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Abstract: We analyze the transient behavior of stochastic uid ow models in which the inputand output rates are controlled by a �nite homogeneous Markov process. Such models are usedin asynchronous transfer mode (ATM) to evaluate the performance of fast packet switchingand in manufacturing systems for the performance of producers and consumers coupled by abu�er. The transient analysis of such models have already been considered in earlier works andsolutions have been obtained by the use of Laplace transform. We derive in this paper a newtransient solution only based on recurrence relations. We show that this solution is particularlyinteresting for its numerical properties. The limiting behavior of the solution is also considered.We empirically show that the algorithm for computing the transient solution can be stoppedwhen some stationary behavior is detected.Key-words: ATM, uid models, Markov process, transient analysis.
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Analyse transitoire de mod�eles stochastiques uidesR�esum�e : On analyse le comportement transitoire de mod�eles stochastiques uides dontles taux d'entr�ee et de sortie sont contrôl�es par un processus de Markov �ni et homog�ene.De tels mod�eles sont utilis�es dans l'ATM (mode de transfert asynchrone) pour �evaluer lesperformances des r�eseaux haut d�ebit et en productique pour les performances de syst�emesproducteurs et consommateurs coupl�es par un tampon. L'analyse transitoire de tels mod�elesa d�ej�a �et�e consid�er�ee lors de pr�ec�edents travaux et des solutions ont �et�e obtenues en utilisantla transform�ee de Laplace. Dans cet article, on obtient une nouvelle solution transitoire bas�eeuniquement sur des relations de r�ecurrence. On montre que cette solution est particuli�erementint�eressante pour ses propri�et�es num�eriques. On consid�ere aussi le comportement limite de cettesolution. On montre de mani�ere empirique que l'algorithme calculant la solution transitoire peutêtre arrêt�e quand un certain comportement stationnaire est d�etect�e.Mots-cl�e : ATM, mod�eles uides, processus de Markov, analyse transitoire.



Transient Analysis of Stochastic Fluid Models 31 IntroductionA stochastic uid ow model describes the behavior of a uid level in a storage device. Theinput and output rates are supposed to be controlled by a �nite homogeneous Markov pro-cess. Such models are used in asynchronous transfer mode (ATM) to evaluate the performanceof fast packet switching and in manufacturing systems for the performance of producers andconsumers coupled by a bu�er. There is a large number of papers dealing with the analysisof stochastic uid ow models. Most of these papers consider such models in stationary re-gime. Anick et al. [1] and Kosten [2] analyzed the uid model for several on-o� input sourcescontrolled by a two-state homogeneous Markov process. Mitra [3] and [4] generalizes this modelby considering multiple on-o� inputs and outputs. In [5] Stern and Elwalid considered suchmodels for separable Markov modulated rate process which lead to a solution of the equilibriumequations expressed as a sum of terms in Kronecker product form. In [6] Igelnik et al. derive anew approach, based on the use of interpolating polynomials, for the computation of the bu�eroverow probability. An extensive list of references can be found in [7] and [8].For what concerns the transient analysis stochastic uid ow models controlled by a �niteMarkov process. Narayanan and Kulkarni [9] derive explicit expressions for the Laplace trans-form of the joint distribution of the �rst time the bu�er becomes empty and the state of theMarkov process at that time. Guillemin et al. consider the unbu�ered model in [10] and obtaina method to compute transient characteristics, such as the congestion period, with an unboun-ded number of exponential on-o� sources. These results have been extended by Dupuis et al.in [11] to the case where the o� periods are phase-type.The Laplace transform has been largely used to evaluate the transient behavior of uid owmodels. In [12] Ren and Kobayashi studied the transient distribution of the bu�er content forexponential on-o� sources of a single type. The same authors deal with the case of multipletypes of inputs in [13] These studies have been extended to the Markov modulated input ratemodel by Tanaka et al. in [14].In this paper, we consider a general stochastic uid ow model in which the bu�er is in�niteand the input and output rates are controlled by a �nite homogeneous Markov process. Forthis model we derive a new transient solution for the distribution of the bu�er content. Thissolution do not make use of any transform, it is only based on simple recurrence relationswhich are particularly interesting for their numerical properties. The algorithm implementingthis solution is very accurate since it uses essentially non negative numbers bounded by oneand it gives results with an error tolerance that can be speci�ed in advance. Furthermore, byconsidering the limiting behavior of the solution, we empirically show that the algorithm canbe stopped when some stationary behavior is detected.The remainder of the paper is organized as follows. We describe in the following section themodel and we present our new transient solution with some of its properties. In Section 3 we
PI n�1099



