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Abstract

Boercker and Dufty (BD) introduce a binary collision approximation into

the BBGKY hierarchy in order to describe the low-density behaviour of a

quantum gas. Their approach involves the three-particle reduced density op-

erator being approximated in a particular manner that favours correlation

between two of the particles, while ignoring the correlation with the third.

The tradition of previous derivations, on the other hand, has been to ne-

glect the three-particle term altogether and assume a generalized form of

Boltzmann’s Stosszahlansatz. Both formalisms reach the same final result:

the Waldmann-Snider equation (WS), a quantum version of the Boltzmann

equation. We compare the two derivations in two ways: (a) by finding iter-

ated series solutions of the BBGKY hierarchy and of the Boltzmann equa-

tion, which demonstrates what kind of terms are absent in the WS and BD

approaches in comparison with exact dynamics; (b) by computing an exact
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correction to the WS equation, which vanishes in the BD scheme provided the

mean time of duration of a collision is much shorter than the mean free time

between collisions. This correction is shown to be related to the standard

three-body collision integral arising in the theory of the density corrections to

the Boltzmann equation. We also comment on the related work of Klimon-

tovich, who introduces an approximation analogous to that of Boercker and

Dufty.
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I. Introduction

Modern “derivations” of the Boltzmann equation and its generalizations

are based either on the BBGKY hierarchy1−4 or the Green’s function method

of Kadanoff and Baym5. In all cases some closure approximation is required.

Most approaches using the BBGKY hierarchy now refer to the Bogoliubov1

functional assumption which, in quantum terms, states that all reduced den-

sity operators depend on time only via their functional dependence on the

singlet density operator. The Green’s function approach depends on making

an appropriate assumption about the form of the self-energy. The present

work is aimed at clarifying the assumptions that are needed to obtain the

Boltzmann equation by closing the BBGKY hierarchy without elaborating

about its generalization to higher density. It is found that for realistic (soft)

potentials the requirement that only isolated binary collisions occur depends

crucially on taking the asymptotic time limit of each binary transition su-

peroperator wherever it occurs. This requirement appears little discussed in

most discussions about the nature of the Boltzmann equation.

There seems to be three distinct approaches to closing the BBGKY hi-

erarchy. The simplest is to follow Boltzmann’s classic approach6 and in-

troduce a molecular chaos assumption for the pair density operator. Born

and Green2 and Kirkwood3 followed this procedure classically, with differ-

ing rationales for its validity, while Snider7 followed this approach to include

the quantum treatment of degenerate internal states. Boercker and Dufty8

(BD) introduce a “binary collision approximation” that involves a factoriza-

tion of the three-particle density operator in such a manner that, formally,

only pairs of particles are correlated and interact in the second BBGKY

equation, that is, the equation for the pair density operator. For quantum
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systems and restricted to Boltzmann statistics, their approach also results in

the Waldmann-Snider (WS) equation9,7. The third method, carried out by

Cohen10 and M.S. Green11, depends on comparing the dynamics of a (clas-

sical) reduced distribution function for s particles with that of an isolated

set of s particles, essentially expanding the dynamics of one in terms of the

other. Green11 also discusses resumming the expansion so that at arbitrary

times during the evolution of the gas, the singlet distribution functions that

weight the probability for a particular collision are those associated with

particles that have suffered many past collisions. None of these methods are

mathematically rigorous and thus all are subject to criticism. Lanford12 has

made a concerted effort to rigorously derive the Boltzmann equation from

the BBGKY hierarchy, but for rigid sphere systems he could only show that

the solution of the Boltzmann equation and the evolution of the singlet as

deduced from the Liouville equation was valid for times up to a fraction of

the mean free time.

The present work was initially motivated by a preprint by Dufty and

Kim13 in which they claimed that they had a kinetic equation that “extends

the familiar Waldmann-Snider equation to arbitrary length and time scales”.

Their method is based on the Boercker-Dufty8 “binary collision approxi-

mation” of the BBGKY hierarchy1−4, restricted to the case of Boltzmann

statistics. It was in trying to understand the logic behind the BD approach

and questioning the validity of their statement that the time integrated form

for the singlet density operator as predicted by the exact BBGKY hierarchy

was examined and compared to the corresponding equation deduced from the

Boltzmann equation. While such expansions are well known and the basis of

the work of Cohen10 and Green11, the present emphasis is different, aimed at

a comparison of form rather than attempting to deduce one from the other.
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The differences also emphasize the nature of the assumptions arising in “de-

riving” the Boltzmann equation from the BBGKY hierarchy following the

molecular chaos and Boercker-Dufty approaches.

The organization of the paper is as follows: Section II provides differential

and integral forms for the BBGKY hierarchy. These are useful for comparison

with the formulas obtained via the various binary collision approximations.

An iteration of the time integrated BBGKY hierarchy to yield a formal series

solution for the singlet density operator is central to later discussions.

The original derivations of Snider and of BD are examined in Sec. III

and a review given of how BD are able to eliminate the two-body density

operator and arrive at the WS equation. We note that both derivations

involve further approximations, specifically that 1) a certain infinite time

limit of the transition superoperator is taken, and 2) the singlet density

operator evolves freely between (binary) collisions. Attention is drawn to

these added approximations to emphasize that they are also crucial to the

derivation of the Boltzmann equation.

In Sec. IV, we contrast the first few terms of an infinite series solution

of the Boltzmann equation, obtained by iteration, with the corresponding

iterative solution of the BBGKY hierarchy. We see from this what kinds of

terms the Boltzmann equation has neglected in comparison with the exact

evolution of the system.

Next, in Sec. V, we compute an additive correction to the WS collision

integral. Since this involves three particle contributions to the rate of change

for the singlet density operator, the usual approach to deriving the Boltz-

mann equation using the Stosszahlansatz states that such contributions are

to be ignored. Within the BD approximation, the correction is shown to

vanish if the BD approximation is used in its evaluation, provided the infi-
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nite time limit of the transition superoperators are also taken. This shows,

in particular, that the BD approach is a consistent method of deriving the

Boltzmann equation. The correction to the WS equation is examined in

more detail and to leading order in density it is shown that it is just the

standard three-particle collision operator that is found10,14−16 in discussions

of the density corrections to the Boltzmann equation. It is also related to

the terms found to be “missing” in the iterated solution of the Boltzmann

equation when compared to the series solution of the BBGKY hierarchy for

the one-body density operator.

Klimontovich17 also introduces a binary collision approximation which en-

tails a factorization of the three-particle distribution function (for a classical

mechanical system) that is very similar in structure to that of BD. The only

significant difference is that Klimontovich separates off uncorrelated contri-

butions to the pair and triple distribution functions before carrying out his

binary collision approximation. Thus his factorization involves the correla-

tion functions rather than the full distribution functions. Since the formal

structure is the same classically and quantally, the comments on his work in

Sec. VI are given formally in a quantum language so that a comparison with

the Dufty-Boercker-Kim work can be made.

Finally in Sec.VII we summarize the differences between the nature of

the solutions of the Boltzmann equation and the BBGKY hierarchy. An

interpretation is proposed for rationalizing the physical content of the Boer-

cker Dufty binary collision approximation as well as to why and under what

constraints it leads to the Boltzmann equation.

II. Formal solutions to the BBGKY Hierarchy
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The BBGKY hierarchy1−4 constitute a set of coupled equations derived

from the quantum Liouville equation. For a quantum system of N particles

having Boltzmann statistics, the equations relating the one particle operator

f1, the two particle operator f12, etc. are
(

∂

∂t
+ L1

)

f1(t) = nTr2Θ12f12(t) (1)

(

∂

∂t
+ L12

)

f12(t) = nTr3 [Θ13 + Θ23] f123(t) (2)

(

∂

∂t
+ L123

)

f123(t) = nTr4

3
∑

j=1

Θj,4f1234(t) (3)

(

∂

∂t
+ L1...s

)

f1...s(t) = nTrs+1

s
∑

j=1

Θj,s+1f1...s+1(t) (4)

· · · · · ·
(

∂

∂t
+ L1...N

)

f1...N(t) = 0 (5)

Here L1...sA = i/h̄[H(1, ..., s), A]− is the Liouville superoperator for s parti-

cles and Θ12 = L1 + L2 − L12 is (−i/h̄) times the potential commutator for

particles labelled 1 and 2. For a single particle L1 will often be denoted K1

for the kinetic contribution to the particle’s evolution. A combination of free

particle Liouville superoperators will be denoted as K1...s = L1 + · · · + Ls.

