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A common mechanism for intracellular transport is the use of controlled deformations of the
membrane to create spherical or tubular buds. While the basic physical properties of homogeneous
membranes are relatively well-known, the effects of inhomogeneities within membranes are very much
an active field of study. Membrane domains enriched in certain lipids in particular are attracting
much attention, and in this Letter we investigate the effect of such domains on the shape and fate
of membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can
trigger tube fission, and we demonstrate how this can be understood purely from the difference in
elastic constants between the domains. Moreover, the proposed model predicts timescales for fission
that agree well with experimental findings.

PACS numbers: 87.16.Dg , 87.16.Ac , 68.03.Cd , 68.47.Pe

Internal organization is one of the most intriguing as-
pects of the cell. Living cells have to actively maintain
gradients of all sorts. Compartmentalization and traf-
ficking aid it in doing so, and both processes extensively
use membranes. Not only are the various organelles in
eukaryotic cells surrounded by membranes, but the ba-
sic intermediates in the intracellular transport pathways
as well are membrane structures such as tubes and vesi-
cles [1]. The generation and properties of these struc-
tures have been extensively studied, and much is already
known about their biology, biochemistry [2] and their
biophysics [3, 4]. The emerging view is that the shape
of the bilayer membrane in vivo is controlled not only by
embedded and associated proteins [5] but also to a large
extent by the mechanical properties of the bilayer itself
[3]. For tubular structures in particular, mechanical ef-
fects play a major role: recent biomimetic experiments [4]
have shown that kinesin motors walking on microtubules
can exert pulling forces on the membrane and prompt
the formation of membrane tubes that resemble tubules
identified in living cells.

The existence of small membrane domains with a lipid
composition that is markedly different from that of the
rest of the membrane (sometimes referred to as ”rafts”
although considerable debate remains as to their precise
interpretation) appears to be another key element of in-
tracellular vesicular traffic [6, 7]. The domain structure
of heterogeneous membranes has been also implicated in
a multitude of cellular processes [7]. The heterogeneity
in membrane composition can be attributed to a phase
transition leading to a local segregation between the var-
ious lipids and proteins constituting the membrane [8].
Sphingolipid domains in particular have been shown to
be more structured than a classical liquid membrane due
to specific interactions between their constituents [1], and
under appropriate conditions tend to aggregate into so-
called liquid-ordered domains. As a consequence, these

FIG. 1: Breakage of a heterogeneous membrane tube. [15].
Fission events occur at the sites of formation of small domains
resulting from phase separation. The time between two con-
secutive pictures is one second. Scale bar, 10 µm.

domains are mechanically different from the rest of the
bilayer. Recently, an experimental model system of vesi-
cles including “raft-like domains” has been developed [9];
it provides an elegant and efficient tool to study their
properties in a more controlled way than in vivo. This
procedure allows for systematic studies on the effects of
membrane composition [11], temperature changes [8] and
proteins absorption on the domain [12].

The physics of membrane tube formation from ho-
mogeneous vesicles has been studied both theoretically
[13, 16] and experimentally [14]. Recent experiments by
one of us [15] study the interplay between lipid domains
and the behavior of tubes, by pulling tubes from hetero-
geneous model membranes. Fig. 1 illustrates one of the
suprising conclusions of these experiments - a sequence of
snapshots taken at regular intervals (one second between
two pictures) show an initially homogeneous tube that
first undergoes phase separation (triggered experimen-
tally by photoinduced oxydization of cholesterol), and,
after passage of a certain amount of time, ruptures pre-
cisely at the phase boundary and disconnects. The two
lipid phases are easily distinguished, once separation has
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occured, by the use of a fluorescent marker that preferen-
tially sits in the liquid-disordered domains. Furthermore,
the same experiments show that fission events such as
these happen only in the phase separated tubes - tubes
in which the lipids are mixed are essentially stable indef-
initely.

Statement of problem and summary. In this Letter,
we address the dramatic loss of stability following phase
separation from a mechanical point of view. To this end,
we extend the theoretical models developed for homoge-
neous tubes [16] to study the junction between two dis-
tinct phases, each of which far away from the junction has
a tubular shape. Experiments suggest that phase separa-
tion occurs on a much faster timescale than fission, and
that the nucleation of the two phases leads to the for-
mation of cylindrical domains between a more rigid and
a less rigid phase. We therefore choose not to model
the phase separation process [17]. The tube radii and
the junction length are generally small compared to the
length of each phase domain. In order to minimize the
interfacial energy between adjacent domains, the inter-
face rapidly becomes a circle perpendicular to the tube
direction. The coarsening stage of the phase separation
process proceeds very slowly to eventually form two ho-
mogeneous phases in equilibrium, but in practice this
slow relaxation is always preempted by tube fission. The
experiments show that (at least to within optical reso-
lution) tube fission occurs at the interface between two
domains.

