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The existence of guided elastic modes in a photonic crystal fiber for an arbitrary cross-section is demonstrated
using waveguide finite element analysis. In particular, it is shown that band-gaps exist for guided elastic modes
along the longitudinal fiber axis, and thus a photonic crystal fiber can be simultaneously a phononic crystal
fiber. The introduction of a defect within the two-dimensional crystal leads to the formation of highly localized
elastic waveguide modes that co-propagate in the same core volume as the guided optical mode. We consider the
application of these properties to the suppression of stimulated Brillouin scattering, and to enhanced collinear
acousto-optical interactions.

PACS numbers: 42.70.Qs, 63.20.-e, 42.65.Es, 78.20.Hp

The study of wave propagation in micro- and nano- struc-
tured materials is a subject of intense current research in
physics. Much attention has focussed on electromagnetic
wave propagation in photonic crystals and photonic crystal
optical fibers (PCF) [1–3], but important results on acous-
tic wave interactions in phononic crystals have also been ob-
tained [4, 5]. From a fundamental viewpoint, both phononic
and photonic crystals possess remarkable guidance properties
such as the existence of absolute band-gaps that forbid the
propagation of waves in any direction, which has already led
to a number of important applications in both the photonics
and acoustics fields.

Most previous studies, however, have considered the
phononic and photonic properties of periodically structured
materials independently, although recent works have consid-
ered the novel possibility of enhanced photon-phonon inter-
actions within acoustic one-dimensional band-gap materials
[6, 7]. For the particular case of PCFs, phononic bandgaps
have also been recently studied in a preform, but only for
localized in-plane elastic waves across the transverse fiber
cross-section [8]. The analysis of these modes was per-
formed using both Rayleigh [8] and finite-difference time-
domain [9] methods, but only for the two-dimensional in-
plane bandgap case. No studies to date have considered
the existence of phononic bandgaps for out-of-plane elastic
guided modes along the longitudinal fiber axis. The exis-
tence of acoustic band-gaps for out-of-plane propagation in
a two-dimensional solid-solid phononic crystal has, however,
been recently demonstrated using a plane-wave expansion ap-
proach [10]. In this Letter, we study a novel combination of
the acoustical and optical waveguiding properties in PCFs.
By considering the full three-dimensional case of both in-
plane and out-of plane elastic wave propagation, an analysis of
phononic-bandgap modes in a PCF is performed. This yields
new insights into the physics and properties of micro-nano
structures supporting phononic-bandgap guidance of elastic
modes whilst simultaneously presenting single-mode optical

guidance in the same PCF core region. We then discuss par-
ticular design examples that lead to the hypersonic band-gap
inhibition of stimulated Brillouin scattering, and the hybrid
guidance of both acoustic and optical waves for enhanced
acousto-optic interactions.

PCF is typically based on a periodic arrangement of
micron-size cylindrical parallel air holes inside a silica ma-
trix, with a central defect acting as a core. Light is guided
along the solid or hollow core either by a photonic band gap
effect [11] or by modified total internal reflection [12], respec-
tively. As regards the propagation of elastic waves, the elastic
energy vanishes within the hollow cylinders and is thus con-
strained to remain within the silica. The boundaries of the hol-
low cylinders can be considered as free from tractions and act
as very efficient scatterers for elastic waves of any polariza-
tion. Our analysis of the elastic modes is based on the waveg-
uide finite element method (FEM) which combines a plane-
wave-like ansatz for modes along the assumed infinite propa-
gation direction with a finite element approach that is advan-
tageous in allowing the modelling of arbitrary cross-sections
[13]. With this technique, the two-dimensional waveguide
section in the plane (x, y) is meshed using finite elements,
and the displacements are represented by piece-wise polyno-
mials within the elements. Along the propagation direction z
(aligned with the PCF axis) a sinusoidal variation of the dis-
placements is imposed with a given wavevector k. To account
for acoustic propagation along the z axis, a harmonic depen-
dence exp((ωt − kz)) is considered. For isotropic materials
and a cylindrical geometry, the coupling between the trans-
verse components ux and uy and the longitudinal component
uz of the displacements includes a ±π/2 dephasing. In order
to guarantee a unique solution to the variational problem, we
use the real-valued formulation within each finite element

ux(x, y, z; t) = p(x, y)T
· ûx cos(ωt − kz), (1)

uy(x, y, z; t) = p(x, y)T
· ûy cos(ωt − kz), (2)

uz(x, y, z; t) = p(x, y)T
· ûz sin(ωt − kz), (3)
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where û = (ûx, ûy, ûz)
T is the vector of the 3n displace-

ments at the n nodes of the finite element and the p is a vec-
tor of n Lagrange interpolation polynomials. The dynamics
of elastic waves are obtained as the solution of a variational
problem involving the kinetic and strain energies. The kinetic
energy in a one-wavelength-long finite element with section S

is

K = ω2

∫

2π/k

0

dz

∫

S

dxdyuT .ρ.u, (4)

where ρ is the mass density. Inserting Eqs. (1-3) and integrat-
ing along z yields K = ω2/2k (ûT .MS .û), with the elemen-
tary mass matrix MS and the polynomial matrix P defined
by

MS =

∫

S

dxdyP T .ρ.P , P =





pT 0 0
0 pT 0
0 0 pT



 . (5)

Similarly, the strain energy within the finite element is given
by

U =

∫

2π/k

0

dz

∫

S

dxdySICIJSJ , (6)

where the strain tensors S and C are written in contracted
notation, i.e. C is a 6 × 6 matrix and S is a 6-component
vector. Integrating along z and making use of sine and co-
sine orthogonality, the strain energy can be expressed as U =
1/2k (ûT .KS .û) , with the elementary stiffness matrix de-
fined as

KS =

∫

S

dxdy
(

AT
r .C.Ar + AT

i .C.Ai

)

, (7)

where

Ar =

















pT
,x 0 0
0 pT

,y 0
0 0 kpT

pT
,y pT

,y 0
0 0 0
0 0 0

















, Ai =

















0 0 0
0 0 0
0 0 0
0 0 0
0 −kpT pT

,y

−kpT 0 pT
,x

















,
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and the vectors pT

,x = (∂p1/∂x, · · · , ∂pn/∂x) and pT
,y =

(∂p1/∂y, · · · , ∂pn/∂y). As is usual with elastic FEM prob-
lems, the solution of the variational problem with no external
applied forces is given by the linear equation

(K(k) − ω2M)û = 0 (9)

where the stiffness matrix K(k) and the mass matrix M are
obtained by assembling the elementary stiffness and mass ma-
trices respectively by standard procedures [14]. K(k) is ac-
tually a second order matrix polynomial in k, while M is k-
independent. Eq. (9) is in the form of a generalized eigenvalue
problem for ω2 if k is considered a parameter.

We have used this waveguide FEM technique to analyse
the phononic bandgap characteristics of the silica-air honey-
comb structures shown in meshed cross-section as insets in
Fig. 1. Note that here, as elsewhere in this paper, open circles
are associated with air holes. We show honeycomb structures
both (a) without and (b) with a central solid silica defect. For
this structure having a hole pitch (centre-to-centre distance)
of a, the PCF diameter is then ≈ 10a. The band structure
in Fig. 1a for elastic waveguide modes without a central de-
fect exhibits high density except in several regions where only
isolated branches exist. An examination of the correspond-
ing eigenvectors reveals that in the dense regions the elastic
modes are similar to those of a solid cylinder. In particular,
their energy density is spread in the whole fiber. In contrast,
isolated branches correspond to modes that are localized on
the external boundary of the PCF, which is clamped in the
calculation. When the external boundary is considered stress-
free instead, modes in the dense regions are only very slightly
affected, but isolated branches are displaced. We interpret the
isolated branches as corresponding to modes that are trapped
between the external boundary of the PCF and the band gaps

FIG. 1: Band structures for elastic waveguide modes of honeycomb
silica PCFs (a) without and (b) with a central defect. The two-
dimensional meshes of the cross-sections are shown as insets. The
longitudinal line in silica is shown in (a).
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FIG. 2: Elastic guided modes (shown in grayscale) propagating along
the external boundary of the PCF of Fig. 1a. (a) In-plane and (b) lon-
gitudinal displacements for the points labeled respectively (A) and
(B) in Fig. 1.

of the inner honeycomb structure, as illustrated by Fig. 2.
Significantly, we have found that such honeycomb struc-

tures associated with out-of-plane phononic bandgaps can be
combined with optically guiding PCF microstructures to raise
the exciting possibility of hybrid phononic-photonic guidance
within a common mode area. As a first possible applica-
tion, we consider a typical high-air-fill fraction PCF, usually
used for optical guidance via modified total internal reflection,
whose solid core is nanostructured by the defect-free honey-
comb pattern in Fig. 1a, such that the nanostructured core
presents a phononic bandgap engineered to inhibit stimulated
Brillouin scattering (SBS). This is of much practical signifi-
cance around the technologically-important wavelength range
around 1550 nm as SBS is highly detrimental for fiber com-
munications systems [15].

SBS is a three-wave nonlinear interaction in which an
intense, incident optical pump wave of frequency ωp is
backscattered into a downshifted Stokes wave of frequency
ωs = ωp − ω through the coherent generation of an acous-
tic phonon at frequency ω via material electrostriction [16].
The scattered acoustic phonons modulate the refractive index
of the medium, acting as a Bragg grating propagating forward
at the longitudinal acoustic velocity v, so that the reflected
optical mode is downshifted through the Doppler effect. The
longitudinal wave vector of the SBS phonon is given by the
phase matching condition, k = kp − ks, where kp and ks are
the optical pump and Stokes wavevectors, and ω = vk de-
fines the SBS phonon dispersion relation. In silica, v = 5970
m/s which is much smaller than the speed of light, so that
the acoustic wave vector and the SBS hypersound frequency
are very well approximated in single-mode fibers by k = 2kp
and ω = 2nvωp/c, where n is the effective index of the opti-
cal mode [15]. Using typical parameters for telecommunica-
tion fibers at 1.55 µm, the acoustic wavelength and frequency
are respectively 543 nm and 11 GHz. In general, optically-
guiding high air-fill fraction PCFs will be acoustically multi-
mode for such small acoustic wavelengths, but if a central
additional nanostructure is added in the PCF core region to
open an out-of-plane phononic bandgap for the phonon cou-
ple (ω, k), the coherent amplification of SBS phonons will be
inhibited.

To illustrate this more explicitly, the straight line in Fig. 1a
passing through the origin shows the SBS phonon dispersion

FIG. 3: (a) PCF cross-section showing the combined micro-
nanostructure designed for simultaneous core optical guidance and
the inhibition of SBS phonon propagation. (b) Detail of the core re-
gion. (c) and (d): Numerical simulations of the fundamental TE and
TM optical modes at 1.55 µm.