There are several different normalizations that are in use; here we choose to

define the density operator f1...s(t), s < N , consistent with the notation of

Dufty and Kim13,

nsf1...s(t) =
N !

(N − s)!
Trs+1...N {ρ1...N (t)} (6)

with normalization Tr1...N {ρ1...N(t)} = 1 and particle density n = N/V hav-

ing N particles in volume V . The factorials introduced in Eq.(6) simplify
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Eqs.(1-5) by properly accounting for the number of possible particles that

can interact with a given set of s particles. It also implies that f1...s(t) is

normalized according to

Tr1...sf1...s(t) = V s
(

1 −
1

N

)

· · ·
(

1 −
s − 1

N

)

. (7)

As long as s ≪ N , this reduces to V s, but it is important to note that if N is

small, then the large N limit is not applicable and many results derived for

gaseous behaviour, that implicitly take the large N limit, are inapplicable to

few body systems.

It is, of course, well-known that only the equation for f1...N is closed so

that the exact time dependence of the system is determined completely by

that equation and only by that equation. It has been, and still is, the object

of considerable research to find approximate closed equations for the low-

order density operators, which in turn determine all the possibly measured

quantities of the system.

Eqs.(1)–(5) are first-order differential equations in the time, so that formal

solutions can be immediately written down, appropriate for initial data at

time t0:

f1(t) = e−L1(t−t0)f1(t0)

+nTr2

∫ t

t0
dt′e−L1(t−t′)Θ12f12(t

′) (8)

f12(t) = e−L12(t−t0)f12(t0)

+nTr3

∫ t

t0
dt′e−L12(t−t′) [Θ13 + Θ23] f123(t

′) (9)

f123(t) = e−L123(t−t0)f123(t0)

+nTr4

∫ t

t0
dt′e−L123(t−t′) [Θ14 + Θ24 + Θ34] f1234(t

′) (10)
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· · · · · ·

f1···s(t) = e−L1···s(t−t0)f1···s(t0)

+nTrs+1

∫ t

t0
dt′e−L1···s(t−t′)

s
∑

j=1

Θj,s+1f1···s+1(t
′) (11)

· · · · · ·

f1...N(t) = e−L1···N (t−t0)f1···N(t0). (12)

The integral equations for the different reduced density operators can be

combined. In particular, the integral equation for f1 depends on f12, which

is itself given by an integral equation in terms of f123. On inserting the f12

integral equation into that for f1 we find

f1(t) = e−L1(t−t0)f1(t0)

+nTr2

∫ t

t0
dt′e−L1(t−t′)Θ12e

−L12(t′−t0)f12(t0)

+n2Tr23

∫ t

t0
dt′
∫ t′

t0
dt′′e−L1(t−t′)Θ12e

−L12(t′−t′′)

× [Θ13 + Θ23] f123(t
′′). (13)

The differential form of Eq.(13), equivalently the direct substitution of Eq.(9)

into Eq.(1), provides a means of classifying how the singlet density operator

evolves, explicitly showing the role of free motion, pair interactions and three

(or more) particle effects
(

∂

∂t
+ L1

)

f1(t)

= nTr2Θ12e
−L12(t−t0)f12(t0)

+n2Tr23

∫ t

t0
dt′Θ12e

−L12(t−t′) [Θ13 + Θ23] f123(t
′). (14)

Eqs.(13) and (14) are exact results. The detailed nature of the term involving

f123 is not completely clear, since in general it includes the consequences of
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successive binary collision events and also the possibility of three (or more)

particle collisions [by which is meant that all three particles are simultane-

ously interacting]. Indeed an aspect of this article is to clarify what parts of

the exact evolution of the singlet are retained when solving the Boltzmann

equation, and which are dropped. For this purpose it is useful to consider

the structure of the series which arises from iterating the BBGKY hierarchy

to arbitrary order. The present treatment is limited to the explicit form

associated with keeping at most three-particle contributions.

Since the object of this article is to look at the relation between the

BBGKY hierarchy and the Boltzmann equation, which inherently assumes

that all gas properties are determined by the singlet density operator, it is

appropriate to require that the initial state of the gas at time t0 is completely

described by the singlet f(t0), which means that the N -particle density op-

erator is completely factorized, with the consequence that the lower ordered

density operators (s ≪ N) satisfy

f1...s(t0) =
s
∏

i=1

fi(t0). (15)

Note how this is inconsistent with Eq.(7) if s and N are of similar magnitude,

with the consequence that any equation deduced using Eq.(15) can only be

valid for large (N ≫ 1) systems. In the Boltzmann equation binary collision

effects are described by a pair transition superoperator T . This is the limit

of the time dependent T (t) superoperator (for particles 1 and 2) as

T12(t) ≡ Θ12e
−L12teK12t −→

t→∞

T12. (16)

(Note that, by its definition, T is not simply the commutator of the usual

T-matrix with what follows.) As a precursor to identifying the contribution

of a binary collision, the time dependent T (t) can be seen to arise naturally,
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so this association is stressed in the following. With these remarks, Eq.(13),

with Eq.(10) used to relate the three particle term to its value at t0, can be

rewritten as

f1(t) = e−L1(t−t0)f1(t0)

+nTr2

∫ t

t0
e−K12(t−t′)T12(t

′ − t0)e
−K12(t′−t0)f1(t0)f2(t0)dt′

+n2Tr23

∫ t

t0
dt′
∫ t′

t0
dt′′e−K123(t−t′)T12(t

′ − t′′)e−K123(t′−t′′)

×[Θ13 + Θ23]e
−L123(t′′−t0)f1(t0)f2(t0)f3(t0) + · · · (17)

It is emphasized that the use of the factorization at t0 implies that this ex-

pression is exact as far as three particle effects are concerned in that all terms

not explicitly displayed involve four or more particles. One interpretation of

this equation, truncated at the three particle term, would be that the system

has only three particles. This is technically not a reasonable interpretation

since the numerical factors for the various terms involving powers of the gas

density n are only valid if N is large, contrast the normalizations of Eq.(7)

and Eq.(15). The implication, for the three particle term, is that particle 1

has interacted with two other particles in the (N -particle) system between

the initial time “t0” and the present time “t”, but the two other particles

could be any pair of particles in the N particle system.

To make contact between the three particle terms in Eq.(17) and binary

collisions it is necessary to rewrite the evolution associated with L123 in terms

of the time dependent pair transition superoperator T (t). For this purpose

introduce X(t) ≡ e(L13+K2)te−L123t, which on differentiating and integrating,

can be written as the integral equation

e−L123t = e−(L13+K2)tX(t) = e−(L13+K2)(t−t0)e−L123t0
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+
∫ t

t0
dt′e−(L13+K2)(t−t′)[Θ12 + Θ23]e

−L123t′ . (18)

Inserting the definition of T (t) gives

Θ13e
−L123(t−t0) = T13(t − t0)e

−K123(t−t0)

+
∫ t

t0
dt′ T13(t − t′)e−K123(t−t′)[Θ12 + Θ23]e

−L123(t′−t0) (19)

whose first iteration yields

Θ13e
−L123(t−t0) = T13(t − t0)e

−K123(t−t0)

+
∫ t

t0
dt′T13(t − t′)e−K123(t−t′)[T12(t

′ − t0) + T23(t
′ − t0)]e

−K123(t′−t0)

+
∫ t

t0
dt′
∫ t′

t0
dt′′T13(t − t′)e−K123(t−t′)

[

T12(t
′ − t′′)e−K123(t′−t′′)(Θ13 + Θ23)

+ T23(t
′ − t′′)e−K123(t′−t′′)(Θ12 + Θ13)

]

e−L123(t′′−t0). (20)

It follows that the three particle contribution to f1(t) may be rewritten as

f1(t)|3 part. = n2Tr2,3

∫ t

t0
dt′
∫ t′

t0
dt′′e−K123(t−t′)T12(t

′ − t′′)e−K123(t′−t′′)

×[T13(t
′′ − t0) + T23(t

′′ − t0)]e
−K123(t′′−t0)f1(t0)f2(t0)f3(t0)

+ n2Tr23

∫ t

t0
dt′
∫ t′

t0
dt′′

∫ t′′

t0
dt′′′e−K123(t−t′)T12(t

′ − t′′)e−K123(t′−t′′)

×
{

T13(t
′′ − t′′′)e−K123(t′′−t′′′)[T12(t

′′′ − t0) + T23(t
′′′ − t0)]

+T23(t
′′ − t′′′)e−K123(t′′−t′′′)[T12(t

′′′ − t0) + T13(t
′′′ − t0)]

}

×e−K123(t′′′−t0)f1(t0)f2(t0)f3(t0)

+ n2Tr2,3

∫ t

t0
dt′
∫ t′

t0
dt′′

∫ t′′

t0
dt′′′

∫ t′′′

t0
dt4e

−K123(t−t′)T12(t
′ − t′′)e−K123(t′−t′′)

×
{

T13(t
′′ − t′′′)e−K123(t′′−t′′′)[T12(t

′′′ − t4)e
−K123(t′′′−t4)[Θ13 + Θ23]

+T23(t
′′′ − t4)e

−K123(t′′′−t4)[Θ12 + Θ13]]

+T23(t
′′ − t′′′)e−K123(t′′−t′′′)[T12(t

′′′ − t4)e
−K123(t′′′−t4)[Θ13 + Θ23]

+T13(t
′′′ − t4)e

−K123(t′′′−t4)[Θ12 + Θ23]]
}

×e−L123(t4−t0)f1(t0)f2(t0)f3(t0). (21)
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If each T (t) factor is interpreted as a binary collision, then the integral equa-

tion for e−L123t has introduced more binary collisions between the three par-

ticles. Further iteration leads to an infinite series of binary collisions. But

the structure of these terms shows that all but the first integral involves “rec-

ollisions” such as T12T13T12 or “collision cycles” such as T12T13T23. Actually,

only for the contribution involving at most three particles at a time, the

fourth binary collision must by necessity involve a recollision of at least one

of the pair of particles. The terms in Eq.(17) involving four or more particles

have an analogous structure.

Equation (21) and its further iteration, as well as the analogous expres-

sions involving more particles can be interpreted as a binary collision expan-

sion of the evolution superoperator. More correctly it is a binary transition

expansion valid whenever the interaction potential is pairwise additive. The

same type of expansion18, usually in energy representation (Fourier trans-

form of the time series used here and for wavefunctions rather than the den-

sity operators), is the basis of multiparticle collision theory, see for example

Newton19. In those applications one has in mind that all particles are within

the range (restricting the discussion to non-relativistic mechanics) of the in-

termolecular potential (assumed pairwise additive) of all other particles. For

the Boltzmann equation application that is to be discussed in this paper,

binary collisions are thought of as independent events involving at most two

particles within their range of interaction (this is what is referred to in the

following as an isolated collision). The restriction of Eq.(21) and its analogs

to include only isolated collisions is one of the main differences between the

iterated solution of the BBGKY hierarchy and the iterated solution of the

Boltzmann equation. Again, if the particles are considered to be classical

rigid spheres, then the collision is instantaneous and the above distinction is
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unnecessary. But for realistic potentials it is always an important question

as to whether the conditions are appropriate that collisions may be treated

as isolated. These topics are discussed further in Section IV.

III. The Quantum Boltzmann Equation

The essence of the Boltzmann equation is that it describes the evolution

of the one particle density operator for a dilute gas, which evolution is due

to the free motion of the particles and isolated binary collisions between the

particles. In this paper a quantum mechanical formalism is used but as far as

the statistical arguments are concerned, the classical mechanical treatment

is the same. Justification of the Boltzmann equation from first principles has

been, and still is, a major problem with strongly held differences in opinion

as to the validity of each treatment. The authors1−4 of the BBGKY hier-

archy were the first to make this attempt. Except for the Green’s function

approach described by Kadanoff and Baym5 (which involves a closure ansatz

for the self-energy, but will not be discussed further in this paper), all mod-

ern treatments are based on the BBGKY hierarchy. Bogoliubov’s functional

assumption1 has played a major role in many attempts10−17 to justify the

Boltzmann equation and to generalize it to higher density. While the details

of the various treatments differ, all discussions leading to the Boltzmann

equation must reduce to the inclusion of isolated binary collisions and free

motion of the particles between successive isolated binary collisions. Section

II has already discussed how the evolution of the singlet density operator as

rigorously deduced from the BBGKY hierarchy can be expressed in terms of

free motion and binary transition superoperators. But also stressed there,

is that this structure does not in itself imply that the collisions are isolated.
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Further conditions are required. At low density it is expected that the col-

lisions are isolated. Cohen10 expands in terms of independently evolving

clusters of particles to obtain and generalize the Boltzmann equation. M.S.

Green11 approaches the derivation of the Boltzmann equation in the same

manner but also discusses the problem of resummation of the series so that

the isolated binary collisions involve the (classical) distribution functions at

the time of collision, in contradistinction to treating collisions only during

the initial time interval. Lanford12 has made a concerted effort to mathemat-

ically justify the Boltzmann equation. He bases his argument on Grad’s20

limit, which interestingly takes the gas density to infinity rather than to zero

as would be expected as a low density limit, while the size of the particles

(rigid spheres) goes to zero in such a manner that the mean free path is finite

while the second virial coefficient vanishes. In spite of much effort, Lanford

is able to justify the Boltzmann equation only for times up to a fraction of

the mean free time.

The present paper addresses the relation between two approaches to the

“derivation” of the Boltzmann equation from the BBGKY hierarchy. Clearly

these approaches are non-rigorous and depend on certain assumptions about

the structure of the two and three particle density operators. Our interest

is in the properties of real molecular systems in which the presence of soft

intermolecular forces requires a clear understanding of how binary collisions

become isolated. In this regard the present treatment has greater complex-

ity than the oft discussed treatment of classical rigid spheres. A quantum

formulation is used for the presentation but as it is assumed that no bound

states are present, the formulation could be interpreted classically. The two

“derivations” are reviewed in this section. In the following section (IV) the

iterated solution of the Boltzmann equation is compared with the iterated
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solution of the BBGKY hierarchy with emphasis on their differences. Sec-

tion IV also discusses how the assumed forms for the two and three particle

density operators introduced in this section are consistent with the iterated

solution of the Boltzmann equation.

The Approach Using Molecular Chaos: Boltzmann’s original derivation

of the equation that bears his name involved certain assumptions about the

form of how (binary) collisions affect the evolution of the singlet (classical)

distribution function21. Key to his “Stosszahlansatz” is the assumption that

the two particles about to collide are statistically independent. It is this

molecular chaos assumption that has been used in the classic derivations1−3

of the Boltzmann equation from the BBGKY hierarchy and taken over in the

quantum case7 as well. The latter starts with the first BBGKY equation and,

consistent with the notion of an isolated binary collision, assumes that the

pair density operator that enters into this equation evolves during a collision

according to the two particle quantum Liouville equation, Eq.(2) without

the three particle term. On the basis that there is a time t1 before the

collision began and after each of the pair of particles has finished all previous

collisions, the first BBGKY equation can be approximated by

(

∂

∂t
+ L1

)

f1(t)

= nTr2Θ12e
−L12(t−t1)eK12(t−t1)e−K12(t−t1)f12(t1), (22)

where the factor e−K12(t−t1) and its inverse have been inserted before f12(t1)

in the last line. Note that t1 has a significantly different meaning from the

initial time t0. Following Boltzmann it is assumed that the two-particle

density operator factors at the time t1 before the pair of particles has started
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to interact (collide). This is written

f12(t1) = f1(t1)f2(t1) (23)

which, together with Eqs.(16) and (22) gives

(

∂

∂t
+ L1

)

f1(t) = nTr2T12(t − t1)e
−K12(t−t1)f1(t1)f2(t1). (24)

Eq.(8) shows how the one-body distribution evolves in time. Eliminating the

possibility that either particle of the pair {12} interact with a third particle,

so that the pair interaction is a truly binary collision event, we may write

f1(t) = e−L1(t−t1)f1(t1) for the purpose of substitution back into Eq.(24);

this gives the quantum Boltzmann equation except for a time dependent

transition superoperator

(

∂

∂t
+ L1

)

f1(t) = nTr2T12(t − t1)f1(t)f2(t). (25)

Finally, in the limit that t − t1 is much larger than the duration of a colli-

sion, T12(t − t1) can be replaced by its infinite time limit T12, the transition

superoperator, to give the quantum Boltzmann equation

(

∂

∂t
+ L1

)

f1(t) = nTr2T12f1(t)f2(t). (26)

In review, this derivation has involved four separate steps: (a) dropping

the three particle term in Eq.(14), applied for t0 replaced by t1; (b) the as-

sumption of molecular chaos, Eq.(23), which allows one to write f12(t1) =

f1(t1)f2(t1); (c) the replacement of e−L1(t−t1)f1(t1) by f1(t) in the collision

term of Eq.(24), an approximation we will refer to as the “time-shift ap-

proximation”; and (d) the replacement of the time-dependent transition su-

peroperator by its infinite time limit. Note that, although the time of the
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factorization of the pair density operator is just before the present collision,

the solution f1 of the Boltzmann equation (26) will describe a past history

that includes successive pair collisions over times back to the initial time t0

when the gas began to evolve. This feature is considered in more detail when

the iterative solution of the Boltzmann equation is discussed in Sec. IV and

compared with the iteration of the BBGKY hierarchy.

The Approach of Boercker and Dufty: In contrast to assuming a factor-

ization of the pair density operator before a binary collision begins, Boecker

and Dufty8 require such a factorization only at the initial time t0. It is inter-

preted here that this time t0 is the time at which the gas started to evolve so

the factorization acts as a restriction on the class of initial states. But they

also make a “binary collision approximation”, which involves an assumed

form for the three-particle density operator. Boercker and Dufty8 (BD) and

later Dufty and Kim13 note that the second BBGKY equation involves terms

such as Θ13f123(t). This vanishes unless particles 1 and 3 are interacting, in

which case, for an isolated binary collision, particle 2 should be independent

of (read “uncorrelated from”) particles 1 and 3. This they implement by as-

suming that, in such a case, f123(t) factors into f2(t)f13(t). Their treatment

is actually more complicated because they require their density operators

to have the proper Fermi-Dirac or Bose-Einstein statistics rather than the

Boltzmann statistics assumed here for simplicity. Use of the factorization

just mentioned in the two f123 terms on the right side of Eq.(14) results in
(

∂

∂t
+ L1

)

f1(t) = nTr2Θ12e
−L12(t−t0)f12(t0)

+n2Tr23

∫ t

t0
dt′Θ12e

−L12(t−t′) (Θ13f13(t
′)f2(t

′) + Θ23f23(t
′)f1(t

′)) (27)

(Note that t0 is the initial time.) BD then use the first BBGKY equation (1)
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to eliminate the two-body density operators, such as

nTr3Θ13f13(t) =

(

∂

∂t
+ L1

)

f1(t). (28)

The Θ23 term is treated similarly so that Eq.(27) becomes
(

∂

∂t
+ L1

)

f1(t) = nTr2Θ12e
−L12(t−t0)f12(t0)

+nTr2

∫ t

t0
dt′Θ12e

−L12(t−t′)

(

∂

∂t′
+ K12

)

f1(t
′)f2(t

′). (29)

The BD approach continues by carrying out the t′ integral by parts. This

is simplified by first introducing exponentials to remove the free motion su-

peroperator K12, equivalent to using the interaction representation. These

calculations are as follows:

nTr2

∫ t

t0
dt′Θ12e

−L12(t−t′)

(

∂

∂t′
+ K12

)

f1(t
′)f2(t

′)

= nTr2

∫ t

t0
dt′Θ12e

−L12(t−t′)eK12(t−t′) ∂

∂t′

[

e−K12(t−t′)f1(t
′)f2(t

′)
]

= nTr2Θ12

[

f1(t)f2(t) − e−L12(t−t0)f1(t0)f2(t0)
]

−nTr2

∫ t

t0
dt′Θ12

∂

∂t′

[

e−L12(t−t′)eK12(t−t′)
]

e−K12(t−t′)f1(t
′)f2(t

′). (30)

At this point BD also make the time-shift approximation [defined after

Eq.(26)] in the last element of Eq.(30) by writing e−K12(t−t′)f1(t
′)f2(t

′) =

f1(t)f2(t). They argue that the error in this is small because the other fac-

tors in the last term in Eq.(30) limit the time integration to small t− t′. On

the other hand a glance at Eq.(8) indicates that what might be left out in

the time shift approximation could be just one order higher in the density n.

We will show, on the contrary, that a consistent application of the BD binary

collision approximation, together with an assumption that pair collisions are

instantaneous implies that this error vanishes.
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Once the time-shift approximation has been made the final integral in

Eq.(30) is trivial and Eq.(29) becomes
(

∂

∂t
+ L1

)

f1(t) = nTr2Θ12e
−L12(t−t0)eK12(t−t0)f1(t)f2(t). (31)

If t − t0 is large enough we can again identify the combination of superop-

erators as the transition superoperator T12, so that the WS equation (26) is

obtained. In summary, Boercker and Dufty’s approach involves three approx-

imations: (a) the factorization of the product of the potential commutator

and the three particle density operator according to Θ13f123 = Θ13f13f2; (b)

the time-shift approximation; and (c) the replacement of the time-dependent

transition superoperator by its infinite time limit. Note that while no molec-

ular chaos is assumed in their approach, and f12 is eliminated completely,

the binary collision approximation has played a role analogous to that of

molecular chaos. The relation between molecular chaos and the BD binary

collision approximation is discussed further in the next section in terms of

the iterated solutions of these equations and commented upon further in the

summary section.

IV. Iterative Series Solutions of the Boltzmann Equation

The exact iterative solution of the BBGKY hierarchy has been discussed

in section II. This was expressed as a series involving increasing numbers of

particles and increasing numbers of pair particle (time dependent) transition

superoperators T (t). The iterative solution of the Boltzmann equation is

now examined and compared with the BBGKY result to understand the

consequences of the assumptions that go into the derivation of the Boltzmann

equation. These are first discussed for the approach using molecular chaos to

derive the Boltzmann equation, and then for the Boercker Dufty approach.
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A formal integration of the Boltzmann equation (26) from an initial time

t0 gives

f1(t) = e−L1(t−t0)f1(t0) + nTr2

∫ t

t0
dt′e−K12(t−t′)T12f1(t

′)f2(t
′). (32)

Iteration yields the infinite series

f1(t) = e−L1(t−t0)f1(t0) + nTr2

∫ t

t0
dt′e−K12(t−t′)T12e

−K12(t′−t0)f1(t0)f2(t0)

+n2Tr23

∫ t

t0
dt

′

∫ t′

t0
dt

′′

e−K123(t−t′)T12e
−K123(t′−t′′)

× [T13 + T23] e
−K123(t′′−t0)f1(t0)f2(t0)f3(t0)

+ · · · .
(33)

We have used the superoperator property Tr3(e
−L3tA) = Tr3(A) for any

operator A to insert e−L3t in several places in this equation.

This series shows explicitly how the WS equation, as a generalized Boltz-

mann equation represents, for t0 in the distant past, a large number of succes-

sive binary collisions. For example, the last term shown in Eq.(33) represents

free propagation of three particles (via e−K123(t′′−t0)) from the initial time t0

to t′′ where a {23}-collision occurs; then there is free propagation to t′ where

a {12}-collision occurs; then free propagation again to time t. Terms of order

nk represent k successive binary collisions. It is important to emphasize that

this equation implies that f1(t) is density dependent. This can be illustrated

for a homogeneous system (so that all free motion, superoperator K1...s ef-

fects, can be dropped) by modelling the collision superoperator as a constant

T = −σ〈v〉/V in terms of a effective cross section σ, mean relative velocity

〈v〉 and a factor 1/V because collisions are localized. In this case the infi-

nite series, Eq.(33), reduces to the infinite series expansion of an exponential
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decay toward equilibrium

e−(t−t0)/τ =
∑

k

(−1)k(t − t0)
k

k!τk
(34)

with relaxation rate 1/τ = −nV T = nσ〈v〉, using the normalization (7) of

fj(t). Note that in this case the Boltzmann equation (26) technically reduces

to
∂

∂t
f1(t) = nTf1(t)Tr2f2(t) = nTf1(t)V. (35)

All discussions about the Boltzmann equation emphasize that it is valid only

at low density. Most (all?) “derivations” of the Boltzmann equation from

first principles take this over to interpret the Boltzmann equation as the

first order result of a “density expansion” of the Liouville equation, using

the BBGKY hierarchy as an intermediary in this expansion. But since f1 is

itself density dependent, any such emphasis on making a density expansion

must be made more explicit. Clearly it is at least required that the singlet

density operator f1 be constant in this “expansion”.

Comparison with the iterated solution of the BBGKY hierarchy, Eq.(17)

with the more detailed form of the three particle contribution given by

Eq.(21), shows that no recollisions or collision cycles occur in the iterated so-

lution (33) of the Boltzmann equation. Essentially the Boltzmann equation

assumes that no two particles ever collide a second time, and that correlations

built up by collisions are never passed on to subsequently colliding particles

by, for example, collision cycles. Effectively, the gaseous system is viewed as

an infinite system so that once two particles have collided, the probability of

them colliding again, or even influencing each other’s subsequent evolution,

is negligible. This is the essence of the molecular chaos assumption; the par-

ticles are always treated as being statistically uncorrelated before collision.
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The other obvious point of comparison is that the transition superoperator

in the iteration of the Boltzmann equation is the time-independent, limiting

form of the time-dependent transition superoperator that appears in the it-

eration of the BBGKY equation. Of the four steps discussed in Sec. III as

being the basis of the derivation of the Boltzmann equation using the molec-

ular chaos approach, points (b) and (d) have been mentioned. More subtle

are the aspects associated with dropping the three particle term in the first

BBGKY equation and the validity of the time-shift approximation. A pro-

posed interpretation of what these two approximations have accomplished is

to consider that they are part of implementing the complete separation of

the evolution into free motion and instantaneous binary collisions. Dropping

the three particle term in Eq.(14), for t0 replaced by t1, is incumbent on the

short time period t − t1 for which this equation is to be applied. Since the

pair {12} have merely had time to enter into a binary collision, there is inher-

ently no time for a third particle to interact with either of the pair and retain

the restriction that only binary collisions occur. The possibility that a prior

binary collision could be described by the presence of Θ13 or Θ23 contradicts

the definition of t1 as the time just before the binary collision. Thus the

three particle term is dropped in the molecular chaos approach. The time-

shift approximation is related to the notion that the particles evolve freely

between collisions. The presence of time dependent transition superoperators

also allows for the possibility of a very short time between when a particle

interacts with first one and then a second particle, this again allowing for

the possibility of a true three particle collision rather than restricting the

evolution associated with three particles to involving only successive isolated

binary collisions. Eliminating this possibility emphasizes the need to treat

collisions as instantaneous if only isolated binary collisions are to contribute
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to the evolution of the gas. The classical description of this separation of time

scales is to take the mean free time τ = 1/(nσ〈v〉) to be much larger than

the time τcoll = d/〈v〉 of duration of a collision (d is the effective molecular

diameter). For classical rigid spheres where σ ≈ d2 this ratio is equivalent

to τcoll/τ ≈ nd3 ≪ 1. This also immediately implies that the second virial

coefficient for the gas is to vanish so the gas is ideal.

A more careful analysis of the dimensionless quantities upon which the

iterated solution (33) of the Boltzmann equation depends and how it differs

from the iterated solution, Eq.(17) together with Eq.(21), of the BBGKY

hierarchy is important for understanding the differences between the two

iterations. Neglecting the detailed effects of the free motion, the iterated

solution of the Boltzmann equation depends solely on the finiteness of t/τ =

nσ〈v〉t = −nV Tt. Analysis of the three particle contribution (21) to the

iterated solution of the BBGKY hierarchy shows that the first term involves

n2T 2V 2t2 ≈ (t/τ)2 while the second term involves n2T 3V 2t3 ≈ (t/τ)2(Tt),

and the third term contains even higher powers of Tt. This simple analysis

has set all transition superoperators as a common constant and ignored any

constraints on the time integrals except for their explicitly displayed limits.

Within this analysis it is seen that the absence in the Boltzmann solution of

all but the first term is equivalent, for finite (large) times, to the fact that

the range of the potential is negligible compared to the size of the system. If

the time actually does get large enough so that Poincaré recurrence effects

are important, then Tt can be finite, such terms must be retained in the

BBGKY solution, and of course the Boltzmann equation is inapplicable.

Even for classical rigid spheres the analysis is not so simple. For a recollision

to occur, the two particles involved in the third collision must be directed at

each other. This can occur only for a small set of phase points if the time
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is long22 and is responsible for the divergence !!!!CHECK!!! of certain time

correlation functions. An analysis22 of the phase space region that contributes

to recollisions and collision cycles implies that these are small if nd3 is small.

This implies that the BBGKY solution can be well approximated by the

Boltzmann equation solution only if nd3 is small. While classical rigid spheres

can only recollide and be involved in collision cycles, real particles with their

soft potentials can undergo real three particle collisions, that is, all three

particles are simultaneously within each others range of interaction. Even the

first term in Eq.(21) has contributions from such effects while the Boltzmann

solution (33) does not. If one assumes the time (t′−t′′) between the action of

the two T superoperators is of the order of the time d/〈v〉 taken for a particle

to traverse its potential range, then the contribution to this true three particle

collision is n2T 2V 2td/〈v〉 ≈ (t/τ)d/(〈v〉τ). The latter factor, d/(〈v〉τ) ≈ ndσ

is the analog of the rigid sphere nd3, so again, if nd3 is small, true three

particle collisions can be ignored and the BBGKY solution contains only the

effect of isolated binary collisions. There is still the difference between the

series in that the Boltzmann solution involves a time independent transition

superoperator while in the BBGKY solution, the transition superoperator is

time dependent. But if ndσ = tcoll/τ is small, then typically the time (t′−t′′),

see the first term in Eq.(21), between collisions is to be long compared to the

time of duration of a collision so that the compensating free and full motions

in T12(t
′−t′′) have sufficient time so that the transition superoperator reaches

it asymptotic, time independent limit T of Eq.(16). It may be remarked that

the limit transition superoperator is spatially delocalized, that is, the two

particles are not required to be at the same spatial position, an important

aspect when there are internal spin states present (ignored in this paper),

so that there can be a transfer of angular momentum from internal state
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spin to the translational degrees of freedom, which is responsible for spin

relaxation23. This delocalized property of the collision is also responsible

for density corrections to the transport coefficients24. Such corrections are

proportional to nd3 so they should not be treated in isolation, but rather the

kinetic theory should be extended beyond the Boltzmann equation to include

collision cycles and recollisions as well as true three particle collisions and

corrections associated with the fact that the binary transition superoperator

cannot be treated in its asymptotic limit. Except for the binary collision

delocalization correction, only the crudest estimates28 of these effects have

been made for particles other than classical rigid spheres.

Lanford12 compares the properties of the Boltzmann equation with the

BBGKY hierarchy by examining the structure of a comparable (Boltzmann)

hierarchy. In terms of the present (quantum) formalism Lanford’s approach

is to define a set of s-particle density operators F1...s(t) ≡
∏

j fj(t), where each

singlet density operator fj(t) for particle j satisfies the Boltzmann equation.

From the Boltzmann equation (26), it immediately follows that
(

∂

∂t
+ K1...s

)

F1...s(t) = nTrs+1

s
∑

j=1

Tj,s+1F1...s+1(t). (36)

This typical equation of the Boltzmann hierarchy differs from the correspond-

ing equation (4) in the BBGKY hierarchy by the replacement of L1...s by

K1...s and of Θj,s+1 by Tj,s+1. The latter clearly indicates that in the Boltz-

mann hierarchy, coupling between different members of the hierarchy occur

by isolated binary collisions, whereas in the BBGKY hierarchy, coupling is

by the interparticle potential. More subtle is the fact that each particle of

the s-particles described by F1...s evolves freely in the Boltzmann hierarchy,

while in the BBGKY hierarchy, all s-particles interact among each other.

The absence of all the interaction terms between the s-particles is equivalent
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to the lack of recollisions and collision cycles in the Boltzmann equation.

These contrasting properties of Eqs. (4) and (36) emphasize the basic dif-

ference between the predictions of the Boltzmann equation and the Liouville

equation.

The Boercker Dufty binary collision approximation involves approximat-

ing the structure of Θ13f123(t
′) and analogously for particles {23}; see Eq.(27).

It is also relevant to note that this is to be used only when Θ12e
−L12(t−t′) acts

on the result; compare Eqs.(13), (14) or (27) where the specific labels for

the times vary from one equation to another. The exact evolution of f123(t)

is given by the integrated form of the third BBGKY equation (10) and, re-

stricting the discussion to the purely three particle contribution, entirely via

e−L123(t−t0). This in turn has been expanded in terms of time dependent pair

transition superoperators and with the interaction Θ13 is given by Eq.(19).

Explicitly this gives after iteration as in Eq.(20)

Θ13f123(t)|3 part. = T13(t − t0)e
−K123(t−t0)f123(t0)

+
∫ t

t0
dt′T13(t − t′)e−K123(t−t′)[T12(t

′ − t0) + T23(t
′ − t0)]e

−K123(t′−t0)f123(t0)

+
∫ t

t0
dt′
∫ t′

t0
dt′′T13(t − t′)e−K123(t−t′)

[

T12(t
′ − t′′)e−K123(t′−t′′)(Θ13 + Θ23)

+ T23(t
′ − t′′)e−K123(t′−t′′)(Θ12 + Θ13)

]

e−L123(t′′−t0)f123(t0). (37)

Operating on this with the interaction between particles {12} and taking the

limit in each transition superoperator gives

Θ12e
−L12(t−t′)Θ13f123(t

′)|3 part. → T12e
−K12(t−t′)T13e

−K123(t′−t0)f123(t0)

+
∫ t′

t0
dt′′T12e

−K12(t−t′)T13e
−K123(t′−t′′)[T12 + T23]e

−K123(t′′−t0)f123(t0)

+
∫ t′

t0
dt′′

∫ t′′

t0
dt′′′T12e

−K12(t−t′)T13e
−K123(t′−t′′)

[

T12e
−K123(t′′−t′′′)(Θ13 + Θ23)

+ T23e
−K123(t′′−t′′′)(Θ12 + Θ13)

]

e−L123(t′′′−t0)f123(t0). (38)
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It is now a matter of dropping all recollision and collision cycle terms, to-

gether with the introduction of the assumed initial factorization, to obtain

Θ12e
−L12(t−t′)Θ13f123(t

′)|3 part.

→ T12e
−K12(t−t′)T13e

−K123(t′−t0)f1(t0)f2(t0)f3(t0). (39)

This can be recognized as the three particle contribution from the product

Θ12e
−L12(t−t′)Θ13f13(t

′)f2(t
′), namely from the Boercker Dufty binary collision

approximation, subject to the same conditions of transition superoperator

limit and factorization at t0. Thus it is seen that the Boercker Dufty approach

is an alternative way of selecting out only isolated binary collisions for the

evolution of the singlet density operator. An attempt to given a more physical

rationalization of the BD approach is made in Sec. VII.

V. The Correction to the Boltzmann Equation

The validity of the Boltzmann equation is discussed in this section by

examining the difference between the exact evolution of the singlet density

operator and its evolution as given by the Boltzmann equation.

Using Eq.(15) one can write f12(t0) = f1(t0)f2(t0) in the first term of Eq.

(14). Next solve Eq.(8) for the first term on the right:

e−L1(t−t0)f1(t0) = f1(t) − nTr3

∫ t

t0
dt′e−L1(t−t′)Θ13f13(t

′) (40)
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Substitute this result for the factors fi(t0) that now appear in Eq.(14) to give

(

∂

∂t
+ L1

)

f1(t) = nTr2Θ12e
−L12(t−t0)eK12(t−t0)

×
[

f1(t) − nTr3

∫ t

t0
dt′e−L1(t−t′)Θ13f13(t

′)
]

×
[

f2(t) − nTr4

∫ t

t0
dt′e−L2(t−t′)Θ24f24(t

′)
]

+n2Tr23Θ12

∫ t

t0
dt′e−L12(t−t′) [Θ13 + Θ23] f123(t

′)

= nTr2T12(t − t0)f1(t)f2(t) + G(t),

(41)

where G(t) is defined by

G(t) = −n2Tr23T12(t − t0)f1(t)
∫ t

t0
dt′e−L2(t−t′)Θ23f23(t

′)

−n2Tr23T12(t − t0)
∫ t

t0
dt′e−L1(t−t′)Θ13f13(t

′)f2(t)

+n3Tr234T12(t − t0)
∫ t

t0
dt′e−L1(t−t′)Θ13f13(t

′)

×
∫ t

t0
dt′′e−L2(t−t′′)Θ24f24(t

′′)

+n2Tr23Θ12

∫ t

t0
dt′e−L12(t−t′) [Θ13 + Θ23] f123(t

′).

(42)

The Boltzmann equation differs from Eq.(41) in two ways, first is the

absence of G(t) which will be called for the present purposes the correction to

the Boltzmann equation, and second in the requirement that the infinite time

limit in the transition superoperator must be taken. If the limit is not taken,

then as previously discussed, this could allow particles {12} to be interacting

while particle 1 and/or 2 are still interacting with some other particle in the

gas, essentially allowing three (or more) particle collisions. Thus one can

see the need for this limit in any rationalization of the Boltzmann equation;

this will be henceforth assumed. What this process does is to remove the

possibility of simultaneous three body collisions by making all binary collision

events appear as instantaneous events. However, there remain other events
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involving correlations among three particles; the recollision and collision cycle

events discussed in the iteration procedure of Sec.II are of this nature. G(t)

will describe such events and there remains the discussion of how these are

removed in the molecular chaos and BD approaches.

In the molecular chaos approach to deriving the Boltzmann equation G(t)

is seen to necessarily involve three particles. Thus this term contributes three

particle effects to the rate of change of the singlet, so should be dropped in

a theory that is to be based on allowing only isolated binary collisions. We

return to this point after discussing the Boercker-Dufty approach to explicitly

show the connection between G(t) and the three-particle collision term that

arises in generalizing the Boltzmann equation10−16 to higher density. For

the Boercker-Dufty approach, it is now shown that G(t) vanishes when their

“binary collision approximation” and the infinite time limit of transition

superoperators is taken, thus showing that the Boltzmann equation is derived

in a consistent manner in the BD approach.

The BD approximation13,8 would seem to be ideally designed to minimize

G(t) since, for example, the first term of Eq.(42) seems to be approximating

the three-body correlations by a factorization of the form f1(t)f23(t
′). (Note,

however, the times of the two elements are different.) Let us make the BD

binary collision approximation in the f123 term and see how complete is the

cancellation of G(t). That is, write in Eq.(42)

[Θ13 + Θ23] f123(t
′) = Θ13f13(t

′)f2(t
′) + Θ23f23(t

′)f1(t
′). (43)

Make use of Eq.(8) to write f1(t) in terms of f1(t
′) at time t′ to give for the
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first term in Eq.(42)

−n2Tr23T12(t − t0)
∫ t

t0
dt′
[

e−L1(t−t′)f1(t
′)

+nTr4

∫ t

t′
dt′′e−L1(t−t′′)Θ14f14(t

′′)
]

e−L2(t−t′)Θ23f23(t
′)

= −n2Tr23T12(t − t0)
∫ t

t0
dt′e−K12(t−t′)Θ23f23(t

′)f1(t
′)

−n3Tr234T12(t − t0)
∫ t

t0
dt′
∫ t

t′
dt′′e−L1(t−t′′)Θ14f14(t

′′)e−L2(t−t′)Θ23f23(t
′).

(44)

(Note the lower limit in the inner integral in the last line.) The second term

in G(t) is handled in the same way:

−n2Tr23T12(t − t0)
∫ t

t0
dt′e−L1(t−t′)Θ13f13(t

′)

×
[

e−L2(t−t′)f2(t
′) + nTr4

∫ t

t′
dt′′e−L2(t−t′′)Θ24f24(t

′′)
]

= −n2Tr23T12(t − t0)
∫ t

t0
dt′e−K12(t−t′)Θ13f13(t

′)f2(t
′)

−n3Tr234T12(t − t0)
∫ t

t0
dt′
∫ t

t′
dt′′e−L1(t−t′)Θ13f13(t

′)e−L2(t−t′′)Θ24f24(t
′′).

(45)

Thus the BD approximation implies that the correction term G(t) becomes

G(BDK)(t) = −n2Tr23T12(t − t0)
∫ t

t0
dt′e−K12(t−t′)Θ23f23(t

′)f1(t
′)

−n2Tr23T12(t − t0)
∫ t

t0
dt′e−K12(t−t′)Θ13f13(t

′)f2(t
′)

+n2Tr23

∫ t

t0
dt′T12(t − t′)e−K12(t−t′) [Θ13f13(t

′)f2(t
′) + Θ23f23(t

′)f1(t
′)]

+n3Tr234T12(t − t0)
∫ t

t0
dt′
∫ t

t0
dt′′e−L1(t−t′)Θ13f13(t

′)e−L2(t−t′′)Θ24f24(t
′′)

−n3Tr234T12(t − t0)
∫ t

t0
dt′
∫ t

t′
dt′′

[

e−L1(t−t′′)Θ14f14(t
′′)e−L2(t−t′)Θ23f23(t

′)

+e−L1(t−t′)Θ13f13(t
′)e−L2(t−t′′)Θ24f24(t

′′)
]

.

(46)

If we take the infinite time limit of T (t) wherever it appears, the first two

traces cancel against the third. Combine the two parts of the last trace by
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interchanging indices 3 and 4 and times t′ and t′′ in the first part to give for

the last trace

−n3Tr234T12(t − t0)
[
∫ t

t0
dt′′

∫ t

t′′
dt′ +

∫ t

t0
dt′
∫ t

t′
dt′′
]

e−L1(t−t′)Θ13f13(t
′)

×e−L2(t−t′′)Θ24f24(t
′′). (47)

We see that the two integrals combine nicely to give
∫ t
t0

dt′
∫ t
t0

dt′′ which makes

the sum precisely cancel against the fourth trace term, and G(BDK)(t) = 0.

This result means that under the assumption that the T operator is time

independent – equivalent to the assumption that the collision duration time

is much shorter than the mean-free path travel time, a reasonable assumption

if the density is low – the use of the BD binary collision approximation in

the derivation of the WS equation is internally consistent. No additional

approximations are needed, in particular, the time-shift approximation that

had to be made in Eq.(30) to get the WS equation does not appear as a

separate approximation.

Finally, it is useful to explore the nature of the correction term G(t) in

more detail and explicitly show that it introduces three (and more) particle

effects. For three particles we make the substitutions of the expressions for

fij , and f123 from Eqs.(9) and (10) – along with the initial factorization

condition (15) in Eq.(42) for G(t). Only those terms that involve three

particle contributions are considered, being denoted by G(3):

G(3) = −n2Tr23T12(t − t0)f1(t)
∫ t

t0
dt′e−L2(t−t′)Θ23e

−L23(t′−t0)f2(t0)f3(t0)

−n2Tr23T12(t − t0)
∫ t

t0
dt′e−L1(t−t′)Θ13e

−L13(t′−t0)f1(t0)f3(t0)f2(t)

+n2Tr23Θ12

∫ t

t0
dt′e−L12(t−t′) [Θ13 + Θ23] e

−L123(t′−t0)f1(t0)f2(t0)f3(t0)

(48)
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To express this as a collision integral, the singlet density operators should

be evaluated at time t. This can be accomplished by using the time-shift

approximation. Of course there will be a correction to this but it will involve

an extra particle so can be dropped when calculating G(3). We write, for

example,

fi(t0) = eL1(t−t0)fi(t) + O(n) (49)

Eq.(48) then becomes

G(3) = −n2Tr23T12(t − t0)
∫ t

t0
dt′
{

e−K23(t−t′)Θ23e
−L23(t′−t0)eK23(t−t0)

+ e−K13(t−t′)Θ13e
−L13(t′−t0)eK13(t−t0)

}

f1(t)f2(t)f3(t)

+n2Tr23Θ12

∫ t

t0
dt′e−L12(t−t′) [Θ13 + Θ23]

×e−L123(t′−t0)eK123(t′−t0)f1(t)f2(t)f3(t)

= −n2Tr23T12(t − t0)

{

∫ t

t0
dt′e−K23(t−t0) ∂

∂t′

(

eK23(t′−t0)e−L23(t′−t0)
)

eK23(t−t0)

+
∫ t

t0
dt′e−K13(t−t0) ∂

∂t′

(

eK13(t′−t0)e−L13(t′−t0)
)

eK13(t−t0)

}

f1(t)f2(t)f3(t)

+n2Tr23Θ12

∫ t

t0
dt′e−L12(t−t0) ∂

∂t′

(

eL12(t′−t0)e−L123(t′−t0)
)

×eK123(t−t0)f1(t)f2(t)f3(t)
(50)

The integrals in this are easily done to give

G(3) = n2Tr23Θ12

{

e−L123(t−t0)eK123(t−t0) − e−L12(t−t0)eK123(t−t0)

−e−L12(t−t0)eK12(t−t0)
[

e−L23(t−t0)eK23(t−t0) − 1

+e−L13(t−t0)eK13(t−t0) − 1
]}

f1(t)f2(t)f3(t)

(51)

In the limit of large t − t0 the combinations of exponential superoperators

become Møller superoperators, typically Ω12 = limt→∞ e−L12teK12t for the pair

{12} and for the three-body Møller superoperator Ω123 = limt→∞ e−L123teK123t.

This leads to

G(3) = n2Tr23Θ12 [Ω123 − Ω12 − Ω12 (Ω23 + Ω13 − 2)] f1(t)f2(t)f3(t) (52)
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which is just the standard result for the three-body collision integral10−16.

Thus the Boltzmann equation involves the neglect of what is normally called

three-body collisions. Without examining any details one can note that the

recollision and collision cycles that made up the difference between the itera-

tion series from the Boltzmann equation and that from the complete BBGKY

hierarchy, for example in Eq.(21), must be included in the above three-body

collision integral10−16.

VI. Klimontovich Binary Collision Approximation

Klimontovich17 introduces the pair correlation function g12(t) ≡

f12(t) − f1(t)f2(t) and the three-particle correlation function g123(t) ≡

f123(t)− f1(t)f2(t)f3(t)− f1(t)g23(t)− f1(t)g13(t)− f3(t)g12(t). The first two

BBGKY equations are then rewritten as
(

∂

∂t
+ Leff

1 (t)

)

f1(t) = nTr2Θ12g12(t) ≡ I1(t) (53)

and
(

∂

∂t
+ Leff

12 (t)

)

f12(t) = nTr3 [Θ13 + Θ23] [g123(t)

+ f1(t)g23(t) + f2(t)g13(t)] (54)

where the effective Liouville superoperators are

Leff
1 (t) ≡ L1 − nTr2Θ12f2(t) (55)

and

Leff
12 (t) ≡ L12 − nTr3[Θ13 + Θ23]f3(t) (56)

These differ from the bare Liouville superoperators by the average force terms

that can be of immense importance for plasma physics. As stated in the
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introduction, Klimontovich’s work has been written here using a quantum

language for convenience of comparison with Boercker and Dufty’s work.

It is easy to translate the formalism into classical terms by interpreting the

particle labels as position and momentum labels, replacing any single particle

trace by h−3 times the integrals over the particle’s position and momentum,

and finally replacing any f1···s by h3s times the corresponding phase space

distribution function.

Klimontovich’s method of deriving a Boltzmann equation is to introduce

a binary collision approximation. This consists of dropping the g123 term in

Eq.(54) and keeping only those gj3(t) terms in which the Θij and gij particle

labels coincide. This reduces the trace in Eq.(54) to

Tr3 [Θ13g13(t)f2(t) + Θ23g23(t)f1(t)]

= I1(t)f2(t) + I2(t)f1(t)

=

[

∂

∂t
+ Leff

1 (t) + Leff
2 (t)

]

f1(t)f2(t). (57)

After translating into classical mechanical terms and accounting for differ-

ences in notation this is Klimontovich’s Eq.(2.18). This has the same form as

Boercker and Dufty’s binary collision approximation [see Eq.(29)] differing

only in the replacement of Li by Leff
i on both sides of the equation. (It may

be useful to note that Klimontovich’s equations are not exactly equivalent to

those of Boercker and Dufty since the average force terms on each side of the

equation act on different quantities and thus do not cancel.) The rationale

for the BD approximation in terms of taking into successful binary collisions

thus is seen to apply equally well to the Klimontovich approach, but of course

the ordering of terms according to powers of nd3 is different. The mean force

terms are formally of higher order in nd3, but for long range forces such as

the Coulomb force, the effective range d of the potential is infinite so this
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ordering is inappropriate. Rather, the mean force term accounts for the long

range part of the potential and the collisions, expressed entirely in terms of

particle correlations, are determined by the corresponding short range part

of the potential.

VII. Summary

Two methods of obtaining the quantum Boltzmann equation from the

BBGKY hierarchy have been discussed. The first is based on the molecular

chaos assumption in the form that two particles about to enter into a collision,

are statistically independent. The second is a binary collision approximation

introduced by Boercker and Dufty in which the three particle density operator

factors into a product of a pair density operator and a singlet, depending on

which pair of particles is interacting. While these approaches appear very

different, both result in the Boltzmann equation. What is not expressly

emphasized is that, in the process of deriving the Boltzmann equation in

either approach, the infinite time limit of the transition superoperator is

taken, Eq.(16), and, except when in the process of colliding, the particles

evolve freely. The present work emphasizes that these added assumptions are

crucial to the derivation of the Boltzmann equation for realistic potentials

and are of at least equal importance to the molecular chaos, or alternately,

the Boercker Dufty binary collision approximation. In most discussions of

the derivation of the Boltzmann equation, these assumptions are ignored.

Such assumptions are of course unnecessary for the treatment of classical

rigid spheres, but realistic potentials include dispersion forces that vary as

1/r6. These are short range compared to the Coulomb and dipolar forces

that cause the equilibrium second virial coefficient to diverge, but formally
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the interaction never ends. Thus the separation into free and collisional

motion is not an on-and-off affair but when a collision ends is a matter of

degree. Whether this separation into free and collisional motion can be done

is a major problem for realistic potentials. The Boltzmann equation assumes

such a separation can be accomplished and formally appears as the ability

to take the limit of the transition superoperator.

The limits of validity of the Boltzmann equation have been investigated by

examining the series obtained by iterating the integral equation for the singlet

density operator, arrived at by a formal time integration of the Boltzmann

equation, and comparing this series with the corresponding series obtained

from the exact BBGKY hierarchy. This was aided by expressing the formal

solution of the BBGKY hierarchy in terms of time dependent pair transition

superoperators and free evolution superoperators, by exact formal algebraic

calculation. It is this representation of the exact behaviour of the singlet

which looks most like the series derived from the Boltzmann equation.

The first obvious difference between the BBGKY derived series and that

from the Boltzmann equation is that the latter involves only the time in-

dependent transition superoperator, correctly the infinite time limit of the

time dependent transition superoperator. Taking this limit wherever it oc-

curs in the BBGKY derived series implies that only isolated binary collisions

occur. For example, it is easy to write out the time evolution superoperator

e−L123t for three interacting particles as an infinite series of time convolutions

of two particle evolution superoperators; just iterate Eq.(18). Thus a three-

particle process in which all three particles are simultaneously interacting

can be considered as a sequence of two body events but with arbitrary times

between the pair interactions. Taking the infinite time limit for each pair

breaks this possible interpretation and requires that each pair collision be an
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isolated event. We see this as “a”, if not “the”, crucial step in understanding

the structure of the Boltzmann equation. It is also where irreversibility en-

ters, or at least an arrow of time, because it is the transition superoperator

for scattering in a positive time sense that is selected. The resulting series

derived from the BBGKY hierarchy then involves isolated binary collisions

(which formally appear as instantaneous events) and free motion between

collisions.

The series derived from the Boltzmann equation is further limited by the

fact that no recollisions or collision cycles appear. By having no recollisions

is meant that, if particles labelled {ij} collide at some time, then they never

again collide. Collision cycles are exemplified by the sequence of collisions

{ij} → {ik} → {jk}, allowing collisions between particles {ij} and {ik}

to possibly influence the outcome of the {jk} collsion. No such terms enter

into the Boltzmann series of events, so that any derivation of the Boltzmann

equation from the BBGKY hierarchy must eliminate such events in some

manner. If these recollision and collision cycle events are eliminated from the

BBGKY derived series, then it agrees completely with the Boltzmann derived

series of events; only the requirements of isolated collision (infinite limit of

the time dependent binary transition superoperators) and the removal of

recollisions and collision cycles is needed to get the Boltzmann series from the

BBGKY series. No other assumption such as molecular chaos is required. Of

course the initial factorization of the density operator, Eq.(15), is interpreted

as an initial condition on the quantum Liouville equation rather than an

assumption about the dynamics of the N particle system. The interpretation

of the lack of recollisions and collision cycles is presumably that, in a dilute

gas, the probability of such events are negligible so that they should be

ignored.
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From the point of view of the two derivations of the Boltzmann equation

discussed in this paper, molecular chaos clearly emphasizes that binary colli-

sion processes are to be isolated. But it should be a warning that if the infinite

time limit is not taken, then there still remains the possibility that three par-

ticle collisions may be partly incorporated into the treatment. The “binary

collision approximation” of Boercker and Dufty, and of Klimontovich, em-

phasizes which pair of particles of a triple of particles are colliding. Exactly

how this is to be interpreted has been a difficulty for the present authors,

and led to various discussions with Dufty. On the basis of the series derived

from the BBGKY hierarchy and from iterating the BD binary collision ap-

proximation, we interpret that the collision to which their binary collision

approximation is to be applied is the collision just before the present one.

This is seen by the fact that in application, the BD binary collision approxi-

mation is to approximate the evolution for the pair particle density operator

that is to be used in the first BBGKY equation. Specifically, if f12 is to be

used in the first BBGKY equation, then it is to be used for a collision be-

tween particles {12}. The second BBGKY equation, describing the evolution

of f12, involves Θ13f123, whose approximation by Θ13f13f2 is then involved

in approximating this term as a binary collision, the {13} collision which

preceeds the {12} collision. Thus the BD binary collision approximation is

describing the consequences of a past binary collision in order to predict the

present course of events. Such an interpretation is novel, and for that matter

there appears to be very little written on trying to interpret the BD binary

collision approximation. We see this as effectively removing recollision and

collision cycle events. As part of the BD approach, any explicit appearance of

the pair density operator is subsequently removed by use of the first BBGKY

equation to obtain an equation solely in terms of the singlet density opera-
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tor. We see again the need to take the infinite time limit of the transition

superoperator in order to retain only isolated binary collision events. Thus

we do not see, as Dufty and Kim13 claim, that their work “extends the famil-

iar Waldmann-Snider equation to arbitrary length and time scales”, rather

we see their derivation of the WS (quantum Boltzmann) equation as an al-

ternative to the usual approach using molecular chaos and giving the same

result.

In this work the expansions have been classified according to the numbers

of particles that contribute to a particular quantity. This is often thought of,

and described as, a density expansion. We comment that the latter can be

subject to misinterpretation. In particular, even the Boltzmann equation is

nonlinear in the density n, so that its solution f1 is a complicated function

of the density. This is exemplified in an elementary manner by Eq.(34),

which shows explicitly that the solution includes contributions of all orders in

the density, essentially associated with the consequences of successive binary

collisions. Thus any approximation of the BBGKY hierarchy by making a

density expansion, to arrive at, for example the Boltzmann equation, must

be careful to emphasize the conditions under which the expansion is to be

carried out, for example, by keeping the singlet density operator f1 constant.

As a final comment, we remark that the series expansions show that if

corrections to the Boltzmann equation are to be considered, it is necessary

to be cognizant that three particle collisions, binary recollision and collision

cycle events all occur. One must also consider the time dependence of the

binary transition superoperators. Attempts to consider the effect of one

type of correction at a time are laudable but one must not lose sight of

the composite structure of all possible corrections. Bogoliubov’s method1 is

often considered as giving a general procedure for generalizing the Boltzmann
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equation to arbitrary density. We look on Cohen’s work10 as carrying out this

program. But we also see the need for resumming the series to express the

collisions in terms of distribution functions that arise from successive past

collisions as Green11 has discussed. Generalizations of the two procedures

are clearly possible. Hollinger and Curtiss25 introduced a molecular chaos

assumption at the s particle level and Lowry and Snider26 have approached

the problem of chemical recombination and decay from this point of view.

Unpublished work of one of the present authors has looked at generalizing the

BD approach to factorizing the four particle density operator into the various

possible types of collisions that occur involving at most three particles at a

time. The present paper has not attempted to examine such questions, but

clearly there are many possible approaches to generalizing the Boltzmann

equation.
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