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Abstract

We study a time-delay regularization of the anisotropic diffusion model for image denoising of Malik
and Perona, which has been proposed by Nitzberg and Shiota. In the two-dimensional case, we show the
convergence of a numerical approximation and the existence of a weak solution. Finally, we show some
experiments on images.

Key words : Image restoration, Variational methods, Numerical approximation, Time-delay regularization, Malik and
Perona equation.

1 Introduction

In a well-known paper, Malik and Perona [15] have proposed a model for image restoration based on the
following partial differential equation :

% = div (g(|Du|2)Du) u(-,0) = ug . (1)
Here ug is the grey level intensity of the original image, u(-,t) is the restored version, that depends on the
scale parameter ¢, and g is a smooth non-increasing positive function with g(0) = 1 and sg(s?) — 0 at
infinity. The main idea is that the restoration process obtained by the equation is conditional: if z is an edge
point, where the gradient is large, then the diffusion will be stopped and therefore the edge will be kept.
If = is in homogeneous area, the gradient has to be small, and the diffusion will tend to smooth around z.
By introducing an edge stopping function g(|Du|?) in the diffusion process, the model has been considered
as an important improvement of the theory of edge detection [17]. The experiments of Malik and Perona
were very impressive, edges remained stable over a very long time. It was demonstrated in [16] that edge
detection based on this process clearly outperforms the Canny edge detector [3].

Unfortunately, the Malik and Perona model is ill-posed. Indeed, among the functions which Malik and
Perona advocate in their papers, we find g(s?) = 1/(1 + s?) or g(s?) = e=* for which no correct theory of
equation (1) is available. By writing the equation in dimension two:
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where D?u( ‘g:j‘ , \gZ\) is the second derivative of u in the gradient direction and | Du|div ( \gZ\) is the second

derivative in the orthogonal direction, we observe that the diffusion runs backwards if sg(s?) is non-increasing.
Then, in the regions where the gradient of a solution is large, the process can be interpreted as a backward
heat equation which is actually ill posed. In the continuous setting, it means that (1) may have no solution at
all. One could also imagine very close pictures producing divergent solutions [11]. In practice, the equation
is discretized into a (obviously well-posed) finite-dimensional version of (1), however, it does not seem correct
to interpret such a discretization as an approximation of the ill-posed problem (1).



For these reasons, there have been many attempts to understand the Malik and Perona equation and
find out whether (1) can be given a sound interpretation. There are essentially two approaches: The first,
motivated by favorable numerical results, consists in studying the original equation and in establishing
theoretical results that explain the observed behaviour. The second approach consists in modifying the
equation by regularizing the term g(|Du|?) in order to get a well-posed equation.

2 The Malik and Perona equation and the regularized versions

First, we expose the main mathematical results established on the Malik and Perona model. Most of these
results are restricted to the dimension one; the unique result in dimension two, given by You et al. [21]
confirms the ill-posedness of the equation. Kawohl and Kutev [13] establish, in 1D, nonexistence of global
weak solution, and prove the existence and uniqueness of a classical solution only if the initial data has
everywhere a small slope. In this case the equation remains parabolic for all time and there is no edge to
preserve: the diffusion smoothes the data, like the heat equation would do. They also prove a comparison
principle under special assumptions on the initial data.

Kichenassamy [14] shows that in general the Malik and Perona equation does not have a weak solution if
the initial data is not analytic in a neighborhood of high gradient regions. His argument is based on interior
regularity properties of parabolic equations. Only in dimension one, he proposes a notion of generalized
solutions, which are piecewise linear with jumps, and shows existence.

Adopting a numerical viewpoint, Esedoglu [7] studies the one-dimensional Malik and Perona scheme. He
establishes by a scaling argument the convergence to an evolution in the continuous setting. The resulting
evolution solves a system of heat equations coupled to each other through nonlinear boundary conditions.

Working in dimension one clearly reduces the difficulty by eliminating the first term of (2) which is
nothing but the mean curvature motion operator with the coefficient g(|Du|?). As it is known, the mean
curvature motion evolves each level line {4 = C} with a normal speed proportional to its curvature (see
[8, 1] for more details).

In dimension two, You et al. [21] express the anisotropic diffusion of Malik and Perona as the steepest
descent of an energy surface and analyze the behaviour of the model. They prove that the ill-posedness is
caused by the fact that the energy functional has an infinite number of global minima that are dense in the
image space. Each of these minima corresponds to a piecewise constant image. This means that slightly
different initial images may end up in different minima for large ¢.

As mentionned, another approach relies on the idea that the ill-posedness may be alleviated through the
introduction of a smooth version of g(|Dul|?). There are essentially two propositions which we consider as a
direct derivation from the Malik and Perona Model. The first consists in a spatial regularization, as in the
following model:

% = div (9(|D G, * u|*)Du), (3)
whereby g(|Dul?) is replaced by g(|D G, * u|?), where G, is a Gaussian with variance o. In [4], Catté et
al. prove existence, uniqueness and regularity of a solution. It is known that G, * u(z,t) is nothing but the
solution at scale o of the heat equation with u(z,t) as initial data.

A first observation is that near a sharp corner, the diffusion coefficient g(|D G, * u|?) may remain very
large, hence this model will be unable to preserve corners.

Another problem is the choice of the regularization parameter o. In fact, this choice is critical in the sens
that the diffusion process would be ill-posed if o = 0, while image features would be blurred for too large an
o. As proposed by Whitaker and Pizer [20], the regularization parameter o should be a decreasing function
in ¢, by using large o initially to suppress noise and reducing ¢ so that image features are not further blurred.
In spite of this, the choice of the initial and final values of ¢ remains an open question.

The second proposition is a time-delay regularization, where one replaces |Du|?> with an average of its



values from 0 to t. Then g(|Du|?) is replaced with g(v) with:
t -
v(z,t) = e tug(x) +/ e* ' Du(z,s)|* ds, (4)
0

where v is an initial data, for example vy = 0 or |Dug|?. Therefore the new diffusion process is described
by the following system:

% = div (g(v)Du) u(-,0) = ug, (5)
81) 2 —
E - ‘Du‘ —v 1)(-70) = 1. (6)

Proposed by Nitzberg and Shiota [19], this model is very close to the Malik and Perona equation since there
is no spatial smoothing. In particular, it should mean that there is no previous movement of the features
in the diffusion process. In [2] the authors of the present paper have shown that in any dimension, the
system (5)-(6) admits a unique classical solution (u,v) which can blow up in finite time, and that as long as
the solution exists, the equation satisfies the maximum principle and does not create spurious information
(that is, strict local extrema). These properties of the system (5)-(6) have encouraged us to study it from
a numerical viewpoint. Let us mentione that time-delay regularization has been already used in image
processing by Cottet and El Ayyadi [6] as anisotropic diffusion tensors.

This paper is organized as follows: In section 3 we propose a natural discretization in time of (5)-(6)
with |Du|? replaced by F(|Du|?), F being a sort of truncation. Numerically this modification does not have
any impact on the output images since the threshold implicitly exists in the numerical scheme. Indeed,
if the discrete scheme satisfies the maximum principle, then the discrete gradient is always bounded (for
example by (maxwug — minwug)/Az, Az being the grid size). Theoretically, the introduction of F' is a huge
regularization of the system (we will see that it yields existence of a weak solution for all time). Section
4 proposes a numerical scheme for solving the system, and section 5 shows some experiments on synthetic
and natural images. In section 6 we establish a priori estimates and regularity results on the proposed
approximation and prove the main result of this paper. In the section 7 we give the proofs of two technical
results on elliptic equations that are needed in section 6.

3 Numerical approximation

The goal of this paper is to study and approximate numerically the system:

% = div (g(v)Du) u(-,0) = uo, (7)
0
a_: = F(|Du*) —v (-, 0) = v, (8)

in Q x (0,T) where Q = (0,1)%, 0 < T < co. We will show that the system admits a weak solution, under
the following technical assumptions:

- g € C1([0,+x)) is a positive non-increasing function with g(0) = 1 and g(+oc) = 0.

- F € C'([0,4+0)) is a smooth version of s — min(s, M), where M > 0 is a (large) real number (in
particular, we assume 0 < F' < 1).

Fixed 6t > 0, we define the sequence (u},, v} ), by the semi-implicit scheme:

(uly,vy) = (ug,v0) € (H'(Q) NL®(Q)) x (H' () NL>*(Q)), vo >0 and



n+l _  n 9 i
W = div (g(v) Dug*") 13‘“ o0 =0 o
n
1)g:+] — ’Ug;; _ n+1 n+1
o6t F(|Dug ™ %) — oz )

We define the piecewise constant (in ¢ > 0), functions

ugt(z,t) = u[{/ﬁf]ﬂ(m),

where [-] denotes the integer part. We also define (vs) in the same way. Then we can write the discrete
system (9)-(10) in the form (7% is defined by 7% f(-,t) = f(-,t — dt)):

st — T 0wy ou
W = div (g(r %vs)Dug), % =0, (11)
n
5t
w = F(|Dug|?) — vg. (12)

The main result of this paper is the following theorem:

Theorem 1. Let T > 0. There exists a subsequence (us;,vs;) of (us,vs) and (u,v) a weak solution of the
system (7)-(8) in (H(Q x (0,T))NL> (2 x (0,T))) x (H*(2x (0,T))NL>(Q x (0,T))) such that, we have
the convergences, as j — +oc:

us; —> U strongly in L*(0,T; H'(Q2)), (13)
Vs, 0 weakly in L*(0,T; H'(Q)). (14)

The proof of this theorem will be given in section 6.

4 Discretization

To discretize (9)-(10) we denote by ug; (resp. o;';) the approximation of u (resp. v) at point (ih,jh)
(0 <i,j < N) and time ¢t = n dt, where the size of the initial image ug is given by N x N and h = 1/N.
Using the following finite-differences formulas:

Afw = wiy1,; — wij, ATw = wj; — w1,

Y — Yy —
Alw=wijp —wi; et Alw=wi; —wi; 1,

the approximation of div (g(v)Du) at point (ih, jh) and at scale t = (n + 1) 8t is given by:

(A (g A%z + A (glof) A% ).

i
Then the equation (9) becomes:
u T — 1

= ot o = ﬁ{g(vz )(“7:113 “Z;]) - g(’l)?7]7j) (7 :lj] u :ljllvj)

gl (=) + gl ) (! — i) ) (15)

with the Neumann boundary condition:

n+1 n+1 __ n+1 n+1 __
Uig — Ujq =0, ulefu?N—O for 0<1i <N,
n+1 n+1 __ n+1 n+1l __
ug ;o —uy ;o =0, uny ; —uy; =0, for 0<j<N.



Rearranging the right hand side of (15), we get

untl —

5 oy h2A(w™)u™ =0,

where the matrix A(v™) is tridiagonal by blocks, and positive defined. By classical arguments [5] we know
that [I + oth~2A(v™)] is invertible.

To avoid any additional anisotropy in the scheme, we try to build a discrete gradient of u in (10) as
rotationally invariant as possible. We use the discretization proposed in [4] and [19] which writes:

n|=
n|=

1 _ _
APw = (1+22)7" {(11),;4_1,]- — wi,l,j) +2 (“’H—l,jfl — wi,l,j,l) +2 (w,;+1,j+1 — 71}i71,j+1) },
+2° +2°

=
=

2 2

1
AVw = (]. + 22) 1 { (wi,j+1 - 'U)i,jfl) (71)i+1,j+1 — “)i+1,j71) (“)i*l,j%-l - “)i+1,j71) }
The discretization of (10) is then written (assuming that in the whole range [0, max ((A%u)? + (AVu)?)], we

have F(s) = s)

1
n+1 __ —2 x 2 2 n
Vil T 13w ((5th, ((A%u)* + (A%u)?) + 1)i7_7). (16)

We can now give a discrete version of the maximum principle and show that the proposed algorithm will
not create new information (local extrema).

Lemma 1. For alln >0 and (k,1), 0 < k,1 < N, we have:

minu ; <...<minu!, <upt' <maxul; < < maxu (17)
F e i 2 B A o e

In particular, if u;ﬁ] is a strict local maximum (resp. strict local minimum) of (uf]“) then

n+1 n n+1 n
upy <ugy (resp. gy > uk,l)' (18)
PROOF : Let u,t“l'l a global maximum of (u?’?’l), then in particular:
n+1 n+1 n+1 n+1
Uy — Upiqg >0, gy Uy >0,
(19)
n+1 n+1 n+1 n+1
U — U >0, gy — U 2 0.

Using (15), and the fact that g > 0, we obtain:

n+1 n
U < Upy,

and we deduce:

max u?iﬂ < maxu; <--- < max u?

2y 2] 2] J

In the same way we prove the “min” part of (17), by considering u}; 7' a global minimum of (uf’j’l) We

prove (18) by using the same argument and the fact that we now have strict inequalities in (19). O

5 Experiments

In figure 1 we compare the performances of our scheme to the Catté and al. model [4] and in figure 2 we
present an example of restoration on a natural image. The experiments have been done with the edge

stopping function
1

Y= ey



We have chosen a value of A = 6, for images in the range [0,255] and with a spatial grid size h = 1 (contrarily
to the convention in the previous section). The temporal increment we have used is dt = 0.1.

Figure 1-(a) is a synthetic image (128 x 128) representing superimposed shapes having each one a constant
grey level. Figure 1-b shows image 1-a where 20% of gaussian noise is added. We represent by figures 1-(c)
the restoration of the noisy image with the Catté et al. model (3) at scales 4 and 8 (from left to right) and
by figures 1-(d) the restoration with our scheme at the same scales. Notice that respectively, the scales 4
and 8 correspond to the stopping time ¢ = 8 and 32. As explained in [4] by the authors of the model (3),
the scale ¢ used in the convolution term G, * u must be in taken in relation to the stopping time. Thus in
figures 1-(c) we have used o = 4 and 8.

As mentionned in section 2 the threshold introduced by F' implicitly exists in the numerical scheme.
Indeed, since the discrete scheme satisfies the maximum principle and the fact that spatial increment is
assumed to be 1, then the discrete gradient is always bounded by v/2(max ug — minug) and M can be chosen
to be 2(maxug — minug)?2.

In the left image of 1-(b), the noise is smoothed in the homogeneous areas but is kept near the edges. This
drawback is caused by the fact that the diffusion is inhibited also in the neighborhood of edges. Whereas
in the left image of 1-(c), the noise is only partially smoothed but in a uniform way. In the right image of
1-(b) the edges and corners are blurred. Indeed, we know that || DG, * u||,~ decreases for large values of o
consequently for large values of o we diffuse more near edges: in particular, if || DG, *u||L~ < A, the diffusion
is never inhibited. Whereas in the right image of 1-(c), the noise has disappeared and the reconstructed
image is very close to the original.

Figure 2-(Right) represents a natural image (256 x 256) without additive noise and figure 2-(Left) repre-
sents its restoration with our scheme at scale 5 that corresponds to the stopping time ¢ = 12.5. We remark
that salient edges and textures are preserved (see for example the top of the hat) whereas the noise in
homogeneous areas is smoothed.

6 Numerical analysis

First we check that our schemes makes sense. Indeed, for all 6t > 0, the sequence (u},,v}) exists and is
unique. Equation (10) allows to write v explicitly:

1
opt! = T3 —— (8t F(|Duj ™) +vf). (20)

and by induction we find
0< ot < (1= (140 ™M+ (146) " Jlvg] e -
We deduce that (v}) is uniformly bounded in L*°(Q) and satisfies:
0 < vf < max(M, [lvg] 1= (q)) := M, for all n and é. (21)
Using the fact that g is a positive non-increasing function, we have 0 < g(M') < g(v%) < 1. Therefore

<
equation (9) is strictly elliptic and we know that there exists a unique solution u5+1 in H'(Q). In addition,

u?,“ is given by the problem

1
min {E((;t ny (W) = / g(wi)|Dw|? dzx + —/ |w—uf|?de:w e Hl(Q)} . (22)
By the maximum principle, it is clear that for almost all z € Q0 we have
infug <--- <infuj < ugf](a:) < supug < --- < sup up. (23)

Multiplying by ujt" the equation (9) and integrating on € we get

0< (57‘/ g(vi) | Dust Pdz < / ufulit dr — / g tt?, (24)
Q



&

Figure 1: Top LEFT: (a) Original image. Top RIGHT: (b) Image (a) with 20% of gaussian noise. MIDDLE
LINE: (c¢) Image (b) restored by the Catté et al. model [4] with scales 4, and 8. BoTrTOoM LINE: (d) Image
(b) restored by our scheme with scales 4, and 8.



Figure 2: RIGHT : Original natural image. LEFT: The output of our scheme at scale 5.

from which we deduce
lug 2@ < usiliz@) < -+ < lluol2(o)- (25)

We now define the piecewise affine (in ¢ > 0)
s (,t) = (1= O)up/ " (@) + ful/ " (z)

with 8 = t/5t — [t/dt] € [0,1). We also define (Us:) in the same way. Then we can write discrete system
(11)-(12) in the form

ot . -

gt‘“ = div (g(r"vs)Dug), (26)
a9,

a_ft = F(|Dug|?) — vg. (27)

Lemma 2. (904 /0t) is uniformly bounded in L>((0,T) x Q), and in particular

(Sltlm H’U(;t - 1)5,5”Loc 0 T) L2( )) =0. (28)

PROOF : From (27) and the inequalities (21), we easily deduce the uniform bound of (9vs/0t),

|| <M
L~ ((0,T)xQ)
Let t € (0,T). We set 8 =t/dt — [t/ot], and write
/Q O5t(x, 1) — var (@, )| do = / (1= 0) (v (@) = o/ " (2))? e (29)

Hence
ov,
/|v5t (z,t) — vg (2, )P dz < ot / —& mt dm < &tPM2

(28) follows O



Lemma 3. (ug) is uniformly bounded in LOO(O,T;H](Q)). More precisely we have:
1 C
| Duslfe o112 <~y (10wl + s luolfi ) (30)

OV
L>=((0,T)xQ)

with C = (sup|g'|) H

PROOF : First we establish a uniform bound on (usg) in L*(0,7; H'(2)), and prove the lemma by
showing the following inequality:

”D“‘ﬁtH%OO(OT;LQ(Q)) <Gy ”D“0”2r,2(9) + Oy ”D“‘r;t“%?(oﬂ“;LQ(Q)) (31)
where C,Cy > 0 are constants that will be made precise.

Multiplying (9) by uj, ! and integrating by part in Q as in (24), we obtain

(n+1)6t
Q(M’)/ /‘DU&\dedt = 5t/ \Du”+1|2da::
not Q
< ot / 9(viy)| Duz ™ *dx
Q
< Nugil ooy = lugt 1720

Then we deduce (for simplicity we use the notation k := [T'/dt])

T
g(M')/O/Q|Du{;t|2dmdt

Stk T
= gM") / / \Dug|? dx dt + g(M / / \Dug|* dx dt
stk JQ

T — 6tk
< (luolFi) — luglieaie)) + T(Hug’tlﬁ,z — g7 20))
T — ot(k +1) T- 6tk
< HU0|\%2(Q) + T\Iu’al\iz( g™ ”L2(Q)

and since §tk < T < dt(k + 1), we obtain

//|Du{;,| dzdt < o0 )H'U(]”,Q Q) (32)

This prove that (ug) is uniformly bounded in L*(0,T; H'(f)).

Now we show (31). For all n > 0, we have

[t npug s [ gep)Dug P do =
JQ

Ja
/Q(q(vg:+ ) — g(v})) | Duf Pdx + /Q () (|Dug 1> — |Dugy|?)dx . (33)
Using the minimum problem (22) we have E(s ) (uy™ h< Es5t,ny(ug,), that is,
[ atwiiDu P+ g [t e < [ gtog) Dug P ds. (34)
Ja Ja



Then the second integral of (33) satisfies
/Q (vg) (|Dugt > — |Du|?)dz < 0.

The first integral of (33) we can be written

n+ly n
[ ™)~ geinipugPar < [ [HEI I pyge g,
JQ
< C6t/ |Dult|? dr,

. Using this estimate in (33), we get

e
Loo((0,7) x Q)

with C := (sup|g’|) H

/(}(1)5;'1)|Dun+1\2 de/ g(v5)| Duj|? dT<C’(57‘/ |Duj | da.
Ja Ja

Taking the sum as n varies from 0 to [t/dt] and using the fact that ug(-,t) = u&f/{w] , we obtain
[¢/6t]
/ g(v{[i;/ﬁt]+1)|Du£itt/5t]+l‘2 dr — / g(UO)‘DUOP dr < C Z 5t/ |Dun+1 2 dx
Q Q
<

We conclude that for all ¢ € (0,7)

T
/g(7)5t(-,t))|Du,5t(-,t)\2 dz < /g(vg)\Du0|2dm+C’/ / \Dug|? dx dt.
Ja Ja Jo Ja

Since g(M') < g(vy) < 1, we get

1 T
y (/ \Du0|2dm+C’//\Du(;thmdt),
) Vo Jo Ja

[Dus (1) 720y <

3t ([t/8t]+1)
C’/ / \Dug|? dx dt.
Jo Ja

this proves (31). To conclude the proof of the lemma we combine the last result with (32) to obtain (30). O

Lemma 4. (i) is uniformly bounded in H' ((0, T) x Q) and satisfies the inequality

Ot |12 , C ,
<|D ) _— )
H L2((0,T)xQ) — | Duolliz () + g(M) luollz2(q)

2

where C' is the constant of lemma 3. In particular we have
lim ||ug — u . =0.
Jim s — uat|z2((0,7);22(0))

ProOOF : First we rewrite the inequality (34) in the form
ug g

/ o Hauat 2 o /Q 5

2(/g(1)£)\Du§i\2 dmf/ (1)&)\D7/"+]|2d7")
Ja Ja

dz

IN

10



Let k := [T'/dt]; we obtain using the last inequality

i) 15

k+1 k

k—1
1 ug o —u u — ug ||2
_ &H i 6t‘ T _ stk H ot (St‘ 7
2 (nz:o L2(Q) + ) ot L2(Q))
k—1
< g(v§)| Dub, def/ v Du"+12d7‘
Z(/ ORI dr — [ 3| DU do)
T — otk / 1o
g(vs)|Duly|? dz — g(vl)|Dul™ |* dx),
e G Rl (v§)|Dug"! ? da)
< /Qg(vg)\Du0|2dm (38)
+Z( [ st de = [ gt o) (39)
T—5tk ‘
(75 [ seh)Dusf? do = [ gl DU o) (40)
T — otk
—— /Q (i | Dubt 2 da . (41)

Let us estimate the last four terms. Since g < 1, (38) satisfies
| 9| Duol dz < [Dul o
Q

For the term (39), we proceed as in (35)

k-1 t(k—1)
Z ( / g(wi)| Duf,|* do — / g(vg )\Du§t|2dr < C/ / |Dug|? da dt.
n=1 /9 79

We use T' — 0tk < 0t to estimate the term (40),

otk

(T — Otk

o [ owhipdPar— [ gl HipdPar) <o [ [ Dusf st
4 Q Q

ot(k—1)

and since T — 0tk > 0, (41) is non-positive. Thus

/ H Ol s
L

To find (36), in the last inequality we put the right hand side of (32) in place of the integral term.
To show (37) we proceed as in (29), then we obtain after integrating on (0,7")

g o [T O 2
[ fstet) - usto0f dode <o [ [ |5
Jo Ja Jo Jo ! Ot

which goes to 0 as &t goes to 0. [

d7‘< HDUOHLz )y + C/ / \Dug|? dx dt .

2

dx dt |

Now we will focus on the regularity and the convergence of the sequence (vs). The idea is the following:
the fact that v, € H'(), allows us to establish a regularity on the second derivative of u}, which in his turn
used to show that vy, € H'(Q), and so on. For this, we will use the classical topological degree’s theory and
a regularity results of solutions of elliptic equations given by D. Gilbarg and N-S. Trudinger [9] and N-G.
Meyers [18], to establish the following lemma.

11



Lemma 5. Let w € H'(Q) N L°(Q; R, ) such that 0 < X < w(z) a.e. in Q, f € L*(Q) and u € H'(Q) the
solution of the elliptic problem

ou

e — =0, = U. 42
3 oo 0, ][u(az) de =0 (42)

Then for all bounded continuous function b € C(]0,00[,R) satisfying | (s)| < Ao and |s¥(s)] < A for all
s > 0, we have

div(wDu) = f,

[(Dul)D2ul 122y < A7 (Mol l20) + A IDwl 2oy )- (43)

The proof of the lemma 5 is given in section 7.

Remark 1. Since the divergence term of (9) has zero average, we have for all 5t > 0 and all n fd’ﬂ x)dr =
fdl& x) dx. Thus, using the fact that our model is grey level shift invariant, we can assume that ug has zero
average in §): it is not restrictive as we may always replace ug with ug — fﬂu()(a:)da:. This allows to have
s (x) de = 0 for all & and all n.

Lemma 6. For all n > 0, we have v} € H' ().

PROOF :  We begin by proving that v}, € H'(Q) Since v}, is a linear combination of F(|Duj,|?) and
vg € H'(), its amounts to show that F(|Dug|?) € H'(Q). The first step is to determine the distributional
derivative of F(|Duy|?). For simplicity we use the notation u := uj,.

By applying lemma 5 to the equation (9) with n = 0, we know (from the proof of the same lemma) that
there exists € € (0,1) such that D?u € L'**T¢(Q), and since u € H*(Q2) in particular we have u € W21(Q).
Then, there exists a sequence of C? functions (uy), that strongly converges to u in W21(Q) and satisfy
Uy, — U, Du,, = Du a.e. in Q.

Let ¢ € C5°(Q). Since F is bounded and continous we have |F(|Du,|*) 0;¢| < M|8;¢| and F(|Du,|?) —
F(|Dul?) a.e. in Q. Then by applying the Lebesgue Theorem we obtain the convergence

/F(|Dun\2)8i¢da: - / F(|Dul?) 8;¢dz, asn — oc. (44)
Q Q

By the fact that F’'(s) = 0 for large values of s its clear that (F'(|Du,|?)8;un), is bounded in L>(f2).
Then there exists a function £ € L*(Q) and a subsequence still denoted by (F'(|Du,|?)8;un), such that
F'(|Duy,[?)0ju, = € in L®(Q). By using the continuity of F’ we have F'(|Duy,|?)d;u, — F'(|Dul?)d;u
a.e. in Q. Then ¢ = F'(|Dul?*)9ju. Combining the last weak convergence with the strong convergence
Dijund — O;jug in L' () (here we use |0;jund — ijud| 1 < |@]n=||0ijun — diju|rr — 0), we obtain

/ —2F"(|Duy|?)0;jun Ojun ¢ dx — / —2F'(|Du|?)0;judju ¢ dz, asn — oo. (45)
Ja Ja

The fact that the two sequences in the left hand side of (44) and (45) are identical, proves that the distri-
butional derivative of F(|Du|?) is given by —2F'(|Du|?)D?*u Du.
The second step is to show that D(F(|Du|?)) € L?(2). Indeed, we have |F'(|Du|*)0;u (1 + |Du])| <

C(M) a.e.in Q with C(M) = (M% + M). Then we can write

|D(F(|Dul?) (46)

]2

||L2(Q) <0C H1+ | Dul

Applying once more the lemma 5 to the equation (9), with n = 0 and 1/}(3) =1/(1+ s) to conclude that the
right hand side of (46) is bounded in L*(2) by writing

H1+|Du| L2(Q) ~ (H ot ‘

We return to equation (20). Since v € H'(€), we deduce that v}, € H] (Q). By induction we conclude that
v € H'(Q) for all n > 0. This proves the lemma. ]

1Dl ) (47)

2
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Lemma 7. The sequence (vs) is uniformly bounded in L>(0,T; H'(2)). In addition we have

Ous

t
”Dvét('=t)”L2(Q) < €Kt”DU0HL2(Q) + K/ ef(t=s)
0 L2(Q)

with K = (g(M"))~" (M3 + M).

PRrROOF : Deriving the equation (20) with n = 0, and using the L? norm, we get

ot 1
1 12
HDU&HLQ(Q) < 1+ ot HD(F(\D“&\ ))HLQ(Q) + 1+ ot HDUUHLQ(Q)-
Then using (46) and (47), we obtain
Két jul —ug 1+ Két
Dol lreg) < —Hﬁfi‘ T D e
|Dvg L2y < vl & et Tra [ Dvoll 2w,
with K := (¢g(M"))~*C(M). We may prove in the same way that
Kot jult™ —ub, 1+ Kot
D n+1 ) H ot ot Du2llyo .
1Dvs" [L2(0) < T+ o 5 L2(@) T s 1Dv5; || L2 ()
Then by induction we get for all n
K < 1+ Két\n—i _jul, —ul* 1+ Kot\n
DVl 20y < {( ) et b (SEE) IDwleey:
D] L2 (0) < 1+5t; T 5 P e |Dvol z2()

Finally by using the inequality

3

(1 + K(it)”*-f < eKotn—i)
146t

we obtain for all ¢t € (0,T) (n = [t/dt]),

t o~
_ Oust
Dvg () 1200y < K K(t5>—-.‘ ds + "1 Dvg| 12(c-
| Dvs (1) ) < / G5 g 5+ € 1D 120
In particular we have
Ous
Dug (- t < KT ’”’H— KT
H Vet (- )”LQ(Q)_ € ar L ((07T);L2(Q))+e H U0HL2(Q)7

which is bounded according to lemma 4.

PrOOF OF THEOREM 1. According to (23) and the lemma 3 and 4 there exists two subsequences, (us;)
and (i, ), and a function v € H* (2 x (0,7)) N L>*(2 x (0, 7)) such that

. Jj—=+o0 . 2
Ug;,us; —  w strongly in L7(€2 x (0,7)),

N j—+oo A 9 1
Ust;, Ust; — — u  weakly in L*(0,T; H (2)),
j—+oo

Uy, —— u weaklyin H'(Q x (0,7)).

We draw the same conclusion from (21) and the lemma 2 and 7 if we replace (uy;, ts;) with (vs;,vs,) and
u with v. Tt remains to prove the strong convergence (13) and the fact that (u,v) is a solution of a system

(7)-(8)-
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Up to a subsequence, we can assume that vs; — v a.e. in  x (0,7). In addition, by using the fact that
(805 /0t) is bounded in L>(Q x (0,T)), we deduce that 7-%vg, — v a.e. in Q x (0 T) and by continuity
of g, we also obtain that g(r~ % vs,) = g(v) a.e. in @ x (0,7).

Let ¢ € C®(Q2 x (0,7)). Multiplying the equation (26) by ¢ with &; in place of &, and integrating the
result in Q x (0,7, we get

Ots,
// L pdrdt = // ]7)5[» Du{;tde)dmdt.

We study the limit of the two terms of the equality as j goes to +oco. By using the weak convergence

Oy, [0t — Ou /Ot in L*(2 x (0,T)),

Tr Qs j—+oo Tr ou
T pdedt S //—gbdmdt.
./0 /Q ot Jo Jo Ot

Combining the weak convergence of Dug, to Du in L*((Q x (0,7)); R*) with the strong convergence of
g(t7 " vg, ) D¢ to g(v)D¢ in L?((2 x (0,T))); R?) (using Lebesgue’s dominated convergence theorem), we

deduce that
// ]v(;t Du(st Dodxdt —) // v)DuD¢ dz dt.

/ / Zddrdt = / / v)DuD¢ dz dt, (48)

which means that u is a weak solution of (7).

Then we obtain

Now, to prove the convergence (13), it remains to show that Dug, strongly converges to Du in L*(( x
0,7)) ,]R{ ). For this we write

/ / g(t tfv(;t].)\Du(;tj — Dul? dx dt =
0Ja

// ]7)5[» )| Dy, |> dx dt — 2 // Jv{;t )(Dugs;.Du) d dt
// Jv(st )| Du|? dx dt
Tr Oty
= f// oty Ut dmdt+2// Ludx dt + // ivg, )| Dul? dz dt. (49)
JoJo Ot Jo Ja

Let us study the convergence of each term of (49) as j goes to +oc. Taking into account that dus, /0t
converges weakly to Qu/8t and that ug, converges strongly to u, both in L*(Q2 x (0,T)), we obtain:

ou j——+00 T [
// at, L ugt, dr dt J_)—> //@udazdt,
! q Ot
O, j—+oo
// udrxdt —— //—uda:dt

Using the fact that g(r %vs,) — g(v) a.e. and g(t %vy,)|Dul*> < |Dul?, we deduce (by Lebesgue’s

theorem)
// %5 vst, ) |Du|2de7‘ *) // (v)|Du|? dx dt.

T T
lim / / ivst, )| Dug, — Dul? dz dt = / / %u dz dt + / / g(v)|Du|? dz dt.
j—+oo 0.JQ 8t Jo Ja
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By density of C>(Q x (0,7)) in H'(Q x (0,T)) we substitute ¢ by u in the equation (48), and get

//@udxdt // (v)|Du|? dz dt,

T
M')//\Du(;tj—Du\dedt< lim // J'U(jt ) Dug, — Dul?dz dt =0
0JQ j—+o

this shows the strong convergence (13).

then

Finally, up to a subsequence we have that Dug; — Du a.e. in Q x (0,T) and the continuity of F' allows
to obtain that F(|Dus,|*) = F(|Dul?) a.e. in Q x (0, 7). This prove that v is a solution of (8).0

7 Appendix

PROOF OF LEMMA 5. By a density argument there exists a sequence (w,,) in C°(Q) that converges to w in
H'(Q). Using classical truncation and convolution arguments we can chose (w,) in L>(Q;R, ) and which
satisfy A < w, for all n > 0. We deduce that the solution u,, of the elliptic problem:

Oun

div (wp, Duy,) = f, o |oo

=0, ][un(x)d:n =0. (50)

Q

exists and unique in H'(Q). Moreover, from |Dwy L=y < oo, f € L?(Q) and using classical regularity
results it appears that u, € H2(Q).
First we prove that the inequality (43) is true for the regularized problem (50). For this writing (50) in
the form
wpAuy, = —f + Dw, Du,, (51)

and multiplying the equation by (| Du,|), then we get using the L?-norm
(1D ywn Aun | p2() < [9(1Dunl) flrz@) + [9(1Dun|) Dwn Dug| 129

As 0 < A < wy, [ < Ao and |stp(s)| < A1 together with the last inequality, we obtain

(| Dun) Al 1200y < A7 (Mol fliz(e) + Ml Dwnll i) )- (52)

To continue we need the following lemma that we prove in the end of this section (let us recall © is the
plane square (0,1)2):

Lemma 8. Letu € H2() an Q-periodic function, then for all bounded continuous function ) € C(]0, co[, R),
we have the equality

[¥(1Dul) Aulz20) = [ (1Dul) D*ul 2 (o)

Now we extend u, on all R? by symmetry and periodicity to a function i, 2Q-periodic. Then invoking
lemma 8, we get

191 Dtin|) D* i 12 (20) = [(| D) At | 12 202)
and by symmetry of @, in 2Q, we easily deduce that

[%(1 Dun ) D*unll () = [4(| Dunl) Au | 120

that we use in (52) to obtain

[ Dun ) D2unl () < A7 (Mol flizo) + M| Dwnlliza) )- (53)
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This proves that the inequality (43) is true for the regularized problem (50).

Inequality (53) implies that the sequence (¢(|Dun|)D?uy) is bounded. Then there exists a subse-
quence (still denoted by (¢(|Duy|)D?u,)) weakly convergent in L?(2). Let us assume that its weak limit is
Y)(|Dul)D?u. Then by applying Fatou’s lemma we obtain

(1 Du)) D2 ulize) < liminf [(|1Dun ) D*1unl 12(0)
< A 'liminf (Aol flliz@) + MIDwal @) )
< A7 Ol Al + M IDwlis@) ).

showing in particular (43).

Before proving that the weak limit of (1(|Du,|)D?uy,) is ¢(|Du|)D?u, let us show that up to a subse-
quence, (u,) is strongly convergent in H*(f2). Indeed, multiplying div (w, Duy,) = f by u, and integrating

the result on €2,
/ wy, | Duy, |*de = —/ fupdz.
Q Q

)\HDunH%Q(Q) < /an|Dun\2dm,

The left hand side satisfies

and using the Holder and Poincare-Wirtinger inequalities, we get for the right hand side
/ fundz <[ flrz2@)llunlrz@) < Clflez @) DunlL2)- (54)
Q
We deduce that (u,,) is uniformly bounded in H'(£2) and we have

C
Dunliza < Sl 9)

Then there exists u € H'(Q) and a subsequence still denoted by (u,,) that strongly converges to u in L2(1),
weakly in H!(Q) and a.e. in . To prove the strong convergence Du,, — Du in L*({)) we can write

/wn\DunfDuPdm = / Wy | Dy |*de — 2 / Wy Duy Du dx + / wy, | Du|*dz,

and
9 n—+oo
/wn|Dun\ da::—/fundx — —/fuda:,
Q Q Q
n—-—+oo
/wn\Du\2 dr "5 /w\DuPdm:f/fudm,
—2/ wnDunDud:U:Q/ fudzx,
Q Q

thus

9 9 n—-+oo
A | |Duy — Dul“dz < [ wyp|Du, — Dul|*dz —— 0.
Ja Ja

Now we are going to study the convergence of the sequences (D?u,) and ((|Duy,|)) to prove that
(¢¥(|Duy|)D?uy,) — (| Dul)D?*u weakly in L*(Q).
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Denoting O = (—1,2) x (—1,2) and choosing a function ¢ € C2°(R?), such that Q CC supp(§) CC Q,
and satisfies

§(x) =

Remark that @,& € W2''T(€) for all € € (0,1) (e fixed later). Then, according to Gilbarg-Trudinger [9]
Chap. 9, Corollary 10, there exists a constant C(e) > 0 such that

|1D*(@n&)[1+<01) < COIA(@RE)]11+<(01)-

1 ifze
0 ifreR/Q.

It follows that

| D*unlp4e(0) < ID*(@n€)| 114+ (00),
< CIA(@n )l rr+ (1),
< C(G){HfﬁﬂnHLHe(Ql) + [an A p1+e(q,) + 2| Dun, D Ll+e(91)}=
< C(€)C{|\Aﬂn\|Ll+‘(Ql) + llanlpr+e,) + HDﬁ‘nHL”r‘(Ql)}:

where C' := max (\|§Hoo72\|D§HOO, HAfHOO) Thus
| D2 1) < 9 o(e)c{ | AU e ) + [tn] 1) + 2\|Dun\|,/1+e(9)}. (56)

The two sequences (|u,|r1+e(q)) and (|Dun|Li+<q)) are bounded according to (54) and (55). For the
sequence ([Auy,|r1+¢q)) we use (51), and write

HAU,nHLlJrs(Q) < A1 (Hf“LlJrs(Q) + HD’UnDunHLlJrF(Q)). (57)
Then it remains to show that the sequence (| Dwy, Duy|r1+<(q)) is bounded. Remark that by the symmetry
and the fact that u, satisfies the Neumann type boundary, the equation

F = div (@, Diiy,)

still holds in 2, := (=2, 3) x (=2, 3) where the functions f and @, are defined in the same way that @,. Then
according to Meyers’ Theorem 2 in [18], there exists p > 2, depending only on max@/minw < ||w]|s/A,

3

such that for all z € Qy and for all R > 0 satisfying B(z, R) C B(z,2R) C £, we have:

~ 1_1y_ ~ 1_1 s
| D | 1o (B(a,r)) < CL{RF ™2 M| 12 (o)) + B2F 2 flr2 a2 }-

Choosing z € 2 and R such that Q C B(z, R), for example = = (3, 1) and R = v/2, we deduce that (|Du,|)
is bounded in LP(Q).

Coming back to (57) and choosing € = (p — 2)/(p + 2), then the sequence (Dw,, Du,,) is bounded in
L'*t¢(Q) and consequently (D?*u,,) is bounded in L'*¢(2). We conclude that up to extracting a subsequence

n—+oo

D*u, — D?u  weakly in L'T¢(Q). (58)

Consider ¢ € C*(Q). Since Du,, — Du a.e. in , the continuity and boundness of ¢, we obtain using
the Lebesgue theorem

n——+oo

Y(|Duy|)¢ —— ¢(|Dul)¢ in LI(Q) for all q € [1,00).

Finaly, choosing ¢ such that 1/(1 4+ €¢) + 1/¢ = 1 and combining the last strong convergence with the weak
convergence (58), we obtain

/1[1(|Dun\)D2un¢dm ni)f/w(\Du\)DQU(;Sdm.
Ja Ja
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This conclude the proof of the lemma.

To prove the lemma 8 we need the following result which comes from the topological degree’s theory, and
is a particular case of the lemma 2.10 of [12] (see also the theorem 6 of [10]):

Lemma 9. Let f € C'(R*;R?) an Q-periodic function. Then for all ¢ € Cy(]0,+00[) we have
[ o@D (@ = o (59)

where Jy(z) is the Jacobian of f at point z, i.e. Jy(z) = det [9; 7 (z)].

ProOOF OF LEMMA 8. Let u € C?(R?) an Q-periodic function, ¢ € Cy(]0, oo[; R). Using (59):

/ (| Dul)Jpy dzdy = 0,
Ja

that is,
/91/}(|Du|)8”u8yyuda:dy = Lw(\Du\)(amyu)dedy.

This implies

/Q’l/}(|D'LL|) ((&mu)2 + (8yyu)2 + 28Mu8yyu) dedy = /91/1(|Du|) ((&mu)2 + (8yyu)2 + 2(8myu)2) dzx dy,

that is,
/¢(\D7L\)|Au|2 dmdy:/¢(\D71,\)|D2u|2dmdy. (60)
Ja Ja

Since |Dul is bounded (u € C?(R?) and Q-periodic) its clear that (60) remains true if 1 is only bounded
and continuous function from R* to R.

Now we show that (60) is true for v in H?(Q). Indeed, by density argument there exists a sequence
(w,) € C?(R?) N H?(2) that converges to « in H2(£2). In particular we have Aw,, — Au, D*w,, — D>u et
Dw, — Du in L?(Q2). In addition, there exists a subsequence still denoted by (w,) such that Dw, — Du
a.e. in .

Using the fact that ¢ is bounded, there exists a function h € L°(Q) and a subsequence still denoted by
(w,,) such that ¢?(Dw,) = hin L°°(R2). Combining this with the strong convergences |Aw,|?> — |Au|? and
|D?w,|? — |D?ul? in L}(Q), then we obtain:

¢ (Dw,)|Aw,|* = h|Au* and *(Dw,)|D*w,|* = h|D*u|* in L'(Q).

Now using the fact that Dw, — Du strongly and a.e. in Q and the continuity of ¢ we deduce that
h = v¢?(Du). Finally, the sequence (w,) can be chosen Q-periodic (for example as a convolution of u with
a smooth kernel), then we obtain the desired result by applying the equality (60) to w, and passing to the
limit. O
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