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Abstract : 

We give an overview of the general features of the linear viscoelastic adhesive contact model. 

The two main features are 1) a delay between the contraction of the contact radius and the 

onset of the indenter retraction; 2) the enhancement of the adherence force. We emphasize the 

role played by stress relaxation within the contact zone in these phenomena and give simple 

forms of the viscoelastic adhesive contact equations to account for it. Two characteristic 

timescales are identified, respectively associated with the crack tip and the contact zone. Their 

asymmetric roles in the growing and receding contact phases is evidenced. Energy release 

rates for both phases are calculated together with their irreversible components.  

 

Keywords: adhesion, adherence, contact mechanics, linear viscoelasticity, viscoelastic crack 

propagation. 

1 Introduction 

Probing the adherence of soft viscoelastic solids, as in the JKR test [1,2], assessing the 

mechanical properties of polymers in small scale contact experiments like nanoindentation [3] 
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or AFM [4-6], where surface forces interfere, or understanding the adhesion of molten glass 

to hot molds all require a model for the adhesive contact of viscoelastic bodies.  

Sometime ago, in this same journal, we had shown that the Sneddon method, based on the 

systematic application of Hankel transforms, provides wide reaching insight into the elastic 

contact problems of axisymmetric bodies [7]. Relying on the same method, we have recently 

proposed a theory of the adhesive contact within the linear viscoelastic regime [8,9]. The aim 

of the present contribution is to parallel our previous paper on the elastic case [7] with an 

exposition of the main ideas behind the adhesive contact of viscoelastic bodies. 

Let us recall the main steps in the development of the viscoelastic adhesive contact theory; a 

more comprehensive bibliographical list may be found in [8,9].  

In the 60s', the viscoelastic adhesionless contact problem has spurred a number of efforts, 

finally yielding Ting’s completely satisfactory theory in 1966 [10]. The next step, in the 70s’, 

was taken by Schapery, who described crack propagation in a viscoelastic medium by 

embedding a process zone into a linear elastic solid [11-14]. Coupling a viscoelastic crack 

behavior with an elastic contact has provided a first category of viscoelastic adhesive contact 

models [15]. One further step was taken when Hui et al. coupled a viscoelastic contact model 

to a viscoelastic crack model [16], as initially suggested by Schapery [14]. Their theory, 

however, is valid for an increasing contact radius only. Their attempt for a decreasing contact 

radius proved less successful [17,18]. 

The model for the viscoelastic adhesive contact we have recently proposed [8] is based on the 

Sneddon method of Hankel transform [7]. In a suitable limit [9], it turns out to simply couple 

Ting’s model for the adhesionless viscoelastic contact and Schapery’s viscoelastic crack 

approach. Under this form, it takes a particularly simple structure, in close connection with 

the JKR model [19] for elastic adhesive contacts. The aim of the present paper is to highlight 
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this connection and to present the main concepts underlying the adhesive linear viscoelastic 

contact model. 

2 Description of the adhesive contact 

The physics of the contact between two bodies is subtle and has to be simplified to be 

efficiently accounted for in a mechanical model. Several paths [20] may be followed for that 

purpose: one of them is to assume infinite repulsion at contact; and before contact, attractive 

interaction between surfaces over some finite range (Fig. 1). Then, in the adhesive contact, we 

can identify two zones: in the contact zone, the surfaces touch each other; outside this zone, in 

the interaction zone, tensile stresses are present without contact (Fig. 2).  

We now examine the consequence of these assumptions on the mechanics of the contact. 

2.1 Boundary conditions 

2.1.1 The inner problem: contact variables 

Inside the contact zone, the fact that the surfaces come to contact is specified by the following 

boundary conditions: 

)(for        )()(),( tarrftrtu <−= δ         (1) 

where ),( rtu  is the normal surface displacement, )(tδ  the penetration, )(rf  the shape of the 

indenter and )(ta  the contact radius. The main variables for the contact problem itself are thus 

the penetration and the contact radius. The third contact variable, the force, although often 

directly measured in practice, plays a less direct role in the theory, because it is the integral of 

the surface stress distribution and therefore specifies the boundary conditions less directly. 

2.1.2 The outer problem: the interaction zone variables 

Adhesion is expressed by the following boundary conditions: 
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where )(rp  is a stress distribution relevant to the physics of the adhesive process, )(rσ  is the 

normal surface stress, and ε  the size of the interaction zone (Fig. 2). 

