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Laboratoire Kastler Brossel de l’ENS∗

24 rue Lhomond F-75005 Paris, France

April 12, 2004

Abstract

A few years ago, Greenberger, Horne and Zeilinger showed that
quantum non locality effects, already well known for systems of two
correlated particles, are more spectacular with three particles or more.
For observing these effects, one has to initially put the system in an
entangled quantum state that is very specific, and not necessarily easy
to produce. We discuss some properties of these states and we propose
an experimental scheme which allows to create them by succcessive
applications of the postulate of measurement in quantum mechanics.
The procedure should in principle allow the creation of the desired
correlations in systems containing a relatively large number of particles;
we propose to apply it to single paramagnetic ions stored in traps,
through the measurement of the rotation of the plane of polarization
of a laser beam interacting with the ions (quantized Faraday effect).

1 Introduction

One of the great contributions of Einstein, with Podolsky and Rosen [1],
later completed by the celebrated theorem of Bell [2], was to show that
the most surprising feature of quantum mechanics is not indeterminism, as
was initially thought, but non locality. While Von Neumann’s arguments
- attempting to prove that the results of quantum mechanics can not be
reproduced by deterministic theories - have been shown by Bell to be not
conclusive [3], the Bell theorem provides quantitative and general criteria

∗Laboratoire associé au CNRS UA 18 et à l’Université Pierre et Marie Curie.
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about locality violation. Now, it is a delicate matter to decide in what sense
exactly quantum mechanics is non local, or more generally to word a precise
definition of what is a local theory [4]; this question, at the border of physics
and philosophy, is probably still a matter of debate, and we will not discuss it
here. What is clear, anyway, is that we do not have an equivalent of the Bell
theorem for indeterminism so that, for the moment at least, believing or not
believing in the fundamentally non deterministic character of microscopic
processes is more or less a matter of taste. In fact, it is not impossible that
the fundamental theory of microscopic processes will, one day, include a
(non local) deterministic mechanism behind what we now call the orthodox
quantum theory of measurement.

At the level of the standard mathematical formalism of quantum me-
chanics, both non locality and indeterminism appear explicitly. The former
has the status of a postulate: for the results of measurements, one is only
allowed to write probabilities, so that the left hand side of the equations is
automatically a non deterministic quantity. But non locality is also visible
when, for systems made of two particles located in remote regions of space,
one writes the components of the two particle states of the type considered
by Bell: the description of the system is given by an “entangled” quantum
state1 covering a large region of space; separate descriptions of the two par-
ticles are never equivalent to this overall description. To illustrate this point,
we make a brief digression from our main subject (the rest of this paragraph
may be skipped): we by discuss as an example a model which preserves ex-
plicitly the non deterministic features of quantum mechanics - including the
use of state vectors from which probabilities can be calculated - but which
at the same time attempts to give separate quantum descriptions for the two
remote particles; the latter point, of course, implies that the rules of stan-
dard quantum mechanics are altered at some stage. In other words, what
we are now trying to do is to keep the usual quantum prescriptions, but for
each particle separately, and see if the model can be made compatible with
the predictions of standard quantum mechanics. For this purpose, we can
obviously ascribe to each of the particles a (one particle) state vector (or a
density matrix); in order to introduce correlations, we have to assume that
the two states vectors in question are randomly correlated. Physically, this
could happen for instance under the effect of fluctuations of the conditions

1There are other formalisms for quantum mechanics, which are equivalent to that using
wave functions or state vectors, for instance density operators, integrals of action, Wigner
transform, etc..; in this article we use the words “quantum state”, or “ket”, as well as
“reduction of the wave packet”, in a generic sense which contains these different versions
of the formalism.
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under which the two particles were initially created into quantum states.
In this way, we have a rather natural “semi quantum” model where the
rules of quantum mechanics, including the postulate of measurement, are
preserved separately in each region of space; but the correlations arise from
correlations of local state vectors, which themselves originate from local fluc-
tuations of a past event. The beauty and the power of the Bell theorem is
that we do not have to develop the model any further in order to examine its
compatibility with the quantum predictions: the theorem immediately tells
us that, whatever correlations we introduce between the individual state
vectors (or density operators), any model of this sort will automatically fail
to reproduce the full predictions of quantum mechanics. Only a non separa-
ble description of the two particles in one single, non local, ket is therefore
permissible. The example illustrates in an explicit manner why locality is
harder to incorporate into quantum mechanics than determinism.

Recently, Greenberger, Horne and Zeilinger [5] showed that considering
systems of more than two correlated particles is not a trivial generalization
of the argument, but leads to conflicts between locality and quantum me-
chanics that are different and more spectacular. Roughly speaking, while
the two particle systems can lead to violations of locality of the order of
25% and require the evaluation of combination of suitable correlation rates,
100% violations become possible in theory with three particles (or more), in
one single experimental result2; see for instance [6] for a discussion of the
subject. The quantum state for which these violations should occur is again
an entangled state, similar to that usually considered for two particles, but
the fact that it now contains more particles makes it even more complex.
This does not weaken the basic argument of [5] since, in principle, there is
no reason to believe that not all state vectors of a many particle system
are accessible; in some textbooks on quantum mechanics the fact that all
states in the linear space are physical states is even an explicit postulate. It
is nevertheless interesting to examine the question of how these initial states
can be produced.