We assume here that the tube and junctions are axi-
symmetric with respect to the direction along which the
tube is pulled (the z axis). We consider one junction at
the interface between two semi-infinite tubes each con-
sisting exclusively of one of the phases. Finite-size ef-
fects associated with the limited size of individual do-
mains, while possibly relevant, fall outside the scope of
the present paper. The small radius of the tubes (about
10 nm) do not allow a quantitative determination of the
shape of the junctions [15], and for this reason we restrict
ourselves to a minimal model which emphasizes the roles
of the most relevant physical parameters. We show that
tube fission can be driven either by the line tension or
by the jump of the elastic coefficients at the interface be-
tween the two phases, and we compare the two processes
that undoubtedly both contribute in the experimental
situation.

Model. We use an elastic membrane free energy as
introduced by Canham and Helfrich [18], and numerically
determine equilibrium junction shapes. Fig. 2 gives a
schematic representation of the tube and the coordinate
system used in the following.

Our axisymmetric surface is parametrized by the arc
length s along the contour and described by the local
tube radius r(s) and the angle ψ(s). They are related by
the geometric relations ṙ = cosψ (dots denote derivatives
with respect to s). The interface is located at z = s = 0.
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FIG. 2: Schematic representation of the junction.

The free energy of the system is obtained by extending
the description of tubular membranes [16] to the specific
case of a biphasic tube [19, 20] as follows:

F =
∑

i=α,β

∫

Ωi

[

2κiH
2+κ

(i)
G K+ σi

]

dS+

∮

∂Ω

τ dℓ−

∫

f dz. (1)

The two phases are denoted by α and β, and for each
phase i the free energy is integrated over its membrane

area Ωi. The κi and κ
(i)
G are the bending- and Gaus-

sian rigidities of the respective phases. This free energy
includes the bending energy to lowest order in the princi-
pal curvatures, where H is the mean curvature and K the
Gaussian curvature. The two layers of the membrane are
assumed to be symmetric - both phases contain choles-
terol molecules which have a high flip-flop rate. Any
stress due to area differences between the leaflets or to
an asymmetry of the layers is thus quickly relaxed. Fi-
nally, we include a surface tension term (represented by
σi) associated with undulation fluctuations of the bilayer
[21]. We take our tube to be infinite, and effectively as-
sume the presence of a lipid reservoir. This ensures a
constant surface tension in each of the phases.

The interface between the two phases is described by a

jump in the values of the bending rigidities κi, κ
(i)
G and in

the surface tension σi and by a positive line tension τ at
the interface ∂Ω. The last term in the free energy is the
work performed by the external force f needed to pull
the tube. We neglect the small effect of pressure [13].

The variational derivation of the shape equations of
the surface has been detailed elsewhere [22], and yields

...

ψ = −

.

ψ3

2
−

2 cosψ

r

..

ψ+
3 sinψ

2r

.

ψ2 +
3 cos2 ψ − 1

2r2

.

ψ

−
cos2 ψ + 1

2r3
sinψ +

σ

κ

.

ψ+
σ

κ

sinψ

r
(2)

Far away from the junction, we recover homogeneous
cylindrical tubes with constant ψ = π/2 and radius
Ri = (κi/2σi)

1/2. Mechanical equilibrium implies that
the forces at both extremities are equal and that f =
2π(2σiκi)

1/2, which imposes a relationship between the
surface tensions and the bending rigidities. σα/σβ =
κβ/κα. This implies: κβ/κα = Rβ/Rα.
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FIG. 3: Numerical shapes of the junction for various line tensions and differences of elastic rigidities in dimensionless units.
The length scale is the radius of phase α (Rα = 1), the energy scale is the bending rigidity of phase α: κα = 1. (a): shapes
for various ratio of bending rigidities. The line tension vanishes (τ = 0) and the Gaussian rigidities are equal (∆κG = 0). The
values of κβ/κα are 1.25, 1.5, 1.75, and 2.0 (b): shapes for various line tension. The elastic rigidities are equal: ∆κG = 0 and
κα = κβ . The values of the line tension are τ = 0.5, 1.0, 1.5 and 2.0. (c): shapes for various differences of Gaussian rigidities.
The line tension vanishes (τ = 0) and the bending rigidities are equals (κα = κβ). The values of the difference of Gaussian

rigidities are : ∆κG = κβ

G − κα
G = −1.0, 1.0, 2.0 and 4.0.

The mismatch between physical constants such as the
bending rigidities appears only in the boundary condi-
tions and strongly affects the interface shape. At the
interface (s = 0), four boundary conditions must be sat-
isfied. The two first conditions are the continuity of the
radius r(s) and the angle ψ(s) [19]; two additional con-
ditions stem from the variational procedure and relate
the first and the second derivatives of the angle ψ on
each side of the interface to the values of r, ψ, κα, κβ,

∆κG = κβ
G − κα

G and τ .

Results. Fig. 3 illustrates the different effects that line
tension and differences in elastic rigidities individually
have on the two-phase tube. The first possible discon-
tinuity at the junction is a jump in bending rigidities
(Fig. 3(a)). The ratio of the bending rigidities in the
two phases κ = κβ/κα fixes the ratio of the radii away
from the junction and of the surface tensions in the two
phases. In the absence of both line tension and jump
in Gaussian rigidity, the radius decreases smoothly from
the values of the more rigid phase to the value in the less
rigid phase, but with a remarkable structural feature - a
small plateau (i.e. a membrane region with a horizontal
tangent) occurs around the junction.

