
HAL Id: hal-00001401
https://hal.science/hal-00001401

Submitted on 2 Apr 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TIME-DELAY REGULARIZATION OF
ANISOTROPIC DIFFUSION AND IMAGE

PROCESSING
Abdelmounim Belahmidi, Antonin Chambolle

To cite this version:
Abdelmounim Belahmidi, Antonin Chambolle. TIME-DELAY REGULARIZATION OF
ANISOTROPIC DIFFUSION AND IMAGE PROCESSING. ESAIM: Mathematical Modelling and
Numerical Analysis, 2005, Vol.39, No.2., pp. 231-251. �10.1051/m2an:2005010�. �hal-00001401�

https://hal.science/hal-00001401
https://hal.archives-ouvertes.fr


Time-delay regularization of anisotropi
 di�usion andimage pro
essingA. Belahmidi, A. ChambolleJanuary 2004Abstra
tWe study a time-delay regularization of the anisotropi
 di�usion model for image denoising of Malikand Perona, whi
h has been proposed by Nitzberg and Shiota. In the two-dimensional 
ase, we show the
onvergen
e of a numeri
al approximation and the existen
e of a weak solution. Finally, we show someexperiments on images.Key words : Image restoration, Variational methods, Numeri
al approximation, Time-delay regularization, Malik andPerona equation.1 Introdu
tionIn a well-known paper, Malik and Perona [15℄ have proposed a model for image restoration based on thefollowing partial di�erential equation :�u�t = div �g(jDuj2)Du� u(�; 0) = u0 : (1)Here u0 is the grey level intensity of the original image, u(�; t) is the restored version, that depends on thes
ale parameter t, and g is a smooth non-in
reasing positive fun
tion with g(0) = 1 and sg(s2) ! 0 atin�nity. The main idea is that the restoration pro
ess obtained by the equation is 
onditional: if x is an edgepoint, where the gradient is large, then the di�usion will be stopped and therefore the edge will be kept.If x is in homogeneous area, the gradient has to be small, and the di�usion will tend to smooth around x.By introdu
ing an edge stopping fun
tion g(jDuj2) in the di�usion pro
ess, the model has been 
onsideredas an important improvement of the theory of edge dete
tion [17℄. The experiments of Malik and Peronawere very impressive, edges remained stable over a very long time. It was demonstrated in [16℄ that edgedete
tion based on this pro
ess 
learly outperforms the Canny edge dete
tor [3℄.Unfortunately, the Malik and Perona model is ill-posed. Indeed, among the fun
tions whi
h Malik andPerona advo
ate in their papers, we �nd g(s2) = 1=(1 + s2) or g(s2) = e�s2 for whi
h no 
orre
t theory ofequation (1) is available. By writing the equation in dimension two:�u�t = g(jDuj2)jDujdiv� DujDuj�+ �g(jDuj2) + 2jDuj2g0(jDuj2)�D2u� DujDuj ; DujDuj�; (2)where D2u( DujDuj ; DujDuj) is the se
ond derivative of u in the gradient dire
tion and jDujdiv ( DujDuj ) is the se
ondderivative in the orthogonal dire
tion, we observe that the di�usion runs ba
kwards if sg(s2) is non-in
reasing.Then, in the regions where the gradient of a solution is large, the pro
ess 
an be interpreted as a ba
kwardheat equation whi
h is a
tually ill posed. In the 
ontinuous setting, it means that (1) may have no solution atall. One 
ould also imagine very 
lose pi
tures produ
ing divergent solutions [11℄. In pra
ti
e, the equationis dis
retized into a (obviously well-posed) �nite-dimensional version of (1), however, it does not seem 
orre
tto interpret su
h a dis
retization as an approximation of the ill-posed problem (1).1