relation. Point (C) in Fig. 1a corresponds to ωa/(2π) = 1911
m/s and ka/(2π) = 0.32, and illustrates that it is indeed
possible to open phononic bandgaps around particular SBS
phonon couples. Although it appears from the figure that the
nanostructure opens up only a partial out-of-plane bandgap,
the bandgap width can in fact be significantly larger than the
SBS linewidth so that it is indeed possible to incorporate a
suitably scaled honeycomb nanostructure within an exterior
PCF microstructure such that highly confined optical guid-
ance and SBS inhibition can be simultaneously obtained. In
particular, we consider the mixed micro-nano PCF structure
in Fig. 3a and Fig. 3b. Here, the hole diameter and pitch
are 2.59 µm and 2.76 µm respectively for the exterior mi-
crostructure (typical solid core PCF dimensions) and 145 nm
and 207 nm respectively for the internal honeycomb (techno-
logically feasible sizes [3]). Simultaneous optical guidance
in such a structure was verified using standard beam propa-
gation method vector simulations, and Fig. 3c and Fig. 3d
show the guided mode solutions for the TE (horizontal) and
TM (vertical) electric field components. This illustrates that
efficient optical guidance at 1.55 µm is indeed obtained in the
presence of the phononic nanostructure. Calculation of the
associated effective indices (n = 1.2046 and n = 1.1557 re-
spectively) allows us to verify that the phononic bandgap is
indeed opened about a mean SBS frequency of 9.3 GHz for
both polarizations. Significantly, we can also see from Fig. 1a
that the elastic band-gap width is much wider than the usual
SBS linewidth of 50 MHz [15], thus ensuring complete SBS
phonon inhibition. We note that, contrary to current modula-
tion techniques used to suppress SBS in optical fibers that of-
ten impair the overall transmission performance, the proposed
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FIG. 4: Elastic waveguide modes (shown in gray-scale) localized in
the core of the PCF of Fig. 1b by a phononic band-gap effect. (a)
In-plane and (b-c) longitudinal displacements for the points labeled
respectively (D), (E), and (F) in Fig. 1b.

FIG. 5: Optical (a) TE and (b) TM modes simulations in the same
PCF as in Fig. 4.

nanostructuration of a PCF is totally passive.
Our waveguide FEM technique also allows the convenient

investigation of a range of other photo-phononic structures,
and we consider now the phononic bandgap properties of the
structure previously shown in Fig. 1b, of which the central
silica defect is expected to introduce localized elastic modes
within the band-gaps. A comparison of the band structures of
Figs. 1a and 1b reveals that the densely populated mode re-
gions, as well as the isolated branches corresponding to modes
localized between the external boundary and the honeycomb-
structured interior are very similar, indicating insensitivity of
these modes to the presence of the core defect. However, it is
significant that additional isolated branches appear within the
band-gaps in Fig. 1b, and examination of modes along these
particular branches reveals that they are localized and trapped
within the silica defect, as illustrated by Fig. 4. Waveguid-
ing of these elastic core modes clearly relies on the out-of-
plane elastic band-gap properties of the PCF. Beam propaga-
tion method simulations were again used to check that optical
core guidance is possible under realistic conditions. Fig.5a
and Fig.5b show the fundamental optical TE and TM modes
at 1.55 µm, respectively for a hole diameter and pitch of 1.01
µm and 1.13 µm. With such dimensions, the frequency of the
acoustic waveguide mode of Fig. 4b (corresponding to point
(E) in Fig. 1b) is 1.3 GHz. Hence, from Fig. 4 and Fig. 5,

we anticipate that guided acoustic modes within such an out-
of-plane phononic band-gap structure will enable enhanced
collinear acousto-optical interactions, presenting both a sig-
nificantly increased interaction length compared to in-plane
acousto-optical interactions across the PCF cross-section [8]
and the possibility of coherently coupling and transferring
energy between several optical modes. By controlling the
anisotropy of the PCF, e.g. through the anisotropic distribu-
tion of holes, anisotropic acousto-optical interaction between
optical modes of different polarization should also be possi-
ble. Such an interaction may for instance find applications
in ultrashort laser pulse shaping, as an alternative to bulk
acousto-optical programmable filters [17].

In summary, we have demonstrated that out-of-plane
phononic band-gaps exist in a PCF with an arbitrary finite
cross-section, raising the possibility of guiding elastic modes
localized along the external boundary of the PCF as well as
inside a defect of the phononic crystal. Based on these fea-
tures, hybrid guidance of acoustic and optical guided modes
has been demonstrated within a PCF simultaneously forming
a phononic crystal fiber. This property yields new insights
into the possibility of enhanced acousto-optical interactions,
as well as inhibition of light-induced acoustic waves like stim-
ulated Brillouin scattering.
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