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Abstract

The Bogoliubov transformation is generally derived in the context
of identical bosons with the use of “second quantized” a and a† opera-
tors (or, equivalently, in field theory). Here, we show that the transfor-
mation, together with its characteristic energy spectrum, can also be
derived within the Hilbert space of distinguishable particles, obeying
Boltzmann statistics; in this derivation, ordinary dyadic operators play
the role usually played by the a and a† operators; therefore, breaking
the symmetry of particle conservation is not necessary.

The Bogoliubov transformation [1][2] is an essential tool in the theory of
Bose-Einstein condensation of identical bosons1. It modifies the quadratic
energy spectrum of free particles into a quasiparticle spectrum which in-
cludes a linear variation for small momenta; this feature is generally asso-
ciated with the existence of phonons and, since it introduces a non zero
minimum value for the ratio between the energy and momentum, it allows
a natural derivation of the notion of critical velocity (a maximum veloc-
ity for the system to remain superfluid). Usually, the mathematics of the
Bogoliubov transformation is performed within the formalism of creation
and annihilation operators (often called “second quantization” for historical
reasons); assuming that the system is entirely made of identical particles,
one then uses a formalism which automatically ensures a full symmetriza-
tion of the state vector. Nevertheless, the notion of phonons has a much
broader scope in physics than just identical quantum particles; it is even
often discussed in the context of classical systems, solids or even fluids. One
can therefore wonder whether it is possible to re-derive the Bogoliubov spec-
trum in a context where the particles are considered as distinguishable and
where, as a consequence, the effect of exchange operators remains completely

1Historically, the first introduction of the mathematical transformation seems to be the
work of Holstein and Primakoff in 1940 [3], in the context of magnetic systems.
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explicit. The purpose of the present article is to show how this is indeed pos-
sible. Another motivation for a mathematical derivation of the Bogoliubov
transformation within the Hilbert space of distinguishable particles arises
for the use of Ursell operators in statistical mechanics [4], a formalism in
which the symmetrization of the states is not introduced implicitly from the
beginning of the calculations, but explicitly and at a later stage with the
help of exchange cycles.

Another similar question is the study of the influence of particle con-
servation in the derivation of the Bogolubov spectrum; see references [5]
and [6]. Here, we will also take an approach where the conservation of the
number of particles is taken into account exactly (no symmetry breaking).
Nevertheless, the problem that we study is different: we are not dealing with
conservation rules within the space of state of distinguishable particles, but
with the effect of expanding this space to a larger space that is associated
with distinguishable particles.

1 Hamiltonian

The hamiltonian of the problem is:

H =
N∑

i=1

(Pi)
2

2m
+

1

2

∑

i 6=j

V (i, j) (1)

where N is the number of particles, m their mass, Pi the momentum of par-
ticle numbered i, and V (i, j) the interaction energy of particles numbered i
and j. The simplest assumption is to take the matrix elements of this inter-
action potential as constant, provided they satisfy momentum conservation
(otherwise they of course vanish):

< i : k , j : k
′ | V (i, j) | i : k+ q , j : k

′ − q >= g (2)

where g is the coupling constant, inversely proportional to the volume of the
system2. The hamiltonian can then be written:

H =

N∑

i=1

(Pi)
2

2m
+

g

2

∑

i 6=j

∑

k,k
′
,q

| i : k , j : k
′

>< i : k+ q , j : k
′ − q | (3)

In this expression the interaction term contains, first, the forward scat-
tering terms q = 0 which can be written:

g

2

∑

i 6=j

∑

k,k
′

| i : k ><i : k | ⊗ | j : k′

><j : k
′ |

=
g

2

∑

i,j

∑

k,k
′

| i : k ><i : k | ⊗ | j : k′

><j : k
′ | −g

2
N

(4)

2In the thermodynamic limit, g itself tends to zero, but products such as gN keep a
finite value.
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or simply:
g

2
N(N − 1) (5)

As for the q 6= 0 terms, they never contain 4, or even 3, vanishing momenta;
the terms containing 2 vanishing momenta can include them, either in the
same side of the operator, or in opposite sides:

g

2

∑

i 6=j

∑

k 6=0

[
| i : 0 , j : 0 >< i : k , j : −k | +h.c.

]

+
g

2

∑

i 6=j

∑

k 6=0

[
| i : 0 , j : k >< i : k , j : 0 | +h.c.

] (6)

where h.c. is for Hermitian conjugate. It is convenient to express the second
line3 of this expression as a function of simpler (diagonal) operators by re-
writing it in the form:

g
∑

i 6=j

∑

k 6=0

[
| i : k , j : 0 >< i : k , j : 0 |

]
+Was. (7)

where Was. is the (antisymmetrical) interaction operator:

Was. = −g
∑

i 6=j

∑

k

[
1− Pexch.(i, j)

]
| i : k , j : 0 >< i : k , j : 0 | (8)

Here, Pexch.(i, j) is the exchange operator of particles i and j (the condition
k 6= 0 in the summation can be released since the corresponding term van-
ishes); another equivalent expression of Was. can be obtained by applying
the exchange operator to the right4:

Was. = −g
∑

i 6=j

∑

k

| i : 0 , j : k >< i : 0 , j : k |
[
1− Pexch.(i, j)

]
(9)

(in passing, we see that Was. is Hermitian). Now, the first operator in (7)
can be simplified into:

g
∑

i,j

∑

k 6=0

[
| i : k >< i : k | ⊗ | j : 0 >< j : 0 |

]
(10)

(the constraint i 6= j can be released since every term i = j in the summation
is zero, due to the orthogonality of single particle states), or again:

g N0

∑

k 6=0

nk = g N0Ne (11)

3For this operator in the second line, interchanging the dummy indices i and j is
equivalent to an hermitian conjugate operation; for this term, we can therefore ignore the
h.c. and just replace g/2 by g .

4In (7), (8) or (9), interchanging the dummy indices i and j is equivalent to interchang-
ing the states labelled by 0 and k.
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where nk is the population of the excited state labelled by momentum k:

nk =
∑

i

| i : k >< i : k | (12)

N0 the population of the ground state (for the ground state, we use a capital
letter to emphasize that it has an extensive population, but N0 is in fact the
same operator as n0):

N0 =
∑

i

| i : 0 >< i : 0 | (13)

Ne as the operator associated with the total number of excited particles:

Ne =
∑

k 6=0

nk = N −N0 (14)

Finally, the interaction terms with 2 vanishing momenta can be written:

g

2

∑

i 6=j

∑

k 6=0

[
| i : 0, j : 0 >< i : k, j : −k | +h.c.

]
+ g N0 Ne +Was. (15)

.
Last, the only interaction term that we have not yet included corresponds

to the interaction between particles in excited states; we call this operator
Vee:

Vee =
g

2

∑

i 6=j

∑

k,k
′
6=0

∑

q 6=0,−k,+k
′

[
| i : k, j : k′

>< i : k+ q, j : k
′−q | +h.c.

]

(16)
but, in what follows, we will merely neglect its effect; this is because the
system will be supposed to be at sufficiently low temperature and to be
sufficiently dilute so that most of the particles remain in the ground state;
interaction effects proportional to the square of the excited state populations
are then negligible.

To summarize, we have obtained the following expression for the Hamil-
tonian:

H =
∑

k 6=0

(ek + gN0)nk +
g

2
N (N − 1)

+
g

2

∑

i 6=j

∑

k 6=0

[| i : 0, j : 0 >< i : k, j : −k | +h.c.]

+Vee +Was.

(17)

where the free particle energy ek is defined, as usual, by:

ek =
ℏ
2k2

2m
(18)
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2 Another expression of the hamiltonian

We introduce in this section a new hamiltonian H
′

which in a second step,
we will identify with H term by term.

2.1 Introducing new creation and annihilation operators

We now define the operator Ak by:

Ak =
1√
N

∑

i

{αk | i : 0 >< i : k | +βk | i : −k >< i : 0 |} (19)

where we assume that αk and βk are real numbers, which are for the moment
not fixed, but which are supposed to be even functions of the vector k:

αk = α−k ; βk = β−k (20)

Ak is defined as an operator which removes a momentum ℏk from the system
by, either transferring one particle from momentum k to zero, or from zero
to −k; it is a single particle operator which, if restricted within the totally
symmetric part ES of the Hilbert space, could be expressed (through the
well known expression of single particle operators) as:

AS
k =

1√
N

{
αka

†
0ak + βka0a

†
−k

}
(21)

with the usual notation for the creation and annihilation operators ak and
a†k.

The Hermitian conjugate of Ak is equal to:

A†
k =

1√
N

∑

j

{αk | j : k >< j : 0 | +βk | j : 0 >< j : −k |} (22)

We can now calculate the commutator of Ak and A†
k
term by term. For

instance, the commutator of | i : 0 >< i : k | with | j : k >< j : 0 | is zero
except if i = j; assuming that this is the case, the commutator is given by:

| i : 0 >< i : k | i : k >< i : 0 | − | i : k >< i : 0 | i : 0 >< i : k | (23)

which is merely the difference| i : 0 >< i : 0 | − | i : k >< i : k |. Taking
the sum of all four terms in a similar way gives (the crossed term in αk×βk
vanish):

[
Ak , A†

k

]
= N−1

∑

i

{
α2
k

[
| i : 0 >< i : 0 | − | i : k >< i : k |

]

+ β2
k

[
| i : −k >< i : −k | − | i : 0 >< i : 0 |

]} (24)
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or: [
Ak , A†

k

]
=

(
α2
k − β2

k

) N0

N
+ β2

k

n−k

N
− α2

k

nk

N
(25)

or again:

[
Ak , A†

k

]
=

(
α2
k − β2

k

)
+ β2

k

n−k +Ne

N
− α2

k

nk +Ne

N
(26)

We now calculate the product A†
kAk for any k 6= 0; the terms i = j

provide:

N−1
∑

i

[
α2
k | i : k >< i : k | +β2

k | i : 0 >< i : 0 |
]

= N−1
[
α2
k nk + β2

k N0

] (27)

while the terms i 6= j contain a summation of the expression:

N−1
{
α2
k | i : 0, j : k >< i : k, j : 0 | +β2

k | i : −k, j : 0 >< i : 0, j : −k |
+αk × βk

[
| i : 0, j : 0 >< i : k, j : −ik | +h.c.

]}

(28)
where, as above, h.c. is for Hermitian conjugate5. We can now use the same
method as in § 1 to distinguish, within the first line of (28), a “diagonal”
part and an antisymmetrical part Bas.(k):

1

N

[
α2
k N0 nk + β2

k N0 n−k

]
+Bas.(k) (29)

with the definition:

Bas.(k) = − 1

N

∑

i 6=j

[1− Pexch.(i, j)]
[
α2
k | i : k, j : 0 >< i : k, j : 0 |

+ β2
k | i : 0, j : −k >< i : 0, j : −k |

] (30)

or, equivalently, by applying the exchange operator on the other side:

Bas.(k) = − 1

N

∑

i 6=j

{[
α2
k | i : 0, j : k >< i : 0, j : k |

+ β2
k | i : −k, j : 0 >< i : −k, j : 0 |

]}
[1− Pexch.(i, j)]

(31)

Finally, we obtain:

A†
k
Ak = α2

k nk (
1 +N0

N
) + β2

k

N0

N
(1 + n−k)

+N−1αk βk




∑

i 6=j

| i : 0, j : 0 >< i : k, j : −k | +h.c.



 +Bas.(k)

(32)

5For this hermitian conjugate term, we have interchanged the dummy indices i and j.
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2.2 Identification of two expressions

Let us introduce a new hamiltonian H
′

by:

H
′

=
∑

k 6=0

ẽk A†
kAk + λNN + λeNe (33)

where αk, βk, ẽk , λN and λe are for the moment free parameters - in a
second step they will be chosen in order to make the new hamiltonian equal
to the initial Hamiltonian:

H =
∑

k 6=0

(ek + gN0)nk +
g

2
N (N − 1)

+
g

2

∑

i 6=j

∑

k 6=0

[| i : 0, j : 0 >< i : k, j : −k | +h.c.]
(34)

In addition, Ak and A†
k will have commutation relation that are similar to

those of ordinary creation and annihilation operators.
(i) first condition (commutation relation); if:

α2
k − β2

k = 1 (35)

(for any value of k), relation (26) shows that the commutator of Ak and

A†
k is equal to one in the limit of very low temperatures and very dilute

systems (when almost all the particles are in the ground state, Ne ≪ N).
Relation (35) is automatically fulfilled with the following choice of the two
parameters αk and βk as a function of a single parameter ξk:

αk = cosh ξk
βk = sinh ξk

(36)

(ii) second condition (identification of the main interaction terms); from
(17), (32) and (33) we get that the terms in | i : 0, j : 0 >< i : k, j : −k |
can be made identical if we set:

ẽk αkβk =
gN

2
(37)

which, through (36), is equivalent to:

ẽk sinh 2ξk = gN (38)

(iii) third condition (kinetic terms in nk); the identification of the terms
which, in (32), are linear in the excited population operators nk (or n−k)
provides the condition:

ẽk

{
α2
k

1 +N0

N
+ (β−k)

2 N0

N

}
= ek + gN0 (39)
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or, through the relation N = N0 +Ne:

ẽk

{
α2
k

1 +N −Ne

N
+ (β−k)

2 N −Ne

N

}
= ek + gN − gNe (40)

In this equation, N is a number while Ne is an operator; term by term
identification then provides the two conditions:

ẽk

[
α2
k(1 +N−1) + (β−k)

2
]
= ek + gN

ẽk

[
α2
k − (β−k)

2
]

Ne

N
= gNe

(41)

Assuming that N ≫ 1, and taking into account the parity relation (20) as
well as definition (36), we can write the former in the form :

ẽk (α
2
k + β2

k) = ẽk cosh 2ξk = ek + gN (42)

an equality which, together with (38), will provide the Bogoliubov quasipar-
ticle spectrum. In the second line of (41), we have intentionally left in both
sides the operator Ne; in this way we emphasize that, in the expression of
H

′

, this term appears as a product of Ne by the population operator nk of
the excited state k, in other words as a second order correction in Ne/N
which can be neglected in the limit of low temperatures and very dilute
systems. Therefore, the major constraint of the identification is contained
in (42) and, from now on, we will leave aside the second condition of (41).

(iv) terms in N and Ne; in (32), we have not yet included the effect of
the term (βk)

2 N0/N which, when N0 is replaced by N −Ne, provides:

g

2
N(N − 1) =

∑

k

ẽk (βk)
2

(
1− Ne

N

)
+ λNN + λeNe (43)

Term by term identification then provides6:

λN =
g

2
(N − 1)− 1

N

∑

k

ẽk (βk)
2 (44)

and:

λe =
1

N

∑

k

ẽk (βk)
2 (45)

We will neglect λe in what follows.
(v) antisymmetric terms Bas. and Was; the initial hamiltonian contains

the operator Was. while H
′

contains the operator:

W
′

as. =
∑

k

ẽk Bas(k) (46)

6Since, according to (47), βk will be proportional to 1/ek when k is large, the sums in
equation (43) and following are linearly divergent at infinity. We discuss in § 3.1.2 how
this divergence can be eliminated.
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where Bas.(k) is defined in (30) or (31). We note that both these terms con-
tain two particle antisymmetrizers [1− Pexch.i, j)] and will therefore always
vanish when multiplied (on any side) by the N particle symmetrization op-
erator SN ; their contribution is therefore exactly zero if the particles in
the system are identical bosons. By the same token, the same remains true
if the particles are distinguishable but in their ground state, which is also
completely symmetrical (it is actually exactly the same as for bosons). The
property obviously extends to any excited state having the same permuta-
tion symmetry, but not necessarily for energy states which correspond to
other representations of the permutation group; in general, there is no rea-
son why the difference Was. − W

′

as.should play no role for distinguishable
particles7.

2.3 Bogoliubov spectrum

From (38) and (42) we get by taking the ratio:

tanh 2ξk =
gN

ek + gN
(47)

which fixes the value of ξk; to determine ẽk we express cosh 2ξk as a function
of this result:

1

cosh2 2ξk
= 1− tanh2 2ξk =

ek (ek + 2gN)

(ek + gN)2
(48)

which, combined with (42), gives:

ẽk =
√
ek (ek + 2gN) (49)

This is the well known Bogoliubov result for the energy of the quasi-particles;
actually relations (47) and (49) are exactly the basic relations obtained in
the usual calculation in terms of annihilation and creation operators.

With the above relations, the two Hamiltonians H and H
′

can be iden-
tified, with three approximations:

* (A1) we assume that the difference Was. −W
′

as. can be ignored, which
is exact for totally symmetric states.

* (A2) we ignore the effect of Vee, corresponding to the interactions
between excited particles.

7Using the parity of βk and interchanging the dummy indices i and j in (30) allows to

show that W
′

as. is equal to the sum over k of the product ẽk (α2

k + β2

k) by the same sum

over i 6= j which appears in (8); the strict equality of W
′

as. and Was. would require the
condition

∑
k
ẽk (α2

k + β2

k) = gN , which is reminiscent of the second condition (41), but

introduces convergence problems. Requesting a strict equality of the operators H and H
′

in the whole Hilbert state of Boltzmann particles would then lead to difficulties.
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* (A3) we ignore the condition expressed in the second line of (41).
The third approximation is consistent with the second and remains valid

at low density and temperature, exactly as in the usual derivation for bosons.
The first is of different nature since it is necessary only for Boltzmann parti-
cles; we have already mentioned that the operator Was.−W

′

as. plays no role
for the ground state of the system, as well as for all states which are fully
symmetric - for instance for all states that are obtained from the ground
state by action of any product of creation operators A†

k
’s, since these oper-

ators do not change the permutation symmetry of the states.

3 Discussion

We now discuss more precisely how the operators Ak and A†
k can be used

to construct eigenstates of the hamiltonian.

3.1 Commutation relations

One of the commutation relations between the new creation and annihilation
operators has already been studied above, and led us to an approximation
which is consistent with approximation (A2):

* (A4) we ignore, in (26), the terms in Ne/N (as well as those in nk/N ,
but the latter tend to zero in the thermodynamic limit and therefore raise
no question).

But we also have to study the situation for different values of k as well
as other commutations relations. We see in the definition (19) of Ak that
its commutator with A

k
′ will, first, contain the commutator:

[
| i : 0 >< i : k |, | i : 0 >< i : k

′ |
]

(50)

which vanishes since both products of the operators do so (orthogonality of
single particle states if k and k

′

are both different from zero). Similarly:

[
| i : −k >< i : 0 |, | i : −k

′

>< i : 0 |
]
= 0 (51)

Two other commutators do not vanish, for instance:
[
| i : −k >< i : 0 |, | i : −k

′

>< i : 0 |
]

=| i : −k >< i : k
′ | −δk,−k

′ | i : 0 >< i : 0 |
(52)

so that we obtain the result:

[
Ak, Ak

′

]
= δk,−k

′ (αk β−k − α−k βk)
N0

N

−αk βk′

N

∑

i

| i : −k
′

>< i : k | +αk
′ βk

N

∑

i

| i : −k >< i : k
′ |

(53)
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The parity relation (20) ensures that the main term in the right hand side,
proportional to N0/N , vanishes exactly. The remaining terms, on the second
line, are as Vee “excited-excited terms” which act only on excited particles,
and leave them excited; it is therefore natural to introduce one more as-
sumption:

* (A5) the operators in the second line of (53) can be neglected in our
calculation, so that the Ak’s get the usual commutation relations of annihi-
lation operators for orthogonal states.

We do not have to study the commutation relations of A†
k
and A†

k
′ , since

they can be obtained from (53) by Hermitian conjugation, but we have to

study the commutator of Ak and A†

k
′ . The calculation from (19) and (22) is

actually very similar to that which leads to (53) and provides:

[
Ak, A

†

k
′

]
= δ

k,k
′

(
α2
k − β2

k

) N0

N

−αk αk
′

N

∑

i

| i : k′

>< i : k | + βkβk′

N

∑

i

| i : −k >< i : −k
′ |

(54)

When k = k
′

, this relation has already been studied; when k 6= k
′

, we
introduce the additional assumption, similar to (A5):

* (A6) the operators in the second line of (54) can be neglected in our
calculation since they also correspond to “excited-excited terms”.

3.1.1 effect of the operators Ak and A†
k

For completeness, we recall here a last approximation, which has already
been discussed above and which is consistent with all preceding approxima-
tions (valid if the gas is very dilute and at a very low temperature):

* (A7) we ignore, in the expression (33), the effect of the term in Ne

(the term in N creates no problem since this number is unchanged under
the action of all operators introduced; this term is studied below).

Assume then that | ΦE > is an eigenstate of the Hamiltonian H, with
eigenvalue E; we introduce the new ket | Φ−

E(k) > as:

| Φ−
E(k) >= Ak | ΦE > (55)

Now, since all usual commutation relations are satisfied by the opera-
tors Ak, we can easily show that | Φ−

E(k) > is another eigenstate of the
Hamiltonian H, with eigenvalue E − ẽk .; Ak then plays the role of a “lad-
der” operator which changes the energy step by step, by decreasing values;
similarly, A†

k will increase the energy eigenvalues.
Let | Φ0 > be ground state of the hamiltonian H. By action of Ak onto

this ket we obtain, either a ket which is zero, or a ket in which the average of
H has decreased by ẽk , plus possibly some corrections related to the terms
in the commutators that have been neglected. As noted above, | Φ0 > is a
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common ground state to bosons and Boltzmann particles, since it is fully
symmetric; so is Ak | Φ0 >, which shows that the effect of Was. − W

′

as.

on this ket is strictly zero. We then just have to deal with approximations
(A2) to (A7), which amount to assuming that the ratio Ne/N has a small
average value in the ground state. If the gas is sufficiently dilute, all the
corrections in Ne/N will not be able to make up for the decrease in energy
ẽk and change it into an increase of energy. But no state has an average
energy below that of the ground state, so that one necessarily has:

Ak | Φ0 >= 0 (56)

This equation is valid for any value of k, except very small values for which
the density corrections inNe/N may be comparable to the decrease in energy
ẽk , so that the cancellation of the ket is no longer a necessity. We have
obtained in this way a set of equations that the ground state of the system
has to obey.

Now, applying any power of the operator A†
k
to this ground state will not

change the permutation symmetry of the state and therefore allow us to still
ignore the effect ofWas.−W

′

as.; we will therefore obtain good approximations
to energy eigenstates, as long as not too many particles are excited in the
operation. The Bogoliubov energies therefore play the role of quasiparticle
energies, as in the usual derivation for bosons, which is not surprising since
the completely symmetric subspace ES of the Hilbert space of Boltzmann
particles remains invariant under all the operators considered.

3.1.2 ground state energy

Finally, it is interesting to come back to the term in λN that we have obtained
in (44). We have:

∑

k

ẽk (βk)
2 =

∑

k

ẽk sinh2(ξk) (57)

where, if we use (48), we can insert:

sinh2(ξk) =
1

2
(cosh 2ξk − 1) =

1

2

{
1√

ek(ek + 2gN)
− 1

}
(58)

which gives:

λN =
g

2
(N − 1) +

{
∑

k

√
ek(ek + 2gN) − ek − gN

}
(59)

When k tends to infinity, the expression under the sum is equivalent to:

−(gN)2

ek
(60)

12



A cancellation of first order terms occurs, but not of second order terms, so
that the sum over all values of k remain (linearly) divergent.

This divergence is well known and takes place in all derivations of the
Bogoliubov transformation. A classical way to solve the problem [2] is to
replace the coupling constant g (which is directly the matrix element of
the potential) by its second order expansion as a function of the scattering
length a:

g =
4πaℏ2

mV

{
1 +

4πaℏ2

V

∑

k

1

ℏ2k2
+ ...

}
(61)

where V is the volume. Expressing the mean interaction term gN(N − 1)/2
as a function of a instead of g then introduced a counterterm in (59) which
merely amounts to adding inside the sum (gN)2/ek, which pushes the can-
cellation of orders up to second order, makes the sum convergent, and pro-
portional to the integral:

∫ ∞

0
x2dx

{√
x2(x2 + 2)− x2 − 1 +

1

2x2

}
(62)

The value of this integral turns out to be
√
128/15 and, finally, one gets the

following well-known result for the energy of the ground state:

λNN =
g

2
N(N − 1)

{
1 +

128

15

√
Na3

πV

}
(63)

Another method to eliminate the divergence is to use a pseudopotential8

which directly contains the scattering length a in its matrix elements, so
that any renormalization of the coupling constant such as (61) becomes
uncecessary. In our calculations, we have replaced all matrix elements of
the potential by the same constant g, but it would be possible to make a
more careful calculation with a correct expression of the matrix elements of
a pseudopotential; as shown by Castin [9], the method also allows one to
recover (63). Beliaev [10] has studied systematically how the Bogoliubov
energy spectrum with the scattering length a as an interaction parameter
is recovered from a resummation of diagrams, as well as corrections to the
Bogoliubov theory.

CONCLUSION

The mathematics of the Bogoliubov transformation can be performed
within the space of states EB of distinguishable particles, and leads exactly

8Not to be confused with an ordinary delta function potential; a real pseudopotential
contains, in addition, a r derivation operator[7][8] and leads to a scattering lenght which is
indeed proportional to its matrix elements, while it turns out the cross section associated
with an ordinary delta function potential vanishes.
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to the same formulas than in its fully symmetrical subspace ES ; in other
words, the proof can be generalized to include quantum states which are
not necessarily completely symmetric by exchange and, as one would natu-
rally expect, renders explicit additional conditions of validity. Even within
the completely symmetric space ES , the proof is not only a mathematical
curiosity since it does not necessitate a symmetry breaking of the number
of particles; it therefore reveals more precisely what is behind the usual
approximations that is made by replacing the operators a0 and a†0 by c-
numbers, a brutal approximation whose effects are not necessarily easy to
control quantitatively. Here one gets a precise view of the exact list of opera-
tors which have been neglected (approximations A2 to A7) - see for instance
the terms in Ne/N in (26) or those appearing in the second lines of (53)

and (54), which arise precisely from the fact that a0 and a†0 have not been
treated as numbers; if one wished to push the approximation beyond the
usual derivation of the Bogoliubov transformation, the consideration of the
exact expression of these terms would be useful. Needless to say, during the
derivation, we have also obtained trivial terms such as the interaction term
between excited particles, Vee., which is ignored exactly in the same way as
in the traditional derivation: it should be no surprise that, for bosons as
well as for Boltzmann particles, the ratio Ne/N should remain small for the
Bogoliubov spectrum to be established.

In a sense, the most interesting correction term is the operator Was. −
W

′

as., even if it has no effect on the whole class of states that are common
to bosons and Boltzmann particles (those which can be obtained by the

action of A†
k operators onto the ground state). Indeed, we know that the

low energy spectrum of a system of distinguishable particles is richer than
that of a system of bosons, and here this fact is reflected in our calculation
by the presence of these antisymmetric operators9. It is well known that the
major difference between a Boltzmann system and a boson system is not to
be found in the condensate, which is basically described by exactly the same
many-body wave function in both statistics; it is in fact contained in the
excitations, which are much more numerous for Boltzmann particles since
the numbering of the particles which are excited becomes relevant. For non-
interacting particles, this just associates much more entropy to excitation
processes than for identical particles - this is actually the reason behind
the instability of the condensate for Boltzmann particles at any non-zero
temperature, as opposed to a Bose system where it remains stable until the
Bose Einstein temperature is reached.. As soon as interactions are included,
energetic effects also occur and, in our approach, they are reflected by the
presence of the operators Was. and W

′

as..

9In all calculations based on the Ursell operator formalism for bosons, where a com-
plete symmetrization is applied in a second step, the two operators Was. and W

′

as. give
contributions which exactly vanish, so that the presence of these antisymmetric operators
will create no problem.

14



LKB and LPS are Unités associées au CNRS et à l’Université Pierre et
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