2.2 Self-consistent description of the interaction zone 

In the interaction zone, normal surface stress, deformation and interactions are intimately 

coupled: the normal surface stress is a function of the of the gap between surfaces (Fig. 1), 

which itself depends upon the surface deformation, which is controlled by the normal surface 

stresses. As a result, a self consistent treatment is required [7,11]. The final useful equation is 

typically of the form 

∫
∞

=
a

dr

rdh
rdrw

)(
)(σ           (3) 

where w  is the adhesion energy and )(rh  the gap between surfaces. Although we more or 

less implicitly assume an interaction potential here, there is a priori no limitation to 

generalizing this method to more complex adhesive phenomena. 

The difficult issue here is that the mechanical relation between stress and surface 

displacement (and therefore the gap )(rh ) is non local, so that explicit expressions for (5) are 

often intricate. This treatment is simplified if we assume that the contribution of the 

interaction zone surface stresses to the interaction zone surface deformation dominates the 

contribution of contact zone stresses. An equivalent assumption is that the interaction zone 

size ε  is much smaller than the contact radius a . This is the essence of the JKR limit [19]. 

Then, the gap shape is dominated by the adhesive stress induced deformations [7], and 

equation (3) reduces to 

∗∝
E

w
εσ 2

           (4) 

in which *E  is the reduced modulus defined by (A4) in the appendix and the proportionality 

coefficient depends upon the details of the interaction. Under this form, the form of an elastic 
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energy release rate, the self-consistency equation (4) lends itself to a linear elastic fracture 

mechanics interpretation. For that purpose, in our formalism, we introduce a new quantity, 

)(ag , which, as will be shown below, naturally couples the contact and the interaction zones.  

On the interaction zone side, )(ag , which is defined in the appendix by (A1), is a function of 

the interaction stress distribution )(rp  (as defined in (2)) only. We have also shown 

previously [7] that in the elastic case, (4) can be written 

aE

ag
w ∗=

π

2)(2
           (5) 

 Therefore, )(ag  assumes the status of a stress intensity factor. Indeed, denoting K  the 

interaction zone stress intensity factor at a , we have shown [9] that 

a

ag
K

π
)(2−=            (6) 

Thus, the self consistent treatment of the interaction zone essentially specifies the stress 

intensity factor, K  or )(ag , characteristic of the adhesive interaction stress distribution. We 

now discuss how )(ag  determines the contact variables. 

2.3 Coupling the interaction zone to the contact zone 

If the adhesive interaction is zero, then the solution to the contact problem is the Hertz theory 

[21] for a spherical indenter (and its extensions for other geometries), which specifies the 

penetration δ  as a function of the contact radius a . This function )(0 aδ  depends upon the 

shape of the indenter )(rf  only. A general approach to the adhesive contact problem is then 

to specify the adhesive process and solve the interaction zone problem. The actual attractive 

stress distribution is thus determined. However, this attractive stress distribution pulls on the 

surfaces and, for a given penetration, increases the contact radius.  The penetration is then 
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)(
2

)()( 0 ag
E

at ∗+= δδ          (7) 

This equation shows that for a given contact radius, the additional term for the penetration is 

proportional to the adhesive interaction stress intensity factor, or more directly to )(ag . Note 

that )(ag  is negative, so that, for a given contact  radius, a reduction of the penetration with 

adhesion is predicted by (7). 

Another interpretation of (7) stems from the observation that the quantity )(
4

0δδπ −
∗Ea

 is 

the stress intensity factor generated by the additional stress distribution due to the additional 

flat punch displacement )( 0δδ − . Then, (7) states that this stress singularity is cancelled by 

the stress singularity due to the outer attractive stress distribution [22-23]. 

The penetration equation (7) and the force equation [7], which can be derived from (A9) in 

the appendix, form the contact equations which, together with the self consistency equation 

(5), provide the solution to the linear elastic adhesive contact problem. 

3 Viscoelastic Contact: main results 

We are now in a position to extend the previous model to viscoelastic behaviour by assuming 

a delayed elastic behaviour. We introduce the usual viscoelastic creep ϕ  and relaxation  ψ  

functions (Fig. 3). Stress σ  and deformation ε  now obey 

∫ −=
t

d

d
tdt

0

)()(
τ
εττψσ  

and 

∫ −=
t

d

d
tdt

0

)()(
τ
σττϕε . 

Under suitable conditions [8], this results in the description of the mechanics in terms of 

reduced creep ∗ϕ  and relaxation ∗ψ  functions. 



  

Document1 - 7 - 

As mentioned previously, in section 2.2, it is usually reasonable to assume that the interaction 

zone problem is local to the crack tip ( a<ε ). Then contact zone and interaction zone are 

coupled only through the variable )(ag . Under this assumption, we first consider the 

viscoelastic crack propagation. 

3.1 Self consistent crack problem 

The adhesive viscoelastic problem also requires some details of the physical process giving 

rise to adhesion. In the present approach, we suppose a “double-Hertz” interaction zone with 

characteristic stress 0σ  and adhesion energy w  [24]. This model is similar to a Dugdale 

model [22].  

We have shown [9] that 

εσπ
aag 2

4
)( 0−=           (8) 

In the viscoelastic case, time now plays a role so that a local timescale appears: rt , the time 

required by the crack to move a distance equal to the interaction zone size ε  (Fig. 2). As a 

result, we have a relation between the crack velocity (or contact radius velocity) dtda / , ε  

and rt : 

rtdt

da ε=            (9) 

Then, we obtain [9] that the viscoelastic crack behavior is given by: 

=w )(
)(2

1

2

rt
a

ag ∗ϕ
π

          (10) 

where 

ττϕτϕ dtt
t

t

t

)()(
2

)(
0

121 −−= ∫
∗∗

>         (11) 

when the contact radius increases and 
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τττϕϕ dt
t

t

t

)(
2

)(
0

121 −= ∫
∗∗

<         (12) 

when the contact radius decreases.  

We note that the form of (10) is identical to the form of (5), but the stress intensity factor is 

calculated from an effective compliance )(1 rt
∗ϕ , which depends upon the crack tip velocity. 

This effective compliance amounts to the instantaneous compliance when rt  is zero, is the 

long time compliance when rt  is infinite, and lies in between for intermediate rt .  

These results, which are arrived at through the treatment of the full contact problem [9], are 

comparable to Schapery’s viscoelastic crack propagation models. 

From (10-12), the stress intensity factor of the attractive interaction stress distribution can be 

calculated as a function of crack tip velocity. The typical behavior is exemplified in Fig. 4. 

This stress intensity factor has been identified above as the key parameter in the determination 

of the penetration, as we now discuss in more details. 

3.2 Penetration  

We now couple the viscoelastic crack problem to the viscoelastic contact problem. 

3.2.1 Inward (closing crack) 

We obtain [9] for increasing contact radius 

)())((2))(()( 00 rttagtat ∗+= ϕδδ         (13) 

where 

∫ −= ∗∗
t

dt
t

t
0

0 )(
1

)( ττϕϕ          (14) 

This penetration equation is equivalent to the elastic case (Eq. (7)) provided the effective 

compliance )(0 rt
∗ϕ  is substituted to the elastic compliance ∗E/1 . Setting 0=g , we recover 

the adhesionless viscoelastic case 
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))(()( 0 tat δδ =           (15) 

Note that )(0 t∗ϕ  is larger than )0(∗ϕ : due to creep, the penetration correction is larger than in 

the elastic case. 

3.2.2 Outward (opening crack) 

For decreasing contact radius, the main term is [9] 

))(()(
2

1
tagd

t

d

d
t

t

=−∫
−

∗ τ
τ
δτψ          (16) 

A corrective term which is not essential to understand the physics of the adhesive contact has 

not been included here. The time −t  is the time at which the present contact radius )(ta  was 

met during the increasing contact radius phase. Once again, setting 0=g , we recover the 

adhesionless solution by Ting [10] 

τ
τ
δτψ d

t

d

d
t

t

∫
−

−= ∗ )(0           (17) 

Equation (16) is central to the viscoelastic contact rupture. Comparing with (13), we observe 

that its structure is exactly inverse. The right-hand side is proportional to the attractive 

interaction stress intensity factor. But the viscoelastic effect, instead of scaling the stress 

intensity factor with the creep function and the local timescale rt , now appears under the form 

of a convolution of the penetration with the relaxation function over the full history of the 

system – that is to say between −t  and t . 

This form of the penetration equation is best explained if the cancellation of inner and outer 

stress intensity factors formulation (§ 2.3) is retained. This formulation gives to the left hand 

side in (16) the meaning of an inner stress intensity factor at t  and )(ta , which results from 

the flat punch displacement )(tδ  convoluted by the stress relaxation function .ψ  
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3.3 Force 

Although the force is a less direct expression of the contact boundary conditions, it is useful in 

practice because it is most readily obtained experimentally. 

Introducing ∫−=
a

rdraaf
0

0 )(),( δδδ , where the second term depends only upon the shape of 

the indenting body, from (A9) in the appendix, we have: 

a) for adhesionless elastic contact: )),((2)(2)( 000 aafEafEaF δ∗∗ ≡=  ;   (18) 

b) for an adhesive elastic contact: )(4)()( 0 aagaFaF += .     (19) 

3.3.1 Inward 

In the viscoelastic case, in the increasing contact radius case, the force is 

( ) τ
τ

ττδτψ d
d

adf
ttF

t

∫ −= ∗

0

)(),(
)(2)(         (20) 

from which the stress intensity factor may be extracted as 

)(4

)()0(
)(

)(

)(
0

0
0

r

t

ta

aFd
F

t

ag ∗

∗∗
∫ −

∂
∂−

=
ϕ

ϕτ
τ
ττϕ

        (21) 

From this equation and the self-consistency equation (10), dtda / can be extracted, so that by 

integration )(ta , and ultimately )(tδ are known. 

For instance, penetration under vanishing external force entails ( ) 0)(),( =tatf δ . Therefore, 

Rat 3/)( 2=δ .          (22) 

3.3.2 Outward 

The force is 

( )
)(4

)(),(
)(2

0
aagd

d

adf
tF

t

+−= ∫
− ∗ τ

τ
ττδτψ .      (23) 

from which )(ag  is directly extracted. Here again, the adhesionless case is readily obtained. 
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3.4 The adhesive viscoelastic contact: main phenomena 

The two main phenomena which signal viscoelastic behaviour in the adhesive contact will 

now be explained briefly. 

3.4.1 The stick zone 

The first characteristics of the viscoelastic adhesive contact is the delay between the time 

when the indenter starts moving backwards (Fig. 5) and the time when the contact radius 

starts to recede markedly. This delay we called the stick time [9] (Fig. 6). It is due to the fact 

that, in the region where the contact radius is maximum, the contact radius velocity is close to 

zero. Then, the interaction stress intensity factor, and )(ag , are small (Fig. 4). To get 

significant propagation, we must restore a higher )(ag . This is obtained by the backward 

motion of the indenter, but the effect is qualified by the stress relaxation (16). The condition 

for propagation is achieved only when the right hand side member in (16) is large enough, i.e. 

when the backward motion of the indenter overcomes the stress relaxation. This is the origin 

of the stick time. 

3.4.2 Adherence force enhancement  

The pull-out force in the elastic adhesive contact, in the small interaction zone size (or JKR) 

limit is Rwπ2/3 . Its independence from the actual elastic modulus of the contacting bodies is 

most noteworthy. It is due to the fact that compressive and tensile stresses within the contact 

zone balance each other at pull-out. 

For viscoelastic bodies, however, the picture is quite different (Fig. 7). Restoring a large stress 

intensity factor by the motion of the indenter )(tδ  brings back a sizeable tensile flat punch 

stress distribution within the contact zone (Fig. 8). At the same time, the compressive stresses 

within the contact zone have also decayed but are not restored by the present motion. This is 

apparent for instance in (23) where the first (compressive) term decays as )(t∗ψ  while the 
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second (tensile), originating from the flat punch tensile stress distribution, is identical in the 

elastic case.  

Once again neglecting corrective terms in the increasing contact radius part of the contact, 

(23) may be written simply 

( ) ( ))(4)()( 0 taagtaftF += ∗ψ         (24) 

We conclude that the decay of the compressive stress distribution within the contact zone, and 

therefore of its contribution to the total force, leads to the enhancement of the overall adhesive 

force (Fig. 8). 

3.5 Energy 

3.5.1 Energy release rate 

The energy release rate, which is the mechanical energy expended in propagating the contact 

per unit area, is expressed from (A10) in the appendix, as  

)),(()),((
1

ttattag
adA

d
G θ

π
=Ω=         (25) 

where the quantity )()(),( 0 atta δδθ −= is closely connected with the penetration equations 

(7), (13) and (16). G is zero in the absence of adhesion. If the contact is elastic, (5), (7) and 

(25) show that wG = . Since w  is the adhesion energy, gained from the crack propagation, 

this equality means reversible propagation. 

In the viscoelastic case, let us denote >G the energy release rate for increasing contact radius. 

Equation (13) results in 

a

ttag
G r

π
ϕ )())((2 0

2 ∗

> =          (26) 

Comparison with (10) shows that for increasing contact radius (closing crack), 

1
)(

)(

1

0 ≤= ∗
>

∗
>

r

r

t

t

w

G

ϕ
ϕ

          (27) 
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Mathematically, the wG />  ratio is smaller than one because ∗ϕ  is a monotonic increasing 

function. Physically, it means that the propagation of the crack is dissipative. However, we 

note that equality holds when the crack is very fast and also when it is very slow: the system 

is then effectively elastic. Reversibility of the crack propagation at high velocity is at variance 

with results by Schapery [11,12] and subsequently Greenwood and Johnson [13]. The reason 

is that Schapery assumes the relaxed state as the reference state. With fast cracks, however, 

this relaxed reference state is reached nowhere near the crack tip. Our present estimate of the 

dissipation is purely local, at the crack tip; dissipation due to stress relaxation inside the 

contact itself, which is also present in the adhesionless contact, is not included in the present 

expression for >G . 

A similar discussion for the receding contact radius phase is less straightforward because (16), 

however approximate, takes into account the full history of the system. We will therefore 

provide an approximate discussion, restricted to a special case. We assume that (Fig. 5)  

1) loading to the maximum penetration mδ  is fast; 

2) unloading takes place immediately after loading; 

3) the unloading rate dtd /δ  is constant. 

Then, (16) becomes: 

( ) ( )mm t
t

ta
t

tag δδψδδψ −+−=
∗

)(
2

)(
))((

2

)(
))(( 0

0       (28) 

where 

∫ −= ∗∗
t

dt
t

t
0

0 )(
1

)( ττψψ          (29) 

Now )()(0 0 tt ∗∗ << ψψ , so that, since )),(( ttag  is negative, we have 

0)),(()(/))((2)(/))((2 0 <<< ∗∗ ttattagttag θψψ   

and )),(( ttaθ  is also negative 
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)(

))((2 2

ta

tag
G ∗< >

ψπ
          (30) 

As a result, in the decreasing contact radius phase (growing crack) 

)()(

1

1 rttw

G
∗
<

∗
< ≥

ϕψ
          (31) 

Typically, we may expect the experimental time t  to be large and rt  to be small, at least 

when the contact recedes markedly. Then )(0 t∗ψ  is of the order of  the relaxed modulus 

)(+∞∗ψ : Schapery's relaxed reference state is recovered. Simultaneously, )(1 rt
∗
<ϕ  is of the 

order of the instantaneous compliance )0(/1 ∗ψ , and [15] 

)(

)0(

)()(

1

1 +∞
∝ ∗

∗

∗
<

∗ ψ
ψ

ϕψ rtt
          (32) 

which is much larger than 1 for a significantly viscoelastic material: a large dissipation 

appears in the outward phase.  

Then wG ≥< , but equality is restored at slow velocities (for a finite long time compliance) or 

for a loading cycle faster than any typical relaxation time.  

This dissipation can be rationalized in the following manner: the crack tip, which moves fast, 

with characteristic time rt , feels an effectively harder material (10). The flat punch 

displacement, however, applies to an effectively softer material, because of the viscoelastic 

stress relaxation (28) applies to the characteristic time t . As a result, for the same stress 

intensity factor, the flat punch energy release rate is much larger than the crack energy release 

rate. The energy difference is dissipated. 

4 Discussion 

Within the contact zone, we find both compressive (at the center) and tensile  stresses (at the 

periphery). The normalized 1.5 adherence force for an elastic adhesive (JKR [19]) contact 
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results from a balance between these two stress contribution. For viscoelastic bodies, 

however, the stress distribution inside the contact zone relaxes. As a result, the contact zone 

does not recede as soon as the indenter is pulled back, because the stress intensity factor is 

low, which leads to low contact radius velocities (Fig. 4). One requires sufficient (and 

sufficiently fast) backward motion of the indenter to restore a stress intensity factor large 

enough for the contact radius to actually decrease (Eq. 16).  

However, this additional tensile stress distribution (a flat-punch like stress distribution) does 

not contribute compressive stresses. Consequently, the balance between compressive and 

tensile stresses one finds in the elastic case is now offset, resulting in an enhanced adherence 

force. 

5 Conclusion 

 Two phenomena must be included in a complete model for the adhesive contact of 

viscoelastic spheres. Creep in the interaction zone reduces the stress intensity factor though a 

larger effective compliance. At the same time, stress relaxation inside the contact zone 

induces both a time lag between indenter retraction and contact radius decrease (“stick” 

effect) and an enhancement of the adherence force through unbalance between compressive 

and tensile stresses. Our models [8,9] provides a complete description of this combination of 

phenomena. 
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Captions: 

Fig. 1: Typical dependence of the interaction stresses with the gap (or distance) between 

surfaces, as assumed in the present contact model. 

Fig. 2: Left: contact zone (radius a ) and interaction zone (size ε ) in a typical adhesive 

contact. Right: definition of the dwell time rt . 

Fig. 3: Typical time dependence of the viscoelastic stress relaxation ψ  and creep ϕ  

functions. 

Fig. 4: Typical stress intensity factor K  or )(ag  dependence upon contact radius velocity. K  

decreases with velocity because the materials is effectively softer at lower velocity. 

Fig. 5: Typical penetration history for an adhesive contact experiment. 

Fig. 6: Typical contact radius history for a penetration history as in Fig. 5: most prominent is 

the so-called stick phase, where the contact radius stays close to constant while the 

penetration decreases. 

Fig. 7: Typical behavior of force as function of time: elastic (dashed) and viscoelastic (full) 

for the penetration history in Fig. 5. The prominent feature is the enhancement of the 

adherence force mainly due to stress relaxation within the contact zone. 

Fig. 8: Typical stress distribution in an adhesive contact (c): it is the linear superposition of 

the compressive adhesionless contact stress distribution for a penetration )(0 aδ  (shown here 

for a sphere) (a) and the tensile flat punch distribution (b). The stress singularity in (b) is 

proportional to the displacement correction )(0 aδδ − . In the viscoelastic contact, the contact 

time t  controls the amplitude of the compressive stress distribution through the stress 

relaxation function. A reduced compressive stress distribution leads to an enhanced adherence 

force. 
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Barthel, Haiat, Fig. 1 
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Barthel, Haiat, Fig. 2 
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Barthel, Haiat, Fig. 3 



  

Document1 - 21 - 

 

 

 

 

 

 

Barthel, Haiat, Fig. 4 
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Barthel, Haiat, Fig. 5 
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Barthel, Haiat, Fig. 6 
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Barthel, Haiat, Fig. 8 
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6 Appendix: Surface Elasticity: linear viscoelastic case 

6.1 Equilibrium 

Our usual method is to resort to specific transforms of the surface normal stress ( )rσ and 

surface normal displacement ( )ru distributions, as suggested by Sneddon [25]. These 

transforms are: 

( ) ∫
+∞

−
−=

r

ds
rs

ss
rg

22

)(σ
         (A1) 

( ) ∫ −
=

r

ds
sr

ssu

dr

d
r

0
22

)(θ          (A2) 

They are easily expressed in terms of the boundary conditions and simultaneously result in a 

local equilibrium equation: 

)(
2

)( r
E

rg θ
∗

=           (A3) 

where the elastic surface compliance 

21 ν−
=∗ E

E            (A4) 

(Young’s modulusE  and Poisson ratio ν )
1
.  

This approach contrasts with the direct method in the sense that the relation between surface 

stress and surface penetration 

                                                 

1 Note that in contrast to our previous papers, we will here use the contact mechanics standard definition 
∗E  for 

the reduced modulus instead of 2/∗= EK . Similarly, we will use the notation ψψ 2=∗
 and ϕϕ 2=∗

, 

where ψ  and ϕ  were the reduced stress and relaxation functions in our previous papers. The 
∗
 notation is used 

throughout the paper to denote such reduced quantities, not dynamic material properties. 
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sr

rp

E
su

−
= ∗

)(1
)(

π
          (A5) 

has now been diagonalized.  

Boundary conditions  determine 

)(for      )()(),( 0 tarrtrt <−= δδθ        (A6) 

In addition, it is easily generalized to the linear viscoelastic case. Following the standard 

treatment of linear viscoelasticity as delayed elasticity, we introduce the reduced creep 

function )(t∗ϕ  and relaxation function )(t∗ψ . Then, the equilibrium equation for a 

viscoelastic contact becomes 

∫ −= ∗
t

d
d

rd
ttrg

0

),(
)(),( τ

τ
τθτψ         (A7) 

or inversely     

∫ −= ∗
t

d
d

rdg
ttr

0

),(
)(),( τ

τ
ττϕθ         (A8) 

6.2 Force and Energy Stored 

With these notations, we obtain simple expressions for the total force 

∫
+∞

=
0

)(4 drrgF           (A9) 

and total elastic energy stored 

∫
+∞

=Ω
0

)()(2 drrrg θ           (A10) 