This is the object of the present article, which originates from several
seminars for non specialists that the author gave on various occasions dur-
ing the last few years. The general ideas are not different from those of
Greenberger et al [5]; they will just be introduced in a slightly different
way. Our main purpose is to discuss methods by which many particle en-
tangled states of the required sort could be produced: knowing that the

2This is true after the initial full correlations have been established, which may require
many experiments; but, once this is done, in principle one single experiment is sufficient.
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state space of a many particle system contains curious states with exotic
quantum properties, it is natural to examine how to produce at least some
of them. Several approaches for constructing interesting entangled states are
possible and have already been proposed. For instance Hardy, in a recent
article [7], considers a thought experiment where a specific entangled state
is produced when particles cancel each other in one of the four paths avail-
able to a system crossing two interferometers; this state has interesting non
local properties (see also [8]). Another even more recent proposal is that of
Cirac and Zoller [9]. Our scheme is different and rests in an essential way
on the use of the postulate of wave packet reduction in quantum mechanics;
it is recursive in the number of particles that it could correlate. At the end
of this article we examine how it could be applied to single ions stored in
electromagnetic traps, combined with an optical detection relying on the
observation of the “quantized Faraday effect”. We are not claiming that the
proposal is perfectly practical at this stage; we just try to come a little bit
closer to realistic experimental schemes than pure thought experiments.

2 Non locality and entangled states

The purpose of this section is to show why certain entangled quantum
states, which we call “states with extreme coherence” (they could as well be
called the Greenberger-Horne-Zeilinger states), correspond to predictions
that strongly violate simple locality concepts. In a first step, it is conve-
nient to forget temporarily about quantum mechanics and to discuss the
consequences of locality for systems of several particles with correlations
that resemble those contained in the entangled quantum: states, leaving the
quantum discussion for a second step.

2.1 Correlated events in a local theory

We consider the situation schematically shown in figure 1: in N regions of
space, labelled with an index i (i = 1, 2, ..N), measurements are performed
by N experimenters on particles originating simultaneously from a common
source S. Each time the source produces a group of N particles, they are
distributed among the experimenters, one per region of space, where they
undergo a measurement. Actually what we consider is a series of repeated
experiments where P successive groups (or bursts) of N particles are emitted
by the source and measured, and we label the successive groups by an index
K (K = 1, 2, ...P ). The nature of the measurement performed by every ex-
perimenter is not fixed: it depends on a apparatus setting which is available

4
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Figure 1. A source S emits groups of N particles, each of which is
direcled 10 a region of space i = 1,2,3, ..., N and undergoes a l11cas-
urement, which depcnds on the setting (J that is locally chosen by an
experimenter.

on each apparatus and which can be adjusted freely. We symbolize this set-
ting by the letter θ; if the measurements are for instance spin measurements,
θ may define the direction along which the experimenter decides to measure
a spin component (orientation of the Stern and Gerlach magnet). For the
sake of simplicity in what follows, we call the θ’s “angles” and treat them
as continuous variables. In a series of P measurements, each experimenter
chooses P values of θ in succession so that, altogether, N × P choices are
made.

2.1.1 The results and their dependence on the settings

We use the notation A for the results obtained in this experimental proce-
dure: Ai(K) is the result obtained at site i in the run number K. Because
the results of an experiment can depend on its nature, the A’s are clearly
functions of the θ’s. To proceed in our reasoning, we will need three assump-
tions.

First assumption We assume that it makes sense to speak about, in fact
to reason mathematically on, the values of the A’s for any possible choice of
the θ’s. It is indeed true that, at the end of any given run, every experimenter
will have made only one series of choices, so that one could validly argue
that the A’s can only be defined for those values of the variable. But, on
the other hand, every experimenter acts according to his free will, and we
can envisage the different choices that might have been made (or will be
made if the experiment is not yet done), and therefore the corresponding

5



results. In other words, whatever “questions to Nature” will be asked by
the experimenters in a given series of measurements, we assume that there
is always a well defined “reply”, and that it makes sense to reason on it3.

There are actually various ways to justify this first assumption. For in-
stance, if we follow Einstein, Podolsky and Rosen [1], there is no special
difficulty here since the A’s are determined by the θ’s and the “elements of
reality” that the particles carry with them; the A’s may actually be iden-
tified with these elements of reality, or some function of them. The reader
who takes this point of view will probably feel that no special discussion is
needed at this stage and should skip this paragraph. Other justifications do
not imply at all microscopic properties of systems, but just considerations
on the results of measurements and on free will of the experimenters, as
sketched at the end of the preceding paragraph. On the other hand, there
are also contexts in which the assumption should immediately be rejected:
in the orthodox Copenhagen point of view for instance, saying anything
about the (unknown) values of the results for several choices of the θ’s is
not allowed.