4 B. Sericoladescribe the algorithm implementing the solution. We empirically show in Section 4, throughnumerical examples, that the computation time of the solution can be considerably reduced byconsidering the limiting behavior of the solution. Section 5 is devoted to some conclusions.2 A New Transient SolutionWe describe in this section a general uid model with an in�nite bu�er for which the input andoutput rates are controlled by a homogeneous Markov process X = fXs; s � 0g on the �nitestate space S with in�nitesimal generator A and initial probability distribution �. The numberof states is denoted by jSj. The amount of uid in the bu�er at time t is denoted by Qt and wesuppose that Q0 = 0. The pair (Xt; Qt) forms a Markov process having a pair of discrete andcontinuous states. Let �i be the input rate and ci be the output rate when the Markov processX is in state i. We denote by di the e�ective input rate of state i, that is di = �i � ci. Letm+ 1, m < jSj, be the number of distinct values among all the e�ective rates di. These m+ 1distinct e�ective rates are denoted by r0; r1; : : : ; rm and ordered as followsrm > rm�1 > : : : > ru > 0 � ru�1 > : : : > r1 > r0;where u is the index of the smallest positive e�ective rate. The state space S of the process Xcan then be divided into m+1 disjoint subsets Bm; Bm�1; : : : ; B0 where Bi is composed by thestates i of S having the same e�ective rate ri, that is Bi = fj 2 S=dj = rig: We will denote byjBij the cardinal of subset Bi.For a �xed t > 0, the random variable Qt takes its values in the interval [0; rmt]. For t > 0, thedistribution of Qt has m�u+1 jumps at positive values and one jump at point 0 correspondingto the case where the bu�er is empty at time t. The jumps at the m � u + 1 positive valuescorrespond to the case where the Markov process X remains during the whole interval [0; t] inthe di�erent subsets Bu; Bu+1; : : : ; Bm, provided that the initial probabilities of these subsetsare positive. These jumps probabilities are then given, for j = u; u+ 1; : : : ; m byPrfXt = i; Qt = rjtg = �BjeABjBj t1i if i 2 Bj;where ABjBj is the sub-in�nitesimal generator of dimension jBjj obtained from A by consideringonly the internal transitions of the subset Bj and �Bj is the subvector of dimension jBjj obtainedfrom the row vector � by considering the initial probabilities of the subset Bi. The vector 1(i)is the column vector whose ith entry is 1 and the others 0, its dimension being given by thecontext (jBjj in this relation).The jump at point 0 is not so easy to obtain since the process X can eventually visit all thesubsets Bi before that the bu�er becomes empty at time t.
Irisa



Transient Analysis of Stochastic Fluid Models 5Let Fi(t; x) = PrfXt = i; Qt > xg. We then have the following partial di�erential equation,see for instance [14], @Fi(t; x)@t = �di@Fi(t; x)@x +Xr2S Fr(t; x)A(r; i): (1)We denote by P the transition probability matrix of the uniformized Markov chain withrespect to the uniformization rate � which veri�es � � max(�A(i; i); i 2 S). The matrix P isthen related to A by P = I + A=�, where I denotes the identity matrix. In the following, tosimplify notation, we will consider X as the uniformized process. For every i; j = 0; : : : ; m, wedenote by PBiBj the submatrix of P containing the transition probabilities from states of Bi tostates of Bj.The main result of this paper, which is the distribution of the pair (Xt; Qt) is given by thefollowing theorem.Theorem 2.1 For every i 2 S, we haveFi(t; x) = 1Xn=0 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�kb(j)i (n; k); (2)where xj = x� r+j�1t(rj � r+j�1)t if x 2 [r+j�1t; rjt), for j = u; u+ 1; : : : ; m, with r+j�1 = 0 for j = u andr+j�1 = rj�1 for j > u. The coe�cients b(j)i (n; k) are given by the following recursive expressionson the row vectors b(j)Bl (n; k) = �b(j)i (n; k)�i2Bl for 0 � l � m and u � j � m.for j � l � m :for n � 0 : b(u)Bl (n; 0) = (�P n)Bl and b(j)Bl (n; 0) = b(j�1)Bl (n; n) for j > ufor 1 � k � n : b(j)Bl (n; k) = rl � rjrl � r+j�1 b(j)Bl (n; k � 1) + rj � r+j�1rl � r+j�1 mXi=0 b(j)Bi (n� 1; k � 1)PBiBlfor 0 � l � j � 1 :for n � 0 : b(m)Bl (n; n) = 0Bl and b(j)Bl (n; n) = b(j+1)Bl (n; 0) for j < mfor 0 � k � n� 1 : b(j)Bl (n; k) = r+j�1 � rlrj � rl b(j)Bl (n; k + 1) + rj � r+j�1rj � rl mXi=0 b(j)Bi (n� 1; k)PBiBl :
PI n�1099



6 B. SericolaProof. See Appendix A.Formula (2) is particularly interesting from a computational point of view. Indeed, for everyj = u; : : : ; m and x 2 [r+j�1t; rjt) we have xj 2 [0; 1],0 � rl � rjrl � r+j�1 = 1� rj � r+j�1rl � r+j�1 � 1 for l = j; : : : ; m;and 0 � r+j�1 � rlrj � rl = 1� rj � r+j�1rj � rl � 1 for l = 0; : : : ; j � 1:It is then easy to check that for every i 2 S, j = u; : : : ; m, n � 0 and k = 0; : : : ; n we haveb(j)i (n; k) 2 [0; 1]. Moreover the error truncation of the series in (2) can be determined inadvance. These properties are very important for what concerns the numerical stability of thecomputation.For a given error tolerance ", we de�ne integer N asN = min(n 2 IN ����� nXi=0 e��t (�t)ii! � 1� ") :We then get, for every i 2 S,Fi(t; x) = NXn=0 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�kb(j)i (n; k) + e(N);where the rest of the series e(N) satis�es e(N) � ".The main computational e�ort is due to the computation of the b(j)Bl (n; k) given in Theo-rem 2.1. To illustrate the recurrence relation, we proceed as done in [15] for the performabilitycomputation. For each j = u; : : : ; m, we de�ne a partition of the state space S asUj = Bm [ � � � [ Bj and Dj = Bj�1 [ � � � [ B0;and denoting by T the transpose operator, we also de�ne the following column vectorsbUj (n; k) = �b(j)Bm(n; k); : : : ; b(j)Bj (n; k)�T and bDj (n; k) = �b(j)Bj�1(n; k); : : : ; b(j)B0(n; k)�T :With this notation, Fig. 1 illustrates the sequence of computations (drawn only for n = 0; 1; 2; 3)that have to be done in order to evaluate the b(j)Bl (n; k)'s. The upper (resp. lower) part of cell(n; k) in triangle j contains the vector bUj (n; k) (resp. bDj (n; k)). The computation is done inIrisa



Transient Analysis of Stochastic Fluid Models 7
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Figure 1: In cell (n; k) the vectors bUj (n; k) and bDj (n; k).a line by line manner over all the triangles following the arrows in Fig. 1. Note that the upperpart of the diagonal of each triangle of cells is reported in the upper part of the �rst columnof the next one and the lower part of the �rst column each triangle of cells is reported in thelower part of the diagonal of the previous triangle of cells. The starting points are given, forj = u; : : : ; m and for every n � 0, bybUj(0; 0) = ��Bm ; : : : ; �Bj�T ; bDj (0; 0) = �0Bj�1 ; : : : ; 0B0�T ;and bUu(n; 0) = �(�P n)Bm ; : : : ; (�P n)Bj�T ; bDm(n; n) = �0Bm�1 ; : : : ; 0B0�T :The way in which the computation of each cell (n; k) is performed is shown in Fig. 2. Itis now easy to evaluate the complexity of this method. The computation of one cell consistsessentially in a vector matrix product. If d denotes the maximum number of nonzero entriesin each column of the matrix P , the computational complexity of a cell is O(djSj). There arem� u+ 1 triangles each containing (N + 1)(N + 2)=2 cells. The computational complexity ofour method is then O(djSj(m� u+1)N2=2). We see from Fig. 2 and Fig. 1 that it is su�cientto store 2 rows of cells in order to compute the b(j)i (n; k). Thus the storage complexity of ourmethod is O((m� u+ 1)N jSj).
PI n�1099



8 B. Sericola( ) ( ) ( )( )( )( )( )( ) ( )( ) ( )( )
n� 1n

k � 1 k k + 1
Figure 2: Computation of cell (n; k).3 Stationarity DetectionWe empirically show in this section that the algorithm described above can be stopped whenthe stationary behavior of the model is detected.Let us denote by � the stationary distribution of the Markov process X. We suppose thatthe stability condition is satis�ed, that is� = Xi2S �i�iXi2S ci�i < 1;where � is the tra�c intensity, so that the limiting behavior exists. We also suppose for sakeof simplicity that for every i 2 S, we have �i 6= ci.With these assumptions, we have for every j = u; : : : ; m,limt�!1PrfQt > 0g = � and limt�!1PrfQt > rjtg = 0:From Relation (2), we have for every j = u; : : : ; m, and x 2 [r+j�1t; rjt)PrfQt > xg = 1Xn=0 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�kb(j)(n; k);where xj is as in Theorem 2.1 and b(j)(n; k) = Xi2S b(j)i (n; k):The following theorem gives an upper bound of the b(j)i (n; k). If v and w are two vectorshaving the same dimension, the notation v � w means that the inequality stands for each oftheir entry, that is, vi � wi for every i. Irisa



Transient Analysis of Stochastic Fluid Models 9Theorem 3.1 For every n � 0, for every j = u; : : : ; m, for every 0 � k � n and for every0 � l � m, we have b(j)Bl (n; k) � (�P n)Bl : (3)Proof. See Appendix B.Using this theorem, we easily verify that b(j)(n; k) � 1.Theorem 3.2 For every n � 1, for every j = u; : : : ; m and for every 1 � k � n, we haveb(j)Bl (n; 0) � b(j�1)Bl (n; n) for j > u (4)b(j)Bl (n; k) � b(j)Bl (n; k � 1) (5)Proof. See Appendix C.This theorem shows that for �xed n and i 2 S, the sequences b(j)i (n; k) and b(j)(n; k) arewide-sense decreasing in both j and k. It follows that b(j)(n; k) can be interpreted as thecomplementary distribution function of a discrete random variable which is the discrete versionof Qt. For this discrete random variable, the integer n represents the number of transitions overthe interval (0; t) for the uniformized Markov chain of X. Thus the limits limn�!1 b(j)(n; k)exist and in this case we must have necessarilylimn�!1 b(u)(n; 0) = �; limn�!1 b(u)(n; n) = 0 and limn�!1 b(j)(n; 0) = 0 for j = u+ 1; : : : ; m:The stationarity detection consists in stopping the computation of the b(j)i (n; k) when thevalues jb(u)(n; 0)� �j, b(u)(n; n) and b(j)(n; 0), j > u, are su�ciently small. This can be done asfollowsConsider the integer N de�ned in the previous section. We de�ne the integer Nu asNu = minfn j 1 � n < N and jb(u)(n; 0)� �j � "=3 and b(u)(n; n) � "=3gand for j = u+ 1; : : : ; m, we de�ne the integers Nj asNj = minfn j 1 � n < N and b(j)(n; 0) � "g:When Nj does not exist, we set Nj = N . If all the Nj are equal to N , we obtain the exactsolution described in the previous section.The approximation made here consists in considering that for n � Nu and for every k =0; : : : ; n, we have jb(u)(n; k)� limn�!1 b(u)(n; k)j � "=3 and that for every j = u+1; : : : ; m andfor n � Nj, we have b(j)(n; 0) � ".PI n�1099



10 B. SericolaIn practise, we often observe that for n � Nj, the sequence b(j)(n; k) are wide-sense monotone,so the approximation is justi�ed.From theorem 3.2, we can easily check that we haveNm � Nm�1 � � � � � Nu;so, when, for j > u+1, the integer Nj is reached, we stop the computation over triangle j (seeFig. 1) and we set bDj�1(Nj + 1; Nj + 1) = 0. The computation then continues over trianglesu; u+ 1; : : : ; j � 1.We then have for j > u+ 1 and x 2 [rj�1t; rjt),PrfQt > xg = NjXn=0 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�kb(j)(n; k) + e(Nj);where the rest of series e(Nj) satis�es under the approximation hypothesise(Nj) = 1Xn=Nj+1 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�kb(j)(n; k)� 1Xn=Nj+1 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�kb(j)(n; 0)� " 1Xn=Nj+1 e��t (�t)nn!� ":For j = u and x 2 [0; rut), we getPrfQt > xg = NuXn=0 e��t (�t)nn! nXk=0 � nk � xku(1� xu)n�kb(u)(n; k)+ 1Xn=Nu+1 e��t (�t)nn! NuXk=0 � nk �xku(1� xu)n�kb(u)(Nu; k) + e(Nu):The second sum which is in�nite can be easily expressed as a �nite one; we then obtainPrfQt > xg = NuXn=0 e��t (�t)nn! nXk=0 � nk �xku(1� xu)n�kb(u)(n; k)+ NuXk=0 e��txu (�txu)kk! b(u)(Nu; k) 241� Nu�kXn=0 e��t(1�xu) (�t(1� xu))nn! 35+ e(Nu);Irisa



Transient Analysis of Stochastic Fluid Models 11where the rest of series e(Nu) veri�ese(Nu) = 1Xn=Nu+1 e��t (�t)nn! NuXk=0 � nk �xku(1� xu)n�k(b(u)(n; k)� b(u)(Nu; k))+ 1Xn=Nu+1 e��t (�t)nn! nXk=Nu+1 � nk �xku(1� xu)n�kb(u)(n; k):Under our approximation hypothesis, we get for n � Nu : jb(u)(n; k)� b(u)(Nu; k)j � 2"=3 fork � Nu and b(u)(n; k) � "=3 for k � Nu + 1, so �nally we obtain e(Nu) � ".The complexity of this approximation is now a function of the truncation integers Ni. Thenumber of cells that must be computed in triangles i is equal to (Ni+1)(Ni+2)=2. So as for theexact algorithm, we easily obtain the computational complexity of the approximation which isO(djSjPm�u+1i=u N2i =2). By comparing the computational complexities of the exact and of theapproximation method, we see that, the approximation, if su�ciently accurate, must be usedfor large values of m. We will see in the next section that the values of the Ni can be very smallwith respect to N with a very high accuracy for the results obtained by the approximation.4 Numerical ExamplesWe present here some numerical results to illustrate our new solution technique and the ap-proximation based on the stationarity detection.We consider m statistically independent and identical on-o� sources. For each source, weassume that the on periods and the o� periods form an alternating renewal process and theirdurations are exponentially distributed with mean ��1 and �1 respectively. When a source isin the state on, it generates packets (or cells in the ATM terminology) at rate �. We denoteby C the multiplexer's output link capacity. Let Xs be the number of sources in the state onat time s. The process X = fXs; s � 0g is then a homogeneous Markov process over the statespace S = f0; 1; : : : ; mg. Its in�nitesimal generator A is a tridiagonal matrix whose entriesare A(i; i � 1) = i� for i = 1; : : : ; m, A(i; i + 1) = (m � i) for i = 0; : : : ; m � 1, and soA(i; i) = �i� � (m � i) for i = 0; : : : ; m. For each i 2 S, we have �i = i� and ci = C. Thetra�c intensity � is then � = m�C(� + ) :We �x � = 1, � = 1 and C = 0:8. This gives u = 1 and so the number of triangles that wehave to consider is equal to m. We consider various values of the number m of sources and ofthe o� rate  or of the tra�c intensity �. The error tolerance is �xed to " = 10�5. The �gures
PI n�1099