For these reasons, there have been many attempts to understand the Malik and Perona equation and�nd out whether (1) 
an be given a sound interpretation. There are essentially two approa
hes: The �rst,motivated by favorable numeri
al results, 
onsists in studying the original equation and in establishingtheoreti
al results that explain the observed behaviour. The se
ond approa
h 
onsists in modifying theequation by regularizing the term g(jDuj2) in order to get a well-posed equation.2 The Malik and Perona equation and the regularized versionsFirst, we expose the main mathemati
al results established on the Malik and Perona model. Most of theseresults are restri
ted to the dimension one; the unique result in dimension two, given by You et al. [21℄
on�rms the ill{posedness of the equation. Kawohl and Kutev [13℄ establish, in 1D, nonexisten
e of globalweak solution, and prove the existen
e and uniqueness of a 
lassi
al solution only if the initial data haseverywhere a small slope. In this 
ase the equation remains paraboli
 for all time and there is no edge topreserve: the di�usion smoothes the data, like the heat equation would do. They also prove a 
omparisonprin
iple under spe
ial assumptions on the initial data.Ki
henassamy [14℄ shows that in general the Malik and Perona equation does not have a weak solution ifthe initial data is not analyti
 in a neighborhood of high gradient regions. His argument is based on interiorregularity properties of paraboli
 equations. Only in dimension one, he proposes a notion of generalizedsolutions, whi
h are pie
ewise linear with jumps, and shows existen
e.Adopting a numeri
al viewpoint, Esedoglu [7℄ studies the one-dimensional Malik and Perona s
heme. Heestablishes by a s
aling argument the 
onvergen
e to an evolution in the 
ontinuous setting. The resultingevolution solves a system of heat equations 
oupled to ea
h other through nonlinear boundary 
onditions.Working in dimension one 
learly redu
es the diÆ
ulty by eliminating the �rst term of (2) whi
h isnothing but the mean 
urvature motion operator with the 
oeÆ
ient g(jDuj2). As it is known, the mean
urvature motion evolves ea
h level line fu = Cg with a normal speed proportional to its 
urvature (see[8, 1℄ for more details).In dimension two, You et al. [21℄ express the anisotropi
 di�usion of Malik and Perona as the steepestdes
ent of an energy surfa
e and analyze the behaviour of the model. They prove that the ill{posedness is
aused by the fa
t that the energy fun
tional has an in�nite number of global minima that are dense in theimage spa
e. Ea
h of these minima 
orresponds to a pie
ewise 
onstant image. This means that slightlydi�erent initial images may end up in di�erent minima for large t.As mentionned, another approa
h relies on the idea that the ill{posedness may be alleviated through theintrodu
tion of a smooth version of g(jDuj2). There are essentially two propositions whi
h we 
onsider as adire
t derivation from the Malik and Perona Model. The �rst 
onsists in a spatial regularization, as in thefollowing model: �u�t = div �g(jDG� � uj2)Du�; (3)whereby g(jDuj2) is repla
ed by g(jDG� � uj2), where G� is a Gaussian with varian
e �. In [4℄, Catt�e etal. prove existen
e, uniqueness and regularity of a solution. It is known that G� � u(x; t) is nothing but thesolution at s
ale � of the heat equation with u(x; t) as initial data.A �rst observation is that near a sharp 
orner, the di�usion 
oeÆ
ient g(jDG� � uj2) may remain verylarge, hen
e this model will be unable to preserve 
orners.Another problem is the 
hoi
e of the regularization parameter �. In fa
t, this 
hoi
e is 
riti
al in the sensthat the di�usion pro
ess would be ill{posed if � = 0, while image features would be blurred for too large an�. As proposed by Whitaker and Pizer [20℄, the regularization parameter � should be a de
reasing fun
tionin t, by using large � initially to suppress noise and redu
ing � so that image features are not further blurred.In spite of this, the 
hoi
e of the initial and �nal values of � remains an open question.The se
ond proposition is a time-delay regularization, where one repla
es jDuj2 with an average of its
2