When line tension dominates (Fig. 3(b)), the radius at
the interface decreases with increasing line tension. It
eventually vanishes for a very large line tension. Note
that the continuum description that we use breaks down
at scales comparable to the bilayer width. Despite the
fact that the radius goes to zero the mean curvature re-
mains finite; in the highly pinched limit a saddle point
develops at the neck which keeps the total curvature en-
ergy finite.

When the discontinuity in Gaussian rigidities domi-
nates (Fig. 3(b)), numerical evidence suggests that the
neck radius does not decrease all the way down to zero.
Moroever, stability arguments given below impose a
bound on the maximum absolute value of ∆κG. The
neck radius has then a minimal value. However, the

presence of the neck favors the breaking process. In this
case, fission does not occur exactly at the interface but
at the neck. One thus expects to find, after fission, a
small patch of one phase still attached to the other phase.
Since details at the length scale of the neck itself cannot
be resolved experimentally, this effect might be relevant
to determine the dominant fission mechanism.

Discussion. We expect that for general experimental
conditions, all three effects are superimposed at the junc-
tion. A quantitative analysis of the shape profile in order
to extract the various parameters is then difficult, espe-
cially as little to nothing is experimentally known about
the precise shape of the junction. Typical values of the
bending rigidity of liquid bilayers are around 20 kBT , and
the rigidity of the liquid ordered phases can be up to
several times higher. Recently, the bending modulus of
a heterogeneous vesicle has been obtained by compar-
ing the experimental shape to numerical solutions of the

shape equations [23]. The Gaussian rigidity κ
(i)
G is dif-

ficult to measure experimentally and no value seems to
be available. Stability arguments for a flat membrane

impose that −2κi < κ
(i)
G < 0.

The equilibrium free energy of the tube can be calcu-
lated from Eq.(1) and allows a discussion of the stability
of the tube and of its fission. We show in Fig. 4 the free
energy of a tube as a function of the dimensionless radius
at the neck rneck/R0 in the specific case of κα = κβ and

κα
G = κβ

G. The energy is maximal for a vanishing radius:
the bending is maximal. Fission of the tube by pinching
requires to cross this energy. Thus, we use hereafter this
energy as a potentiel barrier. The free energy of the rup-
tured tube is also shown on the figure. It is lower than
the top of the barrier by the contribution of the Gaussian
curvature due to the change in topology upon rupture,
which equals 4πκG. It corresponds to a transient shape
since the tubes will retract into two spheres.

In the absence of line tension the tube is uniform
r(z) = R0 and its energy is zero, and a homogenous tube
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FIG. 4: Schematic energetics of fission. The solid curve plots
the free energy of a tube pinched by line tension as a function
of the dimensionless neck radius. Every equilibrium radius
r⋆ has a corresponding energy E(r⋆) which defines in turn an
energy barrier for fission Egap and a free energy gain upon
fission ∆F . For clarity, this figure assumes identical elastic
rigidities on both sides.

is thus thermodynamically stable only if the free energy
of the ruptured tube is positive. Numerically, we have
determined this stability limit as κG > −1.29κ.

The values of the parameters are finite and then fix the
value of rneck/R0. The energy barrier against fission by
pinching is also evaluated from this macroscopic model.
This is however only a lower bound to the real energy
barrier as it ignores molecular effects when the neck is
very thin. To compare our results to the experiments, we
have computed the various energies at realistic parame-
ter values. Choosing bending rigidities of κα = 48 kBT =
2 · 10−19 J, κβ = 120 kBT = 5 · 10−19 J, Gaussian rigi-

ties of κα
G = −24 kBT = −1 · 10−19 J, κβ

G = −60 kBT =
−2.5 · 10−19 J, a surface tension of 1.5 · 10−5 N/m in the
phase α and of 6.2 · 10−6 N/m in the phase β, and a
line tension of 2.7 · 10−11 N, we have determined the
height of the energy barrier to be Egap = 12.8 kBT .
If we assume that fission is a thermally activated pro-
cess [24], the average time until fission tb occurs will be
tb = t0 exp Egap/kBT . Using a hydrodynamic argument,
we estimate the basic time scale as t0 = ηR3

α/κα, where
η is the viscosity of water. For the parameter values
cited above this yields a timescale t0 ≈ 2.57 · 10−6 s. We
thus expect the experimental time until fission to be ap-
proximately 900 ms. This is in good agreement with the
experimentally observed typical time for fission, which is
around 1000 ms.

Conclusion. We have studied the behavior of a multi-
phase membrane tube using thermodynamic arguments.
The shape of the junction between two domains depends
of three physical constants: the line tension of the inter-
face and the jumps in elastical constants. While experi-

mental precision is not yet at a level where these results
can be compared directly to our calculated tube shapes,
we have focus on the breaking time of two phases tubes.
Our modelling, based on an energetic approach, predicts
a strong dependence of the fission dynamics on the elas-
tic properties of the phases with a good agreement to the
experimental datas.
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