) increases first on a small interval of time and then decreases for
multiplicative noise and monotonically increases for additive noise. A possible ex-
planation is that the noise has two effects: it injects energy and induces a damping.
At the beginning, the injection of energy dominates because the damping mecha-
nism is not settled. Then, after some time, the situation changes and the damping
dominates in the multiplicative case. However, in the additive case, the damping is
too weak and cannot counterbalance the injection of energy.
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The injection of energy cannot be seen on E(|u(t, z..)|), or on max,¢p E(|u(t, x)|),
because it is injected at points which are random. When a point is fixed, the energy
is injected there for very few trajectories so that it has no influence on the average.
This explains why we obtain decreasing curves which only reflect the damping effect.
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N . . . . . . . .
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Figure 9: Evolutions of Elmax |u(t, z)|], maxE|u(t, z)| and < |u(t,z.)| > for NLS
with multiplicative (left) and additive (right) noise , (o = 3, € = 0.03, 0.05).

In [15, 16, 28, 23], the decrease of max,cp E(|u(t,z)|) is referred as ”soliton
diffusion” and it is shown that for intermediate time it behaves like =7 where
does not depend on the noise level. In our two dimensional simulations, we have not
been able to fit the observed decrease with ¢77.

3.2 Stationary solution in the critical case

We now consider the critical case ¢ = 1. Due to instability, in the deterministic case
the solution is stationary with a good precision only on a quarter period, "= 7/2.
The solution amplitude is numerically constant with a relative precision of 1072 on
that interval, see figure 10. Afterwards instability effects dominate and the amplitude
increases. Since, in this Section, we do not want to mix noise effects and instability,
our simulations will be performed on this time interval [0, 7/2].
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Figure 10: Initial Surface (left) and surface solution of deterministic NLS at 7" = 7 /2
(right), (0 =1, € = 0).

The computational parameters are the following: the space domain is 0 =
10, 10[x]0, 10[, with a grid 140 x 140 and the number of time iterations is 314 with
8t = 5.1073, corresponding to the final time limit close to 7.

We first investigate the additive and multiplicative noise effect on a single tra-
jectory. Figures 11 and 12 show the profile at T = 7/2 with two different noise
levels. The behavior is very similar to the subcritical case.
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Figure 11: Surfaces solutions of stochastic NLS at T' = 7 /2 for multiplicative noise
(left) and additive noise (right) (o =1, e = 0.025).
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Figure 12: Surfaces solutions of stochastic NLS at T' = 7 /2 for multiplicative noise
(left) and additive noise (right) (o =1, e = 0.05).

In figure 13, we show the section across the x axis of the averaged amplitude
< |u| > after a quarter period. The shape of the solitary wave is again well conserved,
even with a very high noise level such as e = 0.05. The paths in this case are really
chaotic, see figure 12, but the averaged profile is a smooth curve.

The damping effect of the multiplicative noise is confirmed and it is clearly
amplified when the level of noise is increased. On the contrary, the additive noise
does not seem to have a significant effect here.

25 25

2F noise=0.01 B

noise=0.025

noise=0.05

Figure 13: Sections of < |u| > at T = 7/2 for NLS with multiplicative noise (o = 1,
e = 0.05, 0.025, 0.01) on the left and additive noise (¢ = 1, € = 0.05) on the right.

In figure 14, we show the evolution of E(max,cp |u(t,x)|), the expectation of
the maximum amplitude, for various levels of multiplicative noise and compare it
to E(|u(t, z.)|) for € = 0.025 - recall that E(|u(t, z.)|) is a very good approximation
of max,ep E(Ju(t, z)|). We see that again E(|u(t, z.)|) monotonically decreases and
E(max,ep |u(t, z)|) increases first on a small interval of time. Thus the mechanism
described above seems to work also in the critical case.
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Figure 14: Evolution of the approximation of E[max,cp |u(t,z)|] (left, e =
0.05, 0.025, 0.01) and E[max,ep |u(t, z)|] and Elu(t, z.)| (right, € = 0.025) for NLS
with multiplicative noise (o = 1).

In figure 14, we see that, for an additive noise, no damping can be detected
on the evolution of E(|u(t, z.)|). It may be too weak and a more precise simulation
should be performed to see if it still exists.

2.6 T T T T T T T 25

noise=0.05 noise=0.05

Figure 15: Evolution of the approximation of Elmax ¢ p (u(t, z)|] (left) and E|u(t, z. )|
(right) for NLS with additive noise, (0 =1, € = 0.05).

3.3 Comparison of the damping effects with a diffusion

We have seen that a noise has a tendency to damp the solution. In the probabilistic
vocabulary, the solution of a stochastic equation is also called a diffusion. This is
related to the fact that the probability density evolves according to a parabolic
equation. Thus this meaning of the word diffusion is totally different to what a
diffusive term in an equation means. If we add such a diffusion to the NLS equation,
we obtain the so-called complex Ginzburg-Landau equation (CGL). We intend now
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to see if the damping due to the multiplicative noise is comparable to the damping
due to a diffusive term. In other words, we compare the solutions of the NLS equation
in the multiplicative case and the CGL equation,

)
6—1‘ (D) A+ (v — D|u*u =0, (10)

where y and v are small nonnegative parameters.

JAN
R

b PP

) )

Figure 16: Comparison of the evolution of the sections of the solution for CGL
(1 = v = 0.055, left column) and NLS with multiplicative noise (¢ = 0.05): section
of | < u > | (center column) and section of < |u| > (right column), for ¢t =0, t =
2, t=4,t=6,1t=8 t=9 (o =1).



We compute solutions of (10) starting from the same Cauchy data as the one
taken in stochastic simulations of NLS. We have chosen the various parameters , u,
v, €, so that the solution are as close as possible. The profiles of the CGL solution
and of one path of the stochastic NLS with multiplicative noise at different times are
shown in figure 16. The evolutions are very similar and the two effects could easily be
confused. The superposition of the CGL and stochastic profiles in figure 17 is really
amazing. We insist however that the two perturbations of NLS are mathematically
completely different even if it seems difficult to see the difference on the solution
behavior.

25

15F 9
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0 I I I I
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Figure 17: Sections of < u > at t = 0 and £ = 6 for NLS with multiplicative noise
(e = 0.05) compared with CGL (x = v = 0.055).

Nevertheless, a slight difference can be seen on the evolution of the maximum
amplitude (see figure 18): in the case of the multiplicative noise, an inflection point
can be observed in the < |u(t, z.)| > evolution, whereas the evolution for the CGL
equation mimics a dissipative profile. This difference is related to the fact that the
stochastic NLS equation is conservative - the L? norm is conserved - whereas CGL
equation is dissipative - the L? norm decreases.
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Figure 18: Comparison of the evolution of the maximum of the solution for CGL
(b = v = 0.055) and < |u(t,x.)| > for NLS with multiplicative noise (¢ = 0.05),
(c=1,e=0/0.05 p=v =0, 0055 K=0).

4 Noise effect on the blow-up

4.1 The numerical study of singular solutions

As already mentioned, the computation of singular solution is delicate and requires a
careful treatment. In [3] and [4] - see also [7], [8] for the Korteweg-de Vries equation -
sharp criteria for refinement are derived. Let us first recall that it is absolutely
necessary to refine the grid when computing a singular solution for the deterministic
NLS equation. Indeed, the H} norm increases strongly whereas the L? norm remains
invariant. This is in contradiction with the well known inverse inequality

C
lull g < <-llullz2, (11)

valid for a discrete function u. Thus, if the grid is uniform, it is impossible to simulate
blow-up.

Figure 20 shows the computed solution with and without refinement in the case
of an initial data corresponding to a singular solution. Due to the inverse inequality,
the maximum norm cannot reach high values and oscillates on the fixed grid. On
the contrary, with refinement, the computed profile shows a singularity.

In the articles cited above, the refinement strategy is the following. The time
step is divided by 2 when the energy conservation fails and the spatial refinement
occurs when the inverse inequality is close to become false. This gives the following
algorithm:

C
if [|[Vu"||2 > ¢ EHUWHL then add points in the grid,

|H(u"*Y) — H(u")]

if
H (ur)]

> co then divide 0t by 2,
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where ¢; is a positive constant smaller than 1, C' is the constant in (11), and ¢
is a positive constant close to 0. These have to be chosen in order to optimize the
refinement algorithm. If ¢; and ¢y are small, the refinements are too frequent and
yields prohibitive computational costs. In the worst case, if the time step is refined
too often, the simulation cannot reach the blow-up time.

Moreover, a global space refinement would also need very long computational
time. We observe that the solutions we are interested in remain localized near the
center of the square and in order to improve our computations, we chose to refine
locally in space. Indeed, it is no use having a refined grid in spatial areas where the
solution is not singular. Since the singularity will always occur at the center of the
domain, we chose a refinement procedure which adds points only around the center.
Our refinement procedure consists in adding K points from the center to the left
and K points to the right in x and in y directions. The refined grid has the shape
of a centered cross. Figure 19 shows on the left the grid after the first refinement
and on the right the grid after the second one. All lines intersections in this figure
are nodes of computation. Another choice would be to add points only on a small
centered square, this method has the advantage to refine only where the singularity
appears and the refined grid has fewer points. However, the code would be much
more complex to implement and the matrix M of our scheme (see Section 2.3) would
loose its symmetry.

The refinement strategy described above cannot be applied with our scheme.
Indeed contrary to [3] and [4], the energy is exactly conserved in our case and it
cannot be used to decide when to refine. If the energy changes, this means that
our fixed point algorithm does not converge and it is in general already too late to
refine in time. Based on this observation, we have decided to refine in time when
iterations in the fixed point is larger then a prescribed value. This criterium of time
refinement gives good results in the deterministic case for NLS. Another advantage
is that the fixed point and conjugated gradient are efficient resulting in a quite fast
computation. Furthermore, this criterium is also available in the stochastic case or
for the complex Ginzburg-Landau. In these two cases, no invariant quantity such as
the energy exists. Concerning space refinement, we keep the criterium based on the
inverse inequality.

It has to be emphasized that the matrix conditioning becomes worse and worse
with the number of space refinement and the preconditioning is less and less efficient.

Another point is that, when the spatial grid is refined, it is necessary to choose
values for the solution at the new nodes. A first try was to use linear interpolation.
However, this produces a significant break in the evolution of the mass and energy.
We have used interpolation with second order polynomials in order to cure this
problem.

26



77777777777777777777777777777777777777777777777777777777777777777777777777777777777777

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777

Figure 19: The grid 10 x 10 after one refinement with K = 2 (left) and after the
second one (right).

The second solution shown in figure 20 has been computed with this strategy
with K = 20. We see that our code is able to compute singular solution in a very
efficient way. It is also important to make sure that the code is able to compute high
amplitude solutions which finally decrease after a strong focusing phase. This may
happen in the critical case for the complex Ginzburg-Landau equation. Indeed, it is
known that the solutions are global (see [17]) but, for x4 and v small, they are very
close to the NLS solutions. Consequently, for an initial data with negative energy,
we expect to see numerically a solution very close to the blowing up solution of NLS,
but which stays global in time.

Tests have been made in the critical case 0 = 1 with a Gaussian initial condition
uo(z,y) = ge (@D 4w-17) (12)

with ¢ = 3 so that it has a negative energy. We have taken p = v. The program
is supposed to stop when the amplitude of the solution is 5000 times higher than
the initial amplitude. The initial number of point in each direction is 140 and we
prescribed K = 20. The domain is the square [0, 14] x [0, 14]. When p = v = 1072
or = v = 1073, we indeed obtain a solution which first focuses. Then the diffusion
dominates and the amplitudes decreases. In the second case, we could believe from
the figure on the left that the solution is singular but the zoom on the right shows
that it is not not the case. For 4 = v = 10~* the amplitude of the solution goes over
the limit of 5000 ¢, and no stopping effect of the blow up was numerically established.
More severe refinement criteria would show that the solution is global. This shows
that one has to be very careful before concluding that a solution is singular ! In our
situation, we can only conclude that there is a threshold between p = v = 1073 and
10~* and below this threshold no global solution could be numerically seen although
we know it exists.
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Figure 20: Comparison of the evolution of the maximum of a blowing-up solution
for critical NLS with refinement (K = 20) and without refinement (K = 0).
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Figure 21: Amplitude profile of CGL solutions with negative initial energy for dif-
ferent p and v (p = v = 0.0001, 0.001, 0.01,0 =1, ¢ =3, e =0, K = 20).

We now turn our attention to the stochastic case. We believe that the deter-
ministic criteria are still good to capture a singular solution in the presence of noise.
Moreover, as shown in [15], refinement is also necessary to get a correct discretiza-
tion of a white noise. A noise discretized on a grid with a fixed mesh size cannot
be white. Its correlation length is of order of the mesh size. Since blow-up is a phe-
nomenon where all frequencies are important, a space correlated noise cannot have
a strong effect on this mechanism. If we want to understand the influence of a space
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time white noise on blow-up, it is necessary to have arbitrarily small space and time
step.

We encountered new difficulties in the stochastic case. First, we had to choose
a larger constant ¢;. Indeed, the H! norm increases due to the presence of noise and,
if ¢; is too small, this yields unnecessary spatial refinements.

Another problem appeared. As mentioned previously, the condition number of
the matrix is worse and worse with the number of refinements. In the presence of
noise the number of iterations in the conjugate gradient algorithm can reach very
high values, as opposed to the deterministic case. The reason is that, for deterministic
evolution problems, the solution is rather smooth in time and the conjugate gradient
is initialized with a vector close to the solution so that the convergence is very fast.
However, this is no more the case in the stochastic case where the solution is not
very smooth in time so that u"*' is often very different from «™ and the convergence
of the conjugate gradient may be very long. We have chosen to refine in time also in
this case, when the number of iterations in the conjugate gradient is too large. This
might be bad and lead to very long computations. However, we found that it was a
good solution and could always perform our simulations in a reasonable time.

4.2 Numerical simulations

All the simulations are done according to the algorithm described above on the
square [0, 14] x [0, 14] with a critical nonlinearity. We will start our study of blow-up
with the Gaussian initial condition (12), where ¢ is such that H(uy) is slightly nega-
tive or slightly positive but we know that the deterministic solution is singular. We
will also use the deterministic stationary wave as initial condition, due to instability
the deterministic numerical solution is also singular.

For ¢ = 3, the Gaussian initial data has negative energy. Figure 22 on the left
displays a path of the solution for two noise levels, ¢ = 0.1 and 0.05. The blow-up
is prevented with the high noise level whereas it still occurs for € = 0.05. However,
we believe that this is a numerical artefact and that in fact the stochastic solution
is not singular. Recalling the deterministic simulation on the complex Ginzburg-
Landau equation, we know that this is possible. An indication of that is that if we
do more and more refinement, i.e if we take ¢; smaller and smaller, the blow-up
is delayed, which means that our simulations have not converged. However, even
with very severe refinement criteria, we have not been able to establish that the
stochastic solution is global. Note that we tried several random draws and each time
we observed the same behavior.

We tried to see for which level level of noise we are able to establish that the
stochastic solution does not develop singularities. In figure 23, we see that up to
€ = 0.08 the blow-up is always prevented. With this noise level, the solution starts
to focus very strongly but the refinement algorithm works well, the noise is very
close to a space time white noise around the maximum and the blow-up does not
occur. Below this level, we have not been able to obtain this behavior.
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Figure 22: Profile of the solution amplitude of NLS with multiplicative noise (¢ =
0.05, 0.1) compared to the deterministic blow-up (left) and profile of the solution
amplitude of NLS with multiplicative noise (¢ = 0.05) for 3 different constants ¢,
(right) (0 = 1, Gaussian initial data (¢ = 3), K = 20).
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Figure 23: Profile of the solution amplitude of NLS with multiplicative noise with
various noise level.

We then choose the initial data (12) with ¢ = 2.8 that gives a blowing up
solution with a positive energy. In this case, the noise influence is easier to observe
since the deterministic blow-up is weaker. Our experiments have shown that collapse
is stopped when ¢ is larger than 2.10 2. Indeed for € = 3.10~2, which is quite small,
the blow-up is early stopped. In fact, there was not even one refinement in this case.
For € = 2.5.1072, the blow-up is stopped after a high peak of amplitude (see Figure
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24). In this latter case, the refinement method is necessary to observe the global
solution. Even for € = 2.0.102, the solution amplitude becomes very large but the
blow-up is still prevented. A focus on the solution near the singularity confirms that
the decreasing of the amplitude is not due to a numerical instability. We indeed see
in Figure 25 (right) that the computation is good and that there is a real damping
effect that occurs in a very short time scale. Under the critical level € = 2.1072, no
global solution could be seen numerically.
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Figure 24: Profile of solution amplitude of NLS with multiplicative noise for different
¢ (0 =1, Gaussian initial data with positive energy (¢ = 2.8), K = 0).
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Figure 25: Profile of solution amplitude of NLS with multiplicative noise (¢ = 0.02)
compared to the deterministic blow-up (left) and zoom around maximum intensity
for € = 0.02 (right). (0 = 1, Gaussian initial data with positive energy (¢ = 2.8),
K = 20).

Finally, we consider the stationary wave described in Section 3 as initial condi-
tion. The solution is not stable and numerically blows up after some time, see figure
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26 (left). In this case, the blow-up is very weak and easily prevented by the multi-
plicative noise, even if € is very small, see figures 26 and 27. Besides for ¢ > 6.107%,
no refinement procedure is necessary since the stationary wave is really early pre-
vented. Nevertheless, for € = 5.107%, a severe focusing happens and the local space
refinement, procedure is necessary to see the damping effects of the noise on the
blow-up. For smaller noise level, ¢ < 5.10~%, no global solution could be observed.
As in the previous cases, we cannot really conclude whether there is still a global
solution or not because our computation reaches its limit. However, we firmly be-
lieve that even if we cannot see it in the simulations for very small €, the solution is
always global with multiplicative white noise for any value of the noise level e.
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Figure 26: Evolution of the solution amplitude of NLS with multiplicative noise for
different € (0 = 1, stationnary state, K = 0).
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Figure 27: Evolution of the solution amplitude of NLS with multiplicative noise for
small ¢ compared to the deterministic solution (o = 1, stationary state, K = 0)
(left) and zoom of the solution amplitude for the critical value of e = 5.10~* (right).
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Figure 28: Final section of the solution for different € (critical Schrodinger unstable
stationnary state, 0 = 1, K = 0).

It is surprising that a very small noise can drastically change the solution be-
havior although it is difficult to detect. We can see on figure 29 the evolution of the
solution with the noise level ¢ = 6.10~*. The noise is not visible on the profile but
it is strong enough to prevent the blow-up. A closer look at the profile is shown in
figure 28. We see that, contrary to the case of larger values of e, it is very difficult
to detect the noise.

We conclude that with a small noise it is possible to have a propagation for a
much longer time compared to the deterministic case. However, due to the damp-
ing effect of the noise, the wave disappears progressively. If we consider that the
propagation is destroyed if the amplitude has been divided by two, we can compute
the life time of the wave as a function of the noise level. The corresponding curve
is shown in figure 30. We can see that, above a very small limit, the smaller € is,
the longer the life time of the wave is. Table 1 shows that the L? norm is very
weakly dissipated. Thus, the blow-up is really prevented by the noise and not by
the numerical dissipation of the scheme.

Time 0 2 4 6 8 10 12 14 16

L? norm | 11.7 | 11.68 | 11.66 | 11.64 | 11.6 | 11.57 | 11.54 | 11.5 | 11.48

Table 1: Evolution of the L? norm for ¢ = 6.10~%.
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Figure 29: Evolution of the sections of the stationary unstable solutions in the critical
case with multiplicative noise (¢ = 0.006), from T"=0 to T = 17.
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Figure 30: The stationary wave life time with respect to e.
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