values from 0 to t. Then g(jDuj2) is repla
ed with g(v) with:v(x; t) = e�tv0(x) + Z t0 es�tjDu(x; s)j2 ds; (4)where v0 is an initial data, for example v0 = 0 or jDu0j2. Therefore the new di�usion pro
ess is des
ribedby the following system: �u�t = div �g(v)Du� u(�; 0) = u0; (5)�v�t = jDuj2 � v v(�; 0) = v0: (6)Proposed by Nitzberg and Shiota [19℄, this model is very 
lose to the Malik and Perona equation sin
e thereis no spatial smoothing. In parti
ular, it should mean that there is no previous movement of the featuresin the di�usion pro
ess. In [2℄ the authors of the present paper have shown that in any dimension, thesystem (5)-(6) admits a unique 
lassi
al solution (u; v) whi
h 
an blow up in �nite time, and that as long asthe solution exists, the equation satis�es the maximum prin
iple and does not 
reate spurious information(that is, stri
t lo
al extrema). These properties of the system (5)-(6) have en
ouraged us to study it froma numeri
al viewpoint. Let us mentione that time-delay regularization has been already used in imagepro
essing by Cottet and El Ayyadi [6℄ as anisotropi
 di�usion tensors.This paper is organized as follows: In se
tion 3 we propose a natural dis
retization in time of (5)-(6)with jDuj2 repla
ed by F (jDuj2), F being a sort of trun
ation. Numeri
ally this modi�
ation does not haveany impa
t on the output images sin
e the threshold impli
itly exists in the numeri
al s
heme. Indeed,if the dis
rete s
heme satis�es the maximum prin
iple, then the dis
rete gradient is always bounded (forexample by (maxu0 �minu0)=�x, �x being the grid size). Theoreti
ally, the introdu
tion of F is a hugeregularization of the system (we will see that it yields existen
e of a weak solution for all time). Se
tion4 proposes a numeri
al s
heme for solving the system, and se
tion 5 shows some experiments on syntheti
and natural images. In se
tion 6 we establish a priori estimates and regularity results on the proposedapproximation and prove the main result of this paper. In the se
tion 7 we give the proofs of two te
hni
alresults on ellipti
 equations that are needed in se
tion 6.3 Numeri
al approximationThe goal of this paper is to study and approximate numeri
ally the system:�u�t = div (g(v)Du) u(�; 0) = u0; (7)�v�t = F (jDuj2)� v v(�; 0) = v0; (8)in 
� (0; T ) where 
 = (0; 1)2, 0 < T < 1. We will show that the system admits a weak solution, underthe following te
hni
al assumptions:- g 2 C1([0;+1)) is a positive non-in
reasing fun
tion with g(0) = 1 and g(+1) = 0.- F 2 C1([0;+1)) is a smooth version of s ! min(s;M), where M > 0 is a (large) real number (inparti
ular, we assume 0 � F 0 � 1).Fixed Æt > 0, we de�ne the sequen
e (unÆt; vnÆt)n by the semi-impli
it s
heme:(u0Æt; v0Æt) = (u0; v0) 2 �H1(
) \ L1(
)�� �H1(
) \ L1(
)�; v0 � 0 and3



un+1Æt � unÆtÆt = div (g(vnÆt)Dun+1Æt ) �un+1Æt�n ����
 = 0 (9)vn+1Æt � vnÆtÆt = F (jDun+1Æt j2)� vn+1Æt : (10)We de�ne the pie
ewise 
onstant (in t > 0), fun
tionsuÆt(x; t) = u[t=Æt℄+1Æt (x);where [�℄ denotes the integer part. We also de�ne (vÆt) in the same way. Then we 
an write the dis
retesystem (9)-(10) in the form (��Æt is de�ned by ��Ætf(�; t) = f(�; t� Æt)):uÆt � ��ÆtuÆtÆt = div (g(��ÆtvÆt)DuÆt); �uÆt�n ����
 = 0; (11)vÆt � ��ÆtvÆtÆt = F (jDuÆtj2)� vÆt: (12)The main result of this paper is the following theorem:Theorem 1. Let T > 0. There exists a subsequen
e (uÆtj ; vÆtj ) of (uