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Dynamo threshold in a turbulent medium

N. Leprovost and B. Dubrulle
SPEC/DRECAM/DSM/CEA Saclay and CNRS,
URA2464, F-91190 Gif sur Yvette Cedex, France

We study the magnetic self-generation in a turbulent conducting fluid by means of a stochastic
equation. Both the effect of the mean flow and that of the turbulent fluctuations are considered.
A quantitative criterion for the existence of a dynamo instability in the presence of turbulence is
derived. This criterion is expressed in terms of an average over the possible orientations of the
magnetic field. However, it can give insight about the influence of noise on the dynamo threshold.

PACS numbers: 02.50.-r 47.27.Gs 47.27.Jv

The process of magnetic field generation through the
movement of an electrically conducting medium is called
a dynamo. The dynamo process is akin to an instability
problem. When the conducting medium is a fluid, the
instability results from a competition between amplifi-
cation of a seed magnetic field via stretching and fold-
ing, and magnetic field damping through diffusion. This
is quantified by a dimensionless number, the magnetic
Reynolds number (Rm), which must exceed some criti-
cal value Rmc for the instability to operate. The back
reaction of the magnetic field onto the velocity through
the Lorentz force then implies existence of saturated equi-
librium solutions.

Another dimensionless number of importance in dy-
namo theory is the kinetic Reynolds number (Re) of the
conducting flow. As long as Re is small, the equations
of motions are generally amenable either to analytical
or numerical simulations. One interesting outcome of
these studies is the computation of Rmc, and its depen-
dence as a function of the flow symmetries, or boundary
conditions. Such studies for example evidenced the im-
portance of helicity (of lack of parity invariance) in the
magnetic field amplification and regeneration. When Re
is sufficiently large, the flow becomes turbulent, forbid-
ding both numerical and exact analytical studies. This
situation is typically met in natural objects (the Sun, the
Earth, Galaxies), or in liquid metal, where Re is typically
5 orders of magnitude larger than Rm.

Despite their obvious ubiquity in natural objects, tur-
bulent dynamos are not so easy to study or model. Com-
puter resources limit the numerical study of turbulent
dynamos to a range of either small Re (laminar dynamo)
or at best modest Re and Rm [1, 2]. Slightly more re-
alistic values of the parameters can be obtained in the
so-called “kinematic regime”where the magnetic field am-
plification is sufficiently weak for the back reaction of the
magnetic field onto the flow to be negligible. This results
in an uncoupling of the dynamics of the magnetic field
and velocity field, allowing to consider the action of a pre-

scribed velocity field, onto a magnetic field. The valid-
ity of this approximation in a strongly turbulent regime
is however questionable, as we shall see in the sequel.
These difficulties explain the recent development of ex-

periments involving liquid metals, as a way to study the
dynamo problem at large Re. Among the various oper-
ating experiments, however, a clear distinction appears
between set up with constrained or unconstrained geom-
etry. In the former case [3, 4], the fluctuation level is very
weak. The velocity field is then very close to its laminar
(mean) value. In these experiments, dynamos have been
observed, at critical magnetic Reynolds number compa-
rable to the theoretical value. In contrast, unconstrained
experiments [5, 6] are characterized by a large fluctuation
level (as high as 50 per cent). A surrogate laminar Rm
can then be computed, using the mean velocity field as
an input [7] but it is not clear whether the actual Rmc

has anything to do with this value, owing to the possible
influence of the correlations.

The purpose of this paper is to derive a description of
the influence of the turbulence on the dynamo thresh-
old. It is based on a stochastic description of small-scale
turbulent motions. This subject has been pioneered by
Kazantsev [8], Parker [9] and Kraichnan [10], and fur-
ther developed by the Russian school [11]. It has recently
been the subject of a renewed interest, in the framework
of anomalous scaling and intermittency [12], or compu-
tation of turbulent transport coefficients and probability
density functions (PDF) [13]. The present problem is an
example of instability or bifurcation in the presence of
a multiplicative noise. A classical associated difficulty
is the ability to define a meaningful threshold. It is in-
deed well known that such systems are characterized by
moment-dependent threshold, which forbids the direct
use of, e.g., the mean or the energy to detect the bi-
furcation threshold [14]. In the present paper, we use
the PDF of the magnetic field to identify a bifurcation
on the shape of this function and show that it coincides
with other estimates based on Lyapunov exponent.

The dynamic of a magnetic field B in an infinite con-
ducting medium of diffusivity η and velocity V, is gov-
erned by the induction equation:

∂tBi = −Vk∂kBi + Bk∂kVi + η∂k∂kBi (1)

We decompose the velocity field into a mean part V̄i and
a fluctuating part vi. In most laboratory experiments,
the mean part is provided by the forcing. As such, it is



2

generally composed of large scales, while the fluctuating
part collects all short time scale, small-scale movements.
In this regard, it is natural to consider the fluctuating
part of the velocity as a noise, to be prescribed or com-
puted in a physically plausible manner. The simplest,
most widely used shape is the Gaussian, delta-correlated
fluctuations, the so-called “Kraichnan’s ensemble”:

〈vi(x, t)vj(x
′, t′)〉 = 2Gij(x,x′)δ(t − t′) (2)

Equation (1) then takes the shape of a stochastic par-
tial differential equation for B. In that respect, we note
that the induction equation is linear and does not in-
clude explicit back reaction term allowing saturation of
any potential growth in the dynamo regime. This back
reaction is provided through the velocity which is subject
to the Lorentz-Force, a quadratic form of B. It is usually
ignored in the so-called kinematic regime (see above).
However, for reasons which will become clearer later, we
prefer to work with a modified induction equation, so as
to model this non-linear back reaction.

A practical way to include the effect of the Lorentz
in the induction equation in the large Prandtl number
regime has recently been proposed by Boldyrev [13]. It
consists in a modification of the velocity gradient like:

∂kvi −→ ∂kvi −
1

ν

d − 1

d
B2Bi (3)

where ν is the viscosity and d is the space dimension.
The effect of the Lorentz force is then to lower the effect
of the velocity gradients responsible for the growth of the
magnetic field. In the small Prandtl number regime, we
may generalize this prescription by considering that ν is
an ad hoc turbulent viscosity. In some sense, this modi-
fication is akin to an amplitude equation, and the cubic
shape for the non-linear term could be viewed as the only
one allowed by the symmetries [15]. The magnitude of
the prefactor is then unessential in the sequel.

Ignoring the magnetic diffusivity and using standard
techniques [13, 16], one can derive the evolution equa-
tion for P (B,x, t), the probability of having the field B

at point x and time t (we assume an homogeneous tur-
bulence for simplicity):

∂tP = −V̄k∂kP − (∂kV̄i)∂Bi
[BkP ] + ∂k[βkl∂lP ] (4)

+
d − 1

ν d
∂Bi

[B2BiP ] + 2∂Bi
[Bkαlik∂lP ]

+ µijkl∂Bi
[Bj∂Bk

(BlP )]

with the following turbulent tensors:

βkl = 〈vkvl〉 (5)

αijk = 〈vi∂kvj〉

µijkl = 〈∂jvi∂lvk〉

Due to incompressibility, the following relations hold:
αkii = µiikl = µijkk = 0.

The physical meaning of these tensors can be found by
analogy with the “Mean-Field Dynamo theory”[17, 18].
Indeed, consider the equation for the evolution of the
mean field, obtained by multiplication of equation (4) by
Bi and integration:

∂t〈Bi〉 = −V̄k∂k〈B
i〉 + (∂kV̄i)〈Bk〉 − 2αkil∂k〈Bl〉 (6)

+ βkl∂k∂l〈Bi〉 −
d − 1

ν d
〈B2Bi〉.

This equation resembled the classical Mean Field Equa-
tion of dynamo theory, with generalized (anisotropic)
“α”and “β”. The first effect leads to a large scale in-
stability for the mean-field, while the second one is akin
to a turbulent diffusivity. A few remarks are in order at
this point: i) our mean field equation has been derived
without assumption of scale separation. ii) From the ex-
pression of β, it is easy to show that is is always positive:
the magnetic diffusivity is enhanced in this case. This
property is an artefact of our neglect of the molecular
diffusivity, which may induce a “negative β effect”[19].
The account of molecular diffusivity requires functional
derivative and integration, leading to a much more com-
plex description than the present one. iii) The tensor µ
does not appear at this level. In the sequel, it will be
shown to govern the stochastic dynamo transition.

For this, we need to identify the threshold as a func-
tion of the noise properties. Here, we follow an idea by
Mallick and Marcq [14], and focus on the properties of
the stationary PDF of the system. Indeed, below the
transition, the only stable state is B = 0 and the PDF
should be a Dirac delta function. Above the transition,
other equilibrium states are possible, with non zero mag-
netic field. However, in the general case, it is not possible
to find analytical solution for the equation (4). We thus
resort to the following mean field argument. Changing
variable Bi = Bei where e is a unit vector (and can be
characterized by d − 1 angular variables), we can get an
equation for P (B, ei, x) . We now assume that there is
an uncoupling for P as P (B, ei) = P (B)G(ei, x), and
perform an average over the angular variables, to find
a closed equation for P (B). In some sense, this can be
regarded as a kind of angle/action variable separation,
with average over the fast variables. The final equation
for P (B) becomes:

∂P

∂t
= a

1

Bd−1

∂

∂B
[B

∂

∂B
(BdP )] (7)

− b
1

Bd−1

∂

∂B
(BdP ) +

d − 1

dν

1

Bd−1

∂

∂B
(Bd+2P )

where the coefficients a and b are given by averages
over the position and the angular variables 〈•〉φ =∫
• G(e,x) dxde:

a = 〈µijkleiejekel〉φ (8)

b = 〈∂kV̄ieiek〉φ + 〈µijkl(∆ikejel + ∆kjeiel)〉φ
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where we used ∆ij = ∂ni
(nj) = δij − eiej an “angu-

lar Dirac tensor”. One can notice that these coefficients
only explicitly involve the tensor µ. Nevertheless, one
must keep in mind that the tensor α and β enter these
expressions by mean of the angular distribution G(ei, x),
whose expression involves this two tensors in the gen-
eral case. In the derivation of equation (7), we use the
following expression for the gradient with respect to the
magnetic field:

∂

∂Bi
(BkG) = eiek

∂

∂B
(B G) +

∂

∂ei
(ekG), (9)

where the first part contains derivatives only with respect
to the radial variable and the last one with respect to the
angular ones. Using this decomposition in equation (4),
integrating with respect to x and e and making use of the
“integration by part on the angular variable”formula:

〈F (e)∂ei
[ejG(e)]〉φ = (d − 1)〈eiekF (e)G(e)〉φ (10)

− 〈∂ei
[F (e)]ejG(e)〉φ ,

leads to equation (7).
An obvious stationary solution of (7) is a Dirac func-

tion, representing a solution with vanishing magnetic
field. Another stationary solution can be found by set-
ting ∂tP = 0 in (7), with solution:

P (B) =
1

Z
Bb/a−d exp[−

d − 1

2νda
B2] (11)

where Z is a normalization constant. This solution can
represent a meaningful probability density function only
if it can be normalized, i.e., it is integrable over the vol-
ume element Bd−1. This remark provides us with a bi-
furcation threshold: there is dynamo whenever (11) is
integrable, i.e., when solution other than vanishing mag-
netic field are possible.

Condition of integrability at infinity of (11) requires a
be positive. This illustrates the importance of the non-
linear term which is essential to ensure vanishing of the
probability density at infinity. Condition of integrability
near zero requires b/a be positive. This leads us to iden-
tify a necessary and sufficient condition for existence of
a stationary dynamo as

a > 0 and
b

a
> 0 DY NAMO (12)

In some sense, this bifurcation (I) is obtained using the
mean field as control parameter. Another bifurcation
threshold can be defined using the most probable field
as control parameter. Indeed, an elementary calculation
shows that the condition for a maximum in the PDF is
b > ad. Therefore, the bifurcation threshold (II) with
the most probable field as control parameter is defined
by b = ad. This difference may have some relevance when
analyzing real data from experiment. To illustrate this,

we performed one dimensional simulations of a surrogate
equation mimicking our non-linear stochastic system. Of
course, the simulated equation is just a paradigm for the
type of bifurcation we encounters: strictly speaking, the
induction equation has no meaning in one dimension. In
that sense, one dimensional equation may be misleading,
so higher dimensional models are currently under study.
The time series and PDF for three different values of the
control parameter are shown on figure 1.
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FIG. 1: Result of the surrogate 1D model: ∂tx = (b+ξ(t))x−
γx3 with 〈ξ(t)ξ(t′)〉 = 2aδ(t − t′). On the left side we show
time series for 3 different values of the parameter b and on the
right side, the corresponding PDF and the theoretical curve
corresponding to equation (11).

The simulations show that the bifurcation (I) leads to
an intermittent behavior for the magnetic field reminis-
cent of the characteristic behavior of instability in pres-
ence of multiplicative noise, a phenomenon sometimes
called “on-off”intermittency [20]: typically, the magnetic
energy exhibits bursts separated by long quiescent (zero
magnetic energy) period. Equation (11) cannot rigor-
ously capture these intermittent states. However, two
facts are very suggestive of such a type of bifurcation in
our solution: (a) the distribution looks like a pure fluc-
tuation distribution, with ill-defined mean value (b) the
scaling for ‖B‖ ≪ 1 (magnetic energy) is the same as
that of [20]: P (‖B‖) = ‖B‖γ with γ = b/D − 1, where
D is a “diffusion coefficient”for the finite-time Lyapunov
exponent. On the contrary, the bifurcation (II) is quite
different in nature because of a well defined mean value
for the magnetic field and fluctuations around this mean.
Note also that if we consider the dynamo instability in
absence of noise, a = 0, the two bifurcation threshold col-
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lapse. As stated by [20], the bifurcation corresponding
to b > 0 may be difficult to observe in real experiments
because, under the threshold, the presence of the Earth
external magnetic field always gives rise to magnetic fluc-
tuations qualitatively similar to that above the threshold
(magnetic bursts separated by quiescent period). This
effect can be taken into account by adding an additive
noise to equation (1).

In classical theory of dynamical systems stability, the
instability criterion is usually associated with the exis-
tence of a positive Lyapunov exponent for the growth of
the system energy: lim ln B2/2t = lim lnB/t. It is pos-
sible to find this exponent in our case, by multiplying
equation (7) by Bd−1 lnB and integrating with respect
to B. This yields:

∂t〈lnB〉 = b , (13)

meaning that the Lyapunov exponent in our system is
equal to b. The two instability criteria (existence of a
normalizable solution or a positive Lyapunov exponent)
are therefore identical provided a > 0, a necessary con-
dition for integrability of the PDF at infinity.

It is now interesting to discuss qualitatively the mean-
ing of our main result (12). It is possible to show that
for isotropic or axisymmetric velocity fluctuations, the
coefficient a is positive. So we suspect that the main
condition for existence of a dynamo is positivity of b.
Therefore, in the limit of zero noise, the term propor-
tional to µ is negligible and the dynamo threshold is only
determined by the condition 〈∂kV̄ieiek〉φ > 0. Since the
magnetic field will mainly grow in the direction given by
the largest eigenvalue λmax of Sij = ∂j V̄i, this average
will be equal to λmax, and the dynamo threshold will be
the same as in the deterministic case. Consider now a
situation where you increase the noise level. Two differ-
ent influences on the sign of b then result: one through
the factor proportional by µ. According to the sign of
this factor, it can therefore favor or hinder the dynamo.
Another less obvious influence is through vector orienta-
tion. Indeed, noise changes the distribution of magnetic
field orientation. For example, if noise induces a flat dis-
tribution for ei, then 〈∂kV̄ieiek〉φ = Sii = 0. Even more
dramatic results can be obtained if the noise tends to
align the vector along a direction of negative eigenvalue
for Sij , since in that case the factor 〈∂kV̄ieiek〉φ becomes
negative, decreasing the dynamo threshold. From these
two examples, one sees that in the presence of noise, the
dynamo threshold can be completely disconnected from
the dynamo threshold in the deterministic system ! It is
therefore dangerous to dimension laboratory experiments
from arguments based only on the deterministic system.

Our approach gives a quantitative criterion on the dy-
namo threshold (namely b > 0). However, its practical
implementation requires the measure on the angular and
position variables G(x,n, t) and the average of the ten-
sor µ with this measure. One can obtain the measure by

multiplying equation (4) by Bd−1 and integrating with
respect to B. Unfortunately the equation for G can not
be solved in the general case and particular types of tur-
bulence statistics have to be considered (isotropic, ax-
isymmetric, etc...). Work is under progress to determine
the angular measure in these simple cases. It is however
interesting to note that these measure explicitly depend
on the tensors α and β defined in (5) and appearing in
the Mean Field Equations (6). In that sense, the dynamo
threshold does depend on these tensors, albeit in a less
explicit way than in the Mean Field Equations (MFE).
It would therefore be interesting to confront threshold
derived from (MFE), which are µ independent, and from
our theory, to see what kind of error in the threshold de-
termination one can expect by using MFE instead of the
true, non-perturbative theory.
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