12 B. Sericola3 to 6 have been obtained using the exact algorithm and �gure 7 has been obtained using theapproximation method detecting the stationary behavior of the model.Figure 3 shows the complementary distribution of the bu�er content at time t for variousvalues of t. There are 2 input sources, the tra�c intensity is � = 5=6 and both sources areinitially in the o� state. It can be noted that both distributions for t = 100 and t = 200 arevery near from each other, which means that the stationary regime seems to be reached.Figure 4 shows the complementary emptiness function Pr(Qt > 0) for 2, 5 and 10 sourceswhen the tra�c intensity is � = 5=6 and all the input sources are initially in the o� state. Itcan also be noted the convergence of the curves to the tra�c intensity �.Figure 5 is particularly interesting from a numerical point of view. The value of the time is�xed to t = 1, the number of input sources is m = 2 and the tra�c intensity is � = 5=6. This�gure shows the complementary distribution of Q1 for di�erent initial probability distributions,which correspond to the case where all the input sources are o�, i.e. X0 = 0, the case wherethe input sources are in stationary regime, i.e. the distribution of X0 is �, and the case whereall the input sources are on, i.e. X0 = 2. When X0 = 0, the distribution has only one jumpat point 0 and it is not di�erentiable at point x = r1t = 0:2. When the distribution of X0is �, we observe the three discontinuities at points x = 0, x = r1t = 0:2 and x = r2t = 1:2.These two last discontinuities are easy to determine. For instance, we have PrfQ1 = 0:2g =�1e�(�+)t = 4e�1:5=9. The computation of PrfQ1 > 0:2 � 10�16g � PrfQ1 > 0:2g using ouralgorithm, gives exactly this result, the precision obtained is greater than 10�10. The sameobservation holds at point x = 1:2. Finally when X0 = 2, we observe the two jumps at pointsx = 0 and x = r2t = 1:2. As before, it is easy to check that, at point x = r2t = 1:2, the resultobtained using our algorithm is highly accurate. We also observe that the distribution is notdi�erentiable at point x = r1t = 0:2.Figure 6 shows the complementary distribution of Q100 for various values of the tra�c inten-sity �, including values greater than 1. The number of input sources is m = 2 and both sourcesare initially o�. For instance, we have PrfQ100 > 45g = 0:0001 for � = 1:25.Figure 7 shows the complementary distribution of Qt for various values of t. The tra�cintensity is � = 5=6, the number of input sources is m = 50 and all the sources are initially o�.This �gure has been obtained by using the approximation method based on the stationaritydetection. For t = 10, we obtained for the di�erent truncation steps N = 598, Ni = 51 � ifor i = 5; : : : ; 50, N4 = 374 and N3 = N2 = N1 = N . This shows the important gain incomputational complexity obtained by the approximation method. To evaluate the accuracyof the approximation method, we have executed the exact algorithm with the same inputparameters. We have observed that the greatest di�erence between the results of the twoalgorithms is equal to 2:2�10�6. This shows that our approximation method is highly accurateeven for small values of t. For t > 10 we obtain, as expected, an accuracy still higher than fort = 10.
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xFigure 7: From bottom to the top, PrfQt > xg versus x for t = 10; 20; 50; 80; 100; 150; 200 whenX0 = 0, m = 50 and � = 5=65 ConclusionWe developed a new transient solution of a uid model with an input and output controlledby a homogeneous Markov chain. Our solution do not make use of any transform, as done inprevious works. It is based on simple recurrence relations which are particularly interestingfor their numerical properties. The algorithm implementing this solution is very accurate sinceit uses essentially non negative numbers bounded by one and it gives results with an errortolerance that can be speci�ed in advance. We also develop an approximation method basedon the detection of the stationary regime of the model. It has been shown though numericalexamples that, as the exact method, this approximation method is highly accurate. Moreoverits computational time can be very low with respect to the exact method.References[1] D. Anick, D. Mitra, and M. M. Sondhi. Stochastic theory of a data-handling system withmultiple sources. Bell System Tech. J., 61(8):1871{1894, 1982.
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Transient Analysis of Stochastic Fluid Models 17[13] H. Kobayashi and Q. Ren. A mathematical theory for transient analysis of communicationnetworks. IEICE Transactions on communications, E75-B(12):1266{1276, 1992.[14] T. Tanaka, O. Yashida, and Y. Takahashi. Transient analysis of uid models for ATMstatistical multiplexer. Perf. Eval., 23:145{162, 1995.[15] H. Nabli and B. Sericola. Performability analysis: A new algorithm. IEEE Transactionson Computers, 45(4):491{494, April 1996.Appendix A. Proof of Theorem 2.1For t > 0 and x 2 (r+j�1t; rjt), for j = u; u+ 1; : : : ; m, we write the solution of equation (1) forevery i 2 S, as Fi(t; x) = 1Xn=0 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�kb(j)i (n; k);and we determine the relations that must be satis�ed by the coe�cients b(j)i (n; k). We have@Fi(t; x)@t = ��Fi(t; x)+ �rj � r+j�1 1Xn=0 e��t (�t)nn! nXk=0 � nk � xkj (1� xj)n�k[rjb(j)i (n+ 1; k)� r+j�1b(j)i (n+ 1; k + 1)];and@Fi(t; x)@x = �rj � r+j�1 1Xn=0 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�k[b(j)i (n+ 1; k + 1)� b(j)i (n+ 1; k)]:Using the uniformization technique, we haveXr2S Fr(t; x)A(r; i) = ��Fi(t; x) + �Xr2S Fr(t; x)P (r; i);that is,Xr2S Fr(t; x)A(r; i) = ��Fi(t; x) + � 1Xn=0 e��t (�t)nn! nXk=0 � nk �xkj (1� xj)n�k Xr2S b(j)r (n; k)P (r; i):It follows that if the b(j)i (n; k) are such that(di � r+j�1)b(j)i (n + 1; k + 1) + (rj � di)b(j)i (n+ 1; k) = (rj � r+j�1)Xr2S b(j)r (n; k)P (r; i) (6)PI n�1099



18 B. Sericolathen equation (1) is satis�ed.The recurrence relation (6) can also be written as follows, for j = u; : : : ; m.For i 2 B0 [ � � � [ Bj�1,b(j)i (n; k) = r+j�1 � dirj � di b(j)i (n; k + 1) + rj � r+j�1rj � di Xr2S b(j)r (n� 1; k)P (r; i)and for i 2 Bj [ � � � [ Bm,b(j)i (n; k) = di � rjdi � r+j�1 b(j)i (n; k � 1) + rj � r+j�1di � r+j�1 Xr2S b(j)r (n� 1; k � 1)P (r; i):Using matrix and vector notation, we get for j = u; : : : ; mb(j)Bl (n; k) = rl � rjrl � r+j�1 b(j)Bl (n; k � 1) + rj � r+j�1rl � r+j�1 mXi=0 b(j)Bi (n� 1; k � 1)PBiBl for 0 � l � j � 1b(j)Bl (n; k) = r+j�1 � rlrj � rl b(j)Bl (n; k + 1) + rj � r+j�1rj � rl mXi=0 b(j)Bi (n� 1; k)PBiBl for j � l � m:To get the initial conditions for the b(u)i (n; k), we consider the jumps of Fi(t; x).For t > 0 and i 2 Bu [ � � � [ Bm, we haveFi(t; 0) = PrfXt = ig = 1Xn=0 e��t (�t)nn! (�P n)(i):It follows that b(u)i (n; 0) = (�P n)(i);that is b(u)Bl (n; 0) = (�P n)Bl for u � l � m:For t > 0 and u � j � m� 1 and i =2 Bj, we haveFi(t; rjt) = limx <�!rjtFi(t; x);since i =2 Bj means that there is no jump at point x = rjt. It follows thatb(j+1)i (n; 0) = b(j)i (n; n) if i =2 Bj;That is, b(j+1)Bl (n; 0) = b(j)Bl (n; n) for l 6= j: Irisa



Transient Analysis of Stochastic Fluid Models 19This can also be written asb(j)Bl (n; 0) = b(j�1)Bl (n; n) for u < j � l � mb(j)Bl (n; n) = b(j+1)Bl (n; 0) for 0 � l � j � 1 < m� 1:Finally, for t > 0 and i =2 Bm, we have0 = Fi(t; rmt) = limx <�!rmtFi(t; x):It follows that b(m)i (n; n) = 0, that isb(m)Bl (n; n) = 0 for 0 � l � m� 1:The proof is now complete.Appendix B. Proof of Theorem 3.1The proof is made by successive inductions using the relations described in Theorem 2.1.Step 0. For n = 0 and for every j = u; : : : ; m, we haveb(j)Bl (0; 0) = 0Bl for 0 � l � j � 1b(j)Bl (0; 0) = �Bl for j � l � m:So the relation (3) is satis�ed for n = 0.Step 1. Suppose the relation (3) is satis�ed for integer n� 1 and let us prove it is true forinteger n � 1. Let u � j � m.Step 1.1. We �rst consider the case where 0 � l � j � 1.� For j = m we have from Theorem 2.1,? b(m)Bl (n; n) = 0Bl � (�P n)Bl.? Suppose that b(m)Bl (n; k + 1) � (�P n)Bl for integer k � n� 1. Then,b(m)Bl (n; k) = r+m�1 � rlrm � rl b(m)Bl (n; k + 1) + rm � r+m�1rm � rl mXi=0 b(m)Bi (n� 1; k)PBiBl� r+m�1 � rlrm � rl (�P n)Bl + rm � r+m�1rm � rl mXi=0(�P n�1)BiPBiBl= r+m�1 � rlrm � rl (�P n)Bl + rm � r+m�1rm � rl (�P n)Bl= (�P n)Bl :PI n�1099



20 B. SericolaSo the relation is satis�ed for n � 0, for j = m, for 0 � k � n, and for 0 � l � m� 1.� Suppose now that the relation is satis�ed for integer j + 1, j � m� 1.Using Theorem 2.1, we have? b(j)Bl (n; n) = b(j+1)Bl (n; 0) � (�P n)Bl :? Suppose that b(j)Bl (n; k + 1) � (�P n)Bl for integer k � n� 1. Then,b(j)Bl (n; k) = r+j�1 � rlrj � rl b(j)Bl (n; k + 1) + rj � r+j�1rj � rl mXi=0 b(j)Bi (n� 1; k)PBiBl� r+j�1 � rlrj � rl (�P n)Bl + rj � r+j�1rj � rl mXi=0(�P n�1)BiPBiBl= r+j�1 � rlrj � rl (�P n)Bl + rj � r+j�1rj � rl (�P n)Bl= (�P n)Bl:So the relation is satis�ed for n � 0, for j = u; : : : ; m, for 0 � k � n, and for 0 � l � j�1.Step 1.2. In the same way, we now consider the case where j � l � m.� For j = u we have from Theorem 2.1,? b(u)Bl (n; 0) = (�P n)Bl.? Suppose that b(m)Bl (n; k � 1) � (�P n)Bl for integer k � 1. Then,b(u)Bl (n; k) = rl � rurl b(u)Bl (n; k � 1) + rurl mXi=0 b(u)Bi (n� 1; k � 1)PBiBl� rl � rurl (�P n)Bl + rurl mXi=0(�P n�1)BiPBiBl= rl � rurl (�P n)Bl + rurl (�P n)Bl= (�P n)Bl :So the relation is satis�ed for n � 0, for j = u, for 0 � k � n, and for u � l � m.� Suppose now that the relation is satis�ed for integer j � 1, j � u+ 1.Using Theorem 2.1, we have Irisa



Transient Analysis of Stochastic Fluid Models 21? b(j)Bl (n; 0) = b(j�1)Bl (n; n) � (�P n)Bl :? Suppose that b(j)Bl (n; k � 1) � (�P n)Bl for integer k � 1. Then,b(j)Bl (n; k) = rl � rjrl � rj�1 b(j)Bl (n; k � 1) + rj � rj�1rl � rj�1 mXi=0 b(j)Bi (n� 1; k � 1)PBiBl� rl � rjrl � rj�1 (�P n)Bl + rj � rj�1rl � rj�1 mXi=0(�P n�1)BiPBiBl= rl � rjrl � rj�1 (�P n)Bl + rj � rj�1rl � rj�1 (�P n)Bl= (�P n)Bl:So the relation is satis�ed for n � 0, for j = u; : : : ; m, for 0 � k � n, and for j � l � m, whichcompletes the proof.Appendix C. Proof of Theorem 3.2The proof of relation (4) is immediate since, for j > u, we haveb(j)Bl (n; 0) = b(j�1)Bl (n; n)� �Bj�1P nBj�1Bj�11Bj�11fl=j�1g;where 1fcg = 1 if condition c is satis�ed and 0 otherwise. The proof of relation (5) is made bysuccessive inductions using the relations described in Theorem 2.1. Note that from Theorem 2.1,b(j)Bl (n; k) is a convex combination of two terms. It follows thatb(j)Bl (n; k) � b(j)Bl (n; k�1)() mXi=0 b(j)Bi (n�1; k�1)PBiBl � b(j)Bl (n; k) � b(j)Bl (n; k�1) for j � l � mandb(j)Bl (n; k) � b(j)Bl (n; k+1)() b(j)Bl (n; k+1) � b(j)Bl (n; k) � mXi=0 b(j)Bi (n�1; k)PBiBl for 0 � l � j�1:Step 0. We prove the relation for n = 1. For n = 1, j = u and u � l � m we have fromTheorem 3.1 b(u)Bl (1; 1) � (�P )Bl = b(u)Bl (1; 0):
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22 B. SericolaSuppose that the relation is satis�ed at level j � 1, j < m. Then for j � l � m, we have fromTheorem 2.1 and using the equivalence aboveb(j)Bl (1; 0)� b(j)Bl (1; 1) = rj � r+j�1rl � r+j�1 "b(j)Bl (1; 0)� mXi=0 b(j)Bi (0; 0)PBiBl#� rj � r+j�1rl � r+j�1 "b(j�1)Bl (1; 1)� mXi=0 b(j�1)Bi (0; 0)PBiBl# � 0So the relation is satis�ed for n = 1 and j � l � m.For n = 1, j = m and 0 � l � m� 1 we haveb(m)Bl (1; 1) = 0 � b(m)Bl (1; 0):Suppose that the relation is satis�ed at level j + 1, j > u. Then for 0 � l � j � 1, we havefrom Theorem 2.1 and using the equivalence aboveb(j)Bl (1; 0)� b(j)Bl (1; 1) = rj � rj�1rj � r+l " mXi=0 b(j)Bi (0; 0)PBiBl � b(j)Bl (1; 1)#� rj � rj�1rj � r+l " mXi=0 b(j+1)Bi (0; 0)PBiBl � b(j+1)Bl (1; 0)# � 0So the relation is satis�ed for n = 1 and 0 � l � j � 1.Step 1. Suppose the relation (5) is satis�ed for integer n � 1 and let us prove it is true forinteger n, n � 2. Let u � j � m.Step 1.1. We �rst consider the case where 0 � l � j � 1.� For j = m we have from Theorem 2.1,? b(m)Bl (n; n) = 0Bl � b(m)Bl (n; n� 1).? Suppose that b(m)Bl (n; k + 1) � b(m)Bl (n; k + 2) for integer k � n� 2. Then,b(m)Bl (n; k)� b(m)Bl (n; k + 1) = r+m�1 � rlrm � rl hb(m)Bl (n; k + 1)� b(m)Bl (n; k + 2)i+ rm � r+m�1rm � rl mXi=0[b(m)Bi (n� 1; k)� b(m)Bi (n� 1; k + 1)]PBiBl ;which shows that b(m)Bl (n; k)� b(m)Bl (n; k + 1) � 0:So the relation is satis�ed for n � 1, for j = m, for 1 � k � n, and for 0 � l � m� 1.Irisa



Transient Analysis of Stochastic Fluid Models 23� Suppose now that the relation is satis�ed at level j + 1, j � m� 1.? Using Theorem 2.1, we haveb(j)Bl (n; n� 1)� b(j)Bl (n; n) = rj � rj�1rj � r+l " mXi=0 b(j)Bi (n� 1; n� 1)� b(j)Bl (n; n)#� rj � r+j�1rj � rl " mXi=0 b(j+1)Bi (n� 1; 0)� b(j+1)Bl (n; 0)# � 0? Suppose that b(j)Bl (n; k + 1) � b(j)Bl (n; k + 2) for integer k � n� 2. Then,b(j)Bl (n; k)� b(j)Bl (n; k + 1) = r+j�1 � rlrj � rl [b(j)Bl (n; k + 1)� b(j)Bl (n; k + 2)]+ rj � r+j�1rj � rl mXi=0[b(j)Bi (n� 1; k)� b(j)Bi (n� 1; k + 1)]PBiBl;which shows that b(j)Bl (n; k)� b(j)Bl (n; k + 1) � 0:So the relation is satis�ed for n � 1, for j = u; : : : ; m, for 1 � k � n, and for 0 � l � j�1.Step 1.2. In the same way, we now consider the case where j � l � m.� For j = u we have from Theorem 3.2,? b(u)Bl (n; 0) = (�P n)Bl � b(u)Bl (n; 1).? Suppose that b(u)Bl (n; k � 2)� b(u)Bl (n; k � 1) � 0, for integer k � 2. Then,b(u)Bl (n; k � 1)� b(u)Bl (n; k) = rl � rurl [b(u)Bl (n; k � 2)� b(u)Bl (n; k � 1)]+ rurl mXi=0[b(u)Bi (n� 1; k � 2)� b(u)Bi (n� 1; k � 1)]PBiBl ;which shows that b(u)Bl (n; k � 1)� b(u)Bl (n; k) � 0:So the relation is satis�ed for n � 1, for j = u, for 1 � k � n, and for u � l � m.� Suppose now that the relation is satis�ed for integer j � 1, j � u+ 1.
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24 B. Sericola? Using Theorem 2.1, we haveb(j)Bl (n; 0)� b(j)Bl (n; 1) = rj � rj�1rl � rj�1 [b(j)Bl (n; 0)� mXi=0 b(j)Bi (n� 1; 0)PBiBl ]� rj � rj�1rl � rj�1 [b(j�1)Bl (n; n)� mXi=0 b(j�1)Bi (n� 1; n� 1)PBiBl ] � 0? Suppose that b(j)Bl (n; k � 2)� b(j)Bl (n; k � 1) � 0, for integer k � 2. Then,b(j)Bl (n; k � 1)� b(j)Bl (n; k) = rl � rjrl � r+j�1 [b(j)Bl (n; k � 2)� b(u)Bl (n; k � 1)]+ rj � r+j�1rl � r+j�1 mXi=0[b(u)Bi (n� 1; k � 2)� b(u)Bi (n� 1; k � 1)]PBiBl ;which shows that b(j)Bl (n; k � 1)� b(j)Bl (n; k) � 0:So the relation is satis�ed for n � 1, for j = u; : : : ; m, for 1 � k � n, and for j � l � m, whichcompletes the proof.
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