We touch here the philosophical notion of contrafactuality [10][11], a
problem which extends beyond pure physics. Instead of giving a long list of
references on the discussion of contrafactuality and its philosophical back-
ground, we remain in pure physics and just refer the reader to one short
article by A. Peres [12] emphasizing the opposite point of view where “un-
performed experiments have no results”; indeed, if we may speak only about
past experiments or, among future experiments, only of exactly those that
will in fact be performed, all the rest of the present article becomes mean-
ingless! We nevertheless assume that this is not the case and continue our
reasoning.

Locality An important issue is then the θ dependence of the A’s. For the
group of particles number K, the only values of the settings that matter
are the θ’s chosen by the experimenters on that measurement; because the
time which separates every experiment may be arbitrarily long, we do not
assume any influence of apparatus settings made long ago in the past (or in
the future!). So we can write:

Ai(θ) = Ai(θ1, θ2, ., θn, ..θN ;K) (1)

3Of course, this is not assuming that we know what the reply would be. In mathematics,
it is common to reason on unknown quantities (this can be seen as the starting point of
algebra).
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where the θ’s are the settings for the group of particles numbered K; we
do not have to add K indices to these θ values since there is no ambiguity.
At this stage, the issue which becomes obvious is locality or non locality:
if we assume that Ai(θ) depends only on the local choice made by the ex-
perimenter for the apparatus setting, and not on that made by the other
experimenters (who can live in different galaxies), we may simplify (1) into:

Ai(θ) = Ai(θi;K) (2)

If, on the other hand, we do not assume locality, we must keep the whole θ
dependence contained in (1).

In what follows we discuss the consequences of the local equation (2);
assuming the validity of this equation is therefore our second assumption.

Correlations For the sake of simplicity, we limit ourselves to the case
where every local measurement can provide only two different results, as
would happen with Stern and Gerlach apparatuses; as usual we take the
convention where the two corresponding values are ±1. At this stage, we
have not yet assumed anything about the A’s, and we need more ingredients
to proceed; we have to assume something about the results, at least some
kind of correlation. In fact, we assume only one single property, namely that
for any combination of the values of the θ’s that has a sum of zero (or any
integer multiple of 2π), the product of all results takes only one of the two
possible values ±1,+1 for instance:

A1(θ1;K)×A2(θ2;K)×....×AN (θN ;K) = 1 whenever θ1+θ2+...θN = 0
(3)

(the above relation is valid for any K). The validity of (3) is our third as-
sumption. We note in passing that this equation does not forbid strong fluc-
tuations of every A separately; only the product of all A’s is fixed provided
that the sum of the angles has this particular value. We note that condition
(3) is satisfied by the quantum predictions concerning measurements on two
spins in a singlet state4.

2.1.2 Three lemmas

In this section, we first show that all A’s have the same θ dependence;
then that this dependence is necessarily even in θ; and finally that the θ
dependence must disappear altogether.

4With a sign change that is of no importance here, just a matter of definition: we could
assume that the products is −1 instead of 1.
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(i) Assume that for a particular run the experimenters choose a set of
angles with a vanishing sum. We then necessarily have:

A1(θ1;K) × A2(θ2;K) × .... × Ai(θi;K) × ... × AN (θN ;K) = 1 (4)

but also, if the first two angles are interchanged:

A1(θ2;K) × A2(θ1;K) × .... × Ai(θi;K) × ... × AN (θN ;K) = 1 (5)

so that taking the ratio provides:

A1(θ1,K)

A1(θ2,K)
=

A2(θ1,K)

A2(θ2,K)
(6)

This relation holds for any value of the angles since it is always possible to
find values of θ3, θ4, etc. for which the sum of all angles is zero5. Obviously
the same reasoning applies to any other pair of particles than the first two,
so that all ratios Ai(θ,K)/Ai(θ

′

,K) are necessarily equal for any value of i
(but for a given value of K). Taking the value θ

′

= 0 as a reference, we may
set:

Ai(θ,K)

Ai(0,K)
= X(θ,K) (7)

where X(θ,K) is a function which describes the common dependence of all
A’s on θ. We then have, for any value of the θ’s:

A1(θ1;K)×A2(θ2;K)×....×AN (θN ;K) = X(θ1,K)×X(θ2,K)×....×X(θN ,K)
(8)

To write this equation, we have used the fact that, according to (3), the
product of all Ai(0;K)’s is always equal to one .

(ii) Assume now that θ1 and θ2 have opposite values, all the other θ’s
being equal to zero. We then have:

A1(θ;K) × A2(−θ;K) × A3(0;K) × ... × AN (0;K) = 1 (9)

which, in terms of X’s, translates into:

X(θ,K) × X(−θ,K) [X(0,K)]N−2 = 1 (10)

5We see in passing why the reasoning is only possible for more than two particles; the
same is true in the reasoning of the third lemma.
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for any value of K. Since by their definition (7) all X’s are equal to one
when θ = 0, the bracket disappears from this equality; moreover, the possible
values of the A’s, and therefore of the X’s, being only ±1, they are equal to
their inverse so that (10) is equivalent to the statement that X is an even
function of θ:

X(θ,K) = X(−θ,K) for any K (11)

(iii) Let us choose any value of θ for θ1, choose −θ/2 for θ2, and complete
the series of θ’s so that the sum is zero (θ3 + θ4 + .... = −θ/2). We then
have:

X(θ,K) × X(−θ/2,K) × X(θ3,K) × ....... = 1 (12)

but also:
X(θ/2,K) × X(0,K) × X(θ3,K) × ....... = 1 (13)

from which we get, by taking the ratio and by using the fact that X(−θ/2,K)
and X(θ/2,K) are equal:

X(θ,K) = X(0,K) = 1 for any value of θ and K (14)

In the end we see that our assumptions lead to a very simple conclusion:
the settings used by the experimenters have no influence whatsoever on the
results obtained! This may be somewhat unexpected in view of the gener-
ality of condition (3), especially of the fact that it relates to a correlation
of high order (it says nothing about the correlations observed in one site of
measurement, and even nothing about the correlations observed of different
sites as long as one of them is ignored); nevertheless, combined with the
condition of locality, (3) has dramatic consequences on the θ dependence of
the results at each site.

2.2 Quantum entangled states with extreme coherence

We now reason in a different context, quantum mechanics, but in fact we
will introduce situations where condition (3) is still valid. We consider a
system containing N spin 1/2 particles, each of which has access to two
quantum states, | + > and | − > (orbital variables are ignored). The state
vector | Ψ > of the N particle system belongs to a space of dimension 2N

and it is clear that there is a broad choice on the kind of state we can select
as an initial state for a thought experiment. For instance there are states
where all particles are in the same one particle state α | + > +β | − >:

| Ψ >=
[

α | 1 : + > +β | 1 : − >
]

⊗
[

α | 2 : + > +β | 2 : − >
]

⊗ ....... (15)

9



which can be symbolized as:

| Ψ >=
[

α | + > +β | − >
]N

(16)

In this kind of state, every particle separately is in a coherent state; on the
other hand, since | Ψ > is an uncorrelated product, there is no overall coher-
ence at the level of many particles properties. Such states occur frequently
in the discussion of coherent spin precession experiments in NMR, or in the
theory of Bose Einstein condensation where a macroscopic number of parti-
cles occupies the same coherent quantum state. When written explicitly in
the basis of the kets | ±,±,±, ..± >, | Ψ > has in general 2N components.

Let us now consider the opposite kind of coherence where the number of
components of the state is reduced to its minimum: we assume that | Ψ >
has only non zero components on the two “extreme” states where all spin
components have the value + for the former, or the value − for the latter:

| Ψ >= α | +,+,+, ..+ > +β | −,−,−, ...− > (17)

This is a coherent superposition between states which are macroscopically
different (if N is large): since values for all spin components are different
6, they are actually built to have the maximum possible difference in their
single particle properties. While it was not the case for (16), equation (17)
defines a truly macroscopic quantum state; we call it a “entangled state with
extreme coherence”. We note in passing that, at the level of measurements
made on one particle only, the coherence is lost; the density matrix of one
particle corresponding to (17) is merely:

ρ1 =

(

|α|2 0

0 |β|2
)

(18)

which describes an incoherent superposition of the two states, | + > and
| − >. More generally, taking from (17) any partial trace completely destroys
the coherence, precisely because all particles change state from one compo-
nent to the other. So, in this state, quantum coherence can only appear for
measurements concerning the ensemble of all N particles.

6The fact that they are all + in one component and all − in the other does not matter
here, although for the sake of simplicity we consider only this case; the only thing that
really matters for the argument which follows is that is that every spin changes to an
orthogonal state when one goes from one component of | Ψ > to the other.
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2.2.1 Correlations between the quantum results

The measurement performed by every experimenter is the component of the
spin along a unit vector u(θ), which we assume to be in the xOy plane:

u(θ) = cos θ ux + sin θ uy (19)

with obvious notation. If S is the spin operator acting in the one spin space
of states (divided by h̄/2 so that its eigenvalues become ±1), the operator
corresponding to the measurement performed in region of space number
labelled j is then:

Sj(θ) = Sj · u(θ) = e−iθσ+ + eiθσ− (20)

where, as usually, the σ± operators are defined by σ± | ∓ >=| ± >. When
the experimenters choose the values θ1, θ2, ..θN for the angles, the quantum
average7 of the product of all results is:

E(θ1, θ2, ..θN ) =< Ψ | S1(θ1) × S2(θ2) × ..SN (θN ) | Ψ > (21)

This expression is easy to calculate when the state vector is given by
(17). Let us for instance write the result of the action of the operator in the
middle of this equation on the component | −,−,−, ..− > of | Ψ >; since
the effect of σ− on | − > is to give zero, considering (20) one easily sees that
only the term in σ+ in every Sj(θj) contributes, and one gets:

S1(θ1)×S2(θ2)× ..SN (θN ) | −,−,−, ..− >= e−i(θ1+θ2+...θN ) | +,+,+, ..+ >
(22)

which introduces a first term in α∗βe−i(θ1+θ2+...θN ) in the average value.
The second contribution, corresponding to the effect of all σ− operators, is
simply the complex conjugate. Therefore:

E(θ1, θ2, ..θN ) = α∗βe−i(θ1+θ2+...θN ) + c.c. (23)

where c.c. is for complex conjugate. In the particular case where:

α = β =
1√
2

(24)

7Even if the process we consider is actually a succession of measurements instead of
one, it is not necessary to treat it explicitly as a sequence (first considering the effect of one
single particle measurement by applying to | Ψ > the postulate of wave packet reduction
to get its new value, second starting from this new state for evaluating the probabilities
of the second measurement, etc.). Because all Sj(θ) commute (they are operators acting
in the space of states of different particles) we can directly obtain the desired result by
calculating the average of a product as in (21).
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Figure 2. Mean value of the product cf ail measurements when ail
settings e are equal: quantum theory predicts for some initial entan-
gled states an oscillation between + 1 and -1, while un der the same
conditions a local theory allows only the value + 1.

this result simplifies into:

E(θ1, θ2, ..θN ) = cos(θ1 + θ2 + ...θN ) (25)

This shows that, when the initial N particle state has the form (17), the
results of all N measurements are strongly correlated, and that full correla-
tions are obtained each time the sum of all angles is zero or 180 degrees. We
also note that the predictions of quantum mechanics fulfill condition (3).

2.2.2 Conflict with locality

Let us take the simple case where all angles are equal. Then:

E(θ, θ, ..θ) = EN (θ) = cos(Nθ) (26)

If we plot the θ dependence of M in this case, we obtain a sinusoid as
shown in figure 2; the higher the number of particle N , the faster the os-
cillations of the curve. They can indeed be called quantum, or non locality,
oscillations, since we have shown that, in any local theory (with, in addition,
very general contrafactuality assumptions) the function EN (θ) is necessar-
ily a constant, as represented by the broken line of figure 2. This figure
emphasizes therefore a particularly strong conflict: for some values of θ the
difference is a 100% difference (an opposite sign is obtained), a remarkable
fact that was first emphasized by the authors of [5].
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3 Production of entangled states

In this section we propose a scheme which could be used to put a system of
two particles or more into a “states of extreme coherence”. The traditional
approach in experiments on locality violation is to make use of particle
disintegration, often of atomic cascades, where one system (atom) sponta-
neously emits a group of correlated particles; in some cases, it turns out
that the quantum correlations are precisely those required for locality tests,
so that the desired entangled state is produced “naturally”. Instead of seek-
ing such cases, we use a strategy where we try to create the correlations
“actively” during measurements processes; the choice on the nature of the
measurements may introduce more parameters on the production of the ini-
tial state. Also, the usual experimental schemes rely on the production use
of short lived particles, photons for instance which fly at the velocity of light,
so that are annihilated (either by the detector or by the environment) after
a few nanoseconds; here we will discuss systems with stay almost immobile
in the laboratory and have lifetimes at the human scale, minutes or more,
making locality violations in a sense more spectacular.

3.1 Optical detection of single ions in traps

The trapping and observation of single ions is now a well known technique
(see for instance [13] [14]); it provides isolated quantum systems which re-
main stable for long periods. If, moreover, the ion is paramagnetic and has
a spin 1/2 in its ground (or metastable) state, it can retain a quantum co-
herence for a long time8. The classical technique for detecting the presence
of a single ion in a trap is the observation of resonance fluorescence excited
by a laser; since an atom or an ion can scatter one photon per lifetime of
the excited state, one can obtain photons fluxes that are of the order or
108 photons per second - many orders of magnitude more than what an
human eye can see in the dark. This is an attractive possibility but, for
experiments aiming at test of quantum mechanics with single particles, flu-
orescence detection does not seem too well suited: every photon absorption,
followed by the spontaneous emission of another photon, results in an opti-
cal pumping cycle for the ion, and destroys almost completely the ground
state coherence[15].

Measuring scattered light is not the only possibility; one can also rely on

8We do not enter technical discussions on the effect of ion motion in magnetic field
gradients, etc; we assume that the spins have a long transverse relaxation times in the
ground state.
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absorption measurements. Indeed, the absorption of a laser beam produced
by a single ion is not negligible when the beam is strongly focused on the
ion; one does not need a macroscopic number of ions. The reason is that
the resonant photon absorption is of the order of the square of the resonant
wavelength9, while this is precisely the order of magnitude of the minimum
area of a “laser beam waist”, a straightforward consequence of the laws of
diffraction. Significant changes of the properties of the transmitted laser
beam can therefore be observed with one single ion. Moreover, instead of
measuring photon absorption (imaginary part of the index of refraction) it
is possible to detect dispersive effects (real part of the index); this requires
shifting the frequency of the laser beam outside of the natural line width (the
detunig δω is larger that the inverse lifetime γ of the excited state), while
remaining sufficiently close to the ionic resonance frequency. The theory of
optical pumping [15][16] shows that, under these conditions, the effect of the
optical field is no longer to relax the ionic ground state, but to shift the two
sub-levels of the ground state in a way which can be described by an effec-
tive hamiltonian (virtual transitions). The most convenient way to detect
the effects of dispersion is to monitor polarization changes, more precisely
rotation of the plane of polarization for spin 1/2 particles (paramagnetic
Faraday effect); see for instance [16] or [17] for a general discussion of these
effects. If a linearly polarized photon beam propagates along the quantiza-
tion axis, it undergoes a rotation by an angle α if the spin is in state | + >,
but −α if it is in state | − >. Since with a single ion only two rotation
angles are possible, the result is quantized and the situation is similar to a
Stern and Gerlach experiment. Ideally, the order of magnitude of |α| could
be one radian; but this would require the choice of a relatively small value
for the ratio δω/γ, of the order of one, and automatically allow a high rate
of real photon absorption. Instead, one could detune more the laser and as-
sume that δω/γ ≃ 100 for instance; this would reduce10 the angle of Faraday
rotation by a factor 100 but, at the same time, by a factor 104 the rate of
absorption (it decreases as the inverse of square of the detunig factor); see
the end of the appendix for a rough discussion of the effect of the parameter
δω/γ.

9We assume that the oscillator strength of the optical transition is one and that the
laser intensity is sufficiently weak not to saturate the optical transition.

10Other possible source of reduction for the angle of rotation are purely geometric; see
appendix for a brief discussion of this question.
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3.2 Quantum measurements

We first discuss how the optical techniques discussed in the preceding section
can be used to perform quantum measurements on systems containing two
particles. A possible scheme is shown in figure 3: two distinct traps, which
can be separated by a macroscopic distance (meters), hold each a single
ion; a linearly polarized laser beam propagates along the line defined by the
two ions, so that the Faraday rotation after interactions in the two traps is
proportional to the sum of the two spin components (this is not equivalent
to separate informations on the orientation of each ion). Three results can be
obtained: a rotation of 2α will be observed if the two ions are in their | + >
state, a rotation of −2α if they are in their | − > state, and no rotation at
all if they are in opposite spin states. In other words, the relevant “quantum
observable” has three eigenvalues, two of which are non degenerate; the
third, corresponding to a zero rotation, is associated to a two dimensional
space of eigenstates:

b | +,− > +c | −,+ > (27)

(where b and c are arbitrary complex numbers obeying |b|2 + |c|2 = 1). The
possible angles of rotation are schematically shown in the right part of figure
3.

Suppose now for instance that, after interacting with the two ions, the
beam crosses a polarization analyzer which is oriented exactly at 90 degrees
of the polarizer inserted before the traps. No photon can then cross the
system unless it changes polarization; this means that, if a photon is detected
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by photomultiplier sitting behind the analyzer, the components of the two
spin state | Ψ > corresponding to zero rotation are eliminated by the effect
of wave packet reduction. Let us note | ‖ 〉 the initial polarization state of
the photons and |⊥〉 the state of orthogonal polarization. We assume that,
before the interaction, the state of two spins plus one photon is described
by the ket:

| Φ〉 =| Ψ >s ⊗ | ‖ 〉 (28)

where | Ψ >s is any spin state:

| Ψ >s= a | +,+ > +b | +,− > +c | −,+ > +d | −,− > (29)

After interaction | Φ〉 is changed into:

| Φ〉′ = a | +,+; 2α > +b | +,−; ‖> +c | −,+; ‖> +d | −,−;−2α > (30)

(with obvious notation) which is also equal to:

| Φ〉′ =
[

| Ψ >s −2 sin2 α [a | +,+ > +d | −,− >]
]

| ‖ 〉+
+ sin 2α [a | +,+ > −d | −,− >] |⊥〉 (31)

This equation shows that, if the photon is detected, the state of the spins is
instantaneously projected onto the new state:

| Ψ >
′

s= a | +,+ > −d | −,− > (32)

which is precisely of the general form (17). There is even flexibility on the
state obtained, since the values of a and b can be adjusted freely. This can
be obtained by initially polarizing the two spins along the quantization axis
(which can be obtained, beforehand, by optical pumping for instance) and
using NMR radiofrequency pulses (or any deterministic process rotating the
spins) to put them individually into a arbitrary coherent state α | + > +β |
− >, which may be the same or different for the two spins; if they are the
same one gets:

a = α2 ; d = β2 (33)

which shows that both components of (32) may be chosen arbitrarily. For
instance if, initially, both spins were polarized along Ox, the state | Ψ >

′

which is reached is the triplet state | 1, 1 > (with usual notation); if, on the
other hand, they start from opposite polarizations along Ox, one gets after
measurement the triplet | 1, 0 > state, and so on. But we must remember
that the system goes into state | Ψ >

′

only if the photon is detected by
the photomultiplier; another possibility is that a negative measurement is
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performed, which projects the state vector onto the ket in brackets in the
first line of (31); the desired state is therefore not always obtained. Moreover,
if a photon is not detected for some experimental reason (limited quantum
efficiency of the photomultiplier for instance), after interaction the state of
the spins does not remain pure, as easily seen by partial trace over the photon
variables. This is in fact not catastrophic since the same experiment can be
repeated a large number of times with weak optical pulses (containing about
one photon) from fresh spin initial conditions; one may try until a photon
is indeed detected in order to get the desired initial quantum state. If
the quantum efficiency of the photomultiplier is low, more attempts before
success may be necessary, but the desired state is obtained as soon as a
photon is eventually detected 11.

What happens now if, instead of two spins in two traps, we have four on
the same line? We can apply the preceding scheme recursively by doing, in a
first step, experiments separately on the two spins on the right and the two
on the left. The experiment can be initialized as many times as necessary
until one detects a photon on each side. This provides a quantum state of
the form:

| Ψ >
′

=
[

a | +,+ > +d | −,− >
]

⊗
[

e | +,+ > +h | −,− >
]

(34)

where the coefficients a, d, e and h are, as before, fixed by the arbitrary initial
orientations of the spins. Now, in a second step, by changing the optical
setup (moving mirrors for instance), we can now perform a measurement
on all four spins in the same line, and measure the sum of the four spin
components. As for two spins, three results are possible, and actually the
predictions are exactly the same except that the Faraday angles are now
doubled since all spins are grouped into pairs. The same type of setup with
crossed polarizer and analyzer will lead to the same prediction: if a photon
is detected after interacting with all four spins, the wave packet reduction
will project | Ψ >

′

onto a state:

| Ψ >
′′

= ae | +,+,+,+ > +dh | −,−,−,− > (35)

This, again, provides a “state with extreme coherence”, now for four par-
ticles12. Clearly, the scheme is iterative, and one could polarize 8, 16,...par-
ticles, but of course there are practical limitations: since at each stage of

11The only real problem arises from false events, due for instance to the intrinsic noise
of the photomultiplier.

12Alternatively, we could have measured the Faraday rotation of the two spins in the
middle; a non zero rotation would have produced the same four particle quantum state.
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the process the production of the desired state assumes that one photon is
detected, the overall probability of this occurring at all stages decreases with
the number of steps.

4 Conclusion

There is probably a whole variety of other possible schemes for constructing
quantum correlations by iterative application of the reduction of the wave
packet. The particular scheme we have discussed allows one to correlate 2n

particles in n successive steps. In theory, n could be arbitrarily large but,
since at each step there is a possibility of “failure” - a possibility that the
system will spontaneously be projected onto the states that are orthogonal
to the desired subspace - it is clear that the probability of “success” de-
creases exponentially for large values of n; in practice, due in particular to
limitations arising from the limited quantum efficiency of photomultipliers,
n will probably be limited to relatively small numbers (less than 10). In
terms of detection efficiency, one of the advantages of the detection of the
a transmitted laser beam, as compared to detecting the fluorescence that is
scattered in all directions, is to suppress the losses arising from solid angle
limitations; they are indeed the main source of loss in many photon cas-
cade experiments. Generally speaking, it may be interesting to make use
of the postulates of quantum mechanics, not only in the final step of the
measurement as usual in quantum mechanics experiments, but also at the
initial stage of the preparation of the system; this may offer more flexibil-
ity in testing the unexpected predictions of quantum mechanics in critical
situations.
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APPENDIX

In this appendix we give a slightly more precise discussion of change
of polarization that a laser beam undergoes when it goes across single ion
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sitting in a trap. It is classical, in optical pumping experiments, to monitor
the spin orientation of an atomic gas through changes of the polarization of
a transmitted beam of light[16]; there is nevertheless one difference with the
case that we study here: in optical pumping the gas of atoms usually extends
over a transverse distance that is much larger than the optical wavelength,
and the structure of the detection beam can be close to a plane wave; for
a single ion, the light scatterer is localized in a small region of space so
that a significant polarization change can be obtained only if the beam is
focused strongly. In other words, if a laser beam waist is formed on the ion,
the spatial average over the position of the scatterer may become different
from that which is usually done in calculations of detection signals in optical
pumping [17].

Let us nevertheless briefly recall what happens in the usual situation
where there are many scatterers randomly distributed across the beam. We
assume that the transition is electric dipolar. A convenient method to predict
the properties of the optical beam after crossing the sample of atoms is
to calculate the electric field as a coherent superposition of the incident
field and of the field radiated in the forward direction by the dipoles of the
atoms. For simplicity we assume the ground state level as well as the excited
level have a total angular momentum J = 1/2 (this simplifies the Grotrian
diagram and the angular algebra, but is not essential). In this case, if the
atom are all in the | +1/2 > state, whatever the polarization of the incident
beam, the field radiated by the atoms in the forward direction has a circular
σ+ polarization; if the incident polarization is also circular, the radiated
field is maximum for σ+ polarization while it vanishes for a σ− polarization.
If the atom are all in the | − > state, the same results hold except that
σ+ and σ− are merely interchanged; so we assume that the spin state is
| +1/2 > and the incident polarization σ+. Now, if the laser frequency falls
inside the natural linewidth (δω ≃ γ), it creates resonant excitation, and
the phase of the electric field radiated in the forward direction is the same
as that of the incident field; on the other hand, if the frequency falls outside
the natural linewidth (|δω| ≫ γ) one has non resonant excitation and there
is a π/2 dephasing. From this we can predict what will happen when the
incident polarization is linear, that is a coherent superposition of σ+ and
σ−:

(i) for resonant excitation, the radiated field will have its direction (which
is rotating since it is circularly polarized) parallel to the incident field at
times where this field is maximum, while is will be perpendicular a quarter
of an optical period later. On the average over many optical periods, and to
first order in the radiated field, this results in a reduction of the amplitude
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of the electrical field, and introduces absorption.
(ii) the situation is just the opposite is the excitation is non resonant:

when the incident linear field is maximum, the direction of the circularly
polarized radiated field is now perpendicular, and the net effect (again to
first order) is no longer an absorption of energy, but a rotation of the plane
of polarization. The angle of rotation is the same in all a transverse cross
section of the beam.

We now come back to the detection of a single particle sitting in a trap.
We assume that laser cooling techniques [18] are used so that the orbital
variables of the ion are described by the ground state in the trap, which
has a small spatial extension. Several situations are possible, depending
on the relative size of this extension and of the laser beam waist. If the
laser is focused strongly onto a spot that is smaller than the ground state,
the results of the preceding paragraph are basically still valid; the effect
of the probability cloud associated to the ground state can be described
as those of an index of refraction. If the sizes are comparable, which is
probably the best situation in practice, one gets an intermediate case. If the
ion is located in a regions that is smaller than the laser beam cross section,
the situation is analogous to a small antenna radiating coherently in the
middle of a broad electromagnetic beam; it radiates a spherical wave which
produces non uniform interference effects with the incident wave. Since the
amplitude of the spherical wave is a slowly varying function of direction,
while the incident wave is closer to a plane wave, there is no reason that
the polarization of the resulting interference should be uniform; for instance
larger rotations will be observed on the side of the incident wave, where the
relative effects of the spherical wave are relatively more important. In these
conditions one can get a complex polarization (and intensity) pattern after
the crossing of the trap, and the situation is far of being as simple as we
have assumed in the text. If we assume, nevertheless; that a symmetrical
design is used, as shown in figure 4, where a lens refocuses the beam on the
second trap so that the two beam waists have exactly the same geometry.
In this case, when the two spins are in opposite spin states, a symmetry
argument shows that the polarization of the beam after the two interaction
is unchanged (perfectly linear parallel to the incident polarization), while it
undergoes complex changes if the two spin states are the same. Since the
aim of the crossed polarizer was precisely to eliminate components of the
state vector on opposite spin states, the detection of a photon keeps the
same physical meaning, and the state preparation scheme discussed in the
text is preserved.
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Figure 4. A set-up with a Icns in the middlc of Iwo idenlical Iraps,
which, by symmetry, cnsures that the initial linear polarization will
be pure and unchanged each lime the two spins point in opposite
directions.

Another issue is how the value of the parameter δω/γ should be chosen.
The difficulty is that, for weak Faraday rotation angles, the probability for
a photon to cross the perpendicular analyzer is quadratic in the angle, so
that both the rate of detecting photons and that of real transitions (which
destroy the coherence of the state vector) vary as (δω/γ)−2. If we call X
the ratio between the area of the laser beam waist and the scattering cross
section λ2 and R the quantum efficiency of the photomultiplier, it is easy
to convince oneself that the ratio between the rates of photon detection and
of real optical excitation is of the order of R/X (when δω/γ ≫ 1), which
is always smaller than one. The strategy to adopt then is similar to that
already discussed in the text after equation (33): rely on rare events and
refresh the initial state as often as necessary, until a positive detection result
occurs. If, for instance, weak photon pulses are sent onto the ions, one may
choose conditions in which the probability of real excitations is, say, 10−2

per pulse; if the probability for detecting a photon on the photomultiplier
is for instance 10−3, it becomes necessary to repeat the experiment from
fresh initial conditions about a thousand times before obtaining a positive
result. But, then, the probability of getting the correct initial state will be
99% (assuming, as above, that the intrinsic noise of the photomultiplier is
negligible). Another possibility is to use extremely weak pulses containing
each one photon only.
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Figure captions

Fig. 1: A source S emits groups of N particles, each of which is directed
to a region of space i = 1, 2, 3, ...N and undergoes a measurement, which
depends on the setting θ that is locally chosen by an experimenter.

Fig. 2: Mean value of the product of all measurements when all settings
θ are equal: quantum theory predicts for some initial entangled states an
oscillation between +1 and −1, while in the same conditions a local theory
allows only the value +1.

Fig. 3: Two ions (circles) are stored in two different traps (schemat-
ically represented by hyperbolic electrodes) and a linearly polarized laser
beam (arrows) of no resonant frequency measures the sum of the two spin
orientations along its direction. After crossing the two traps, the linear po-
larization may have three directions, with angles ±α or 0; these angles are
schematically shown in the right part of the figure.

Fig. 4: A set up with a lens in the middle of two identical traps which,
by symmetry, ensures that the initial linear polarization will be pure and
unchanged each time the two spins point in opposite directions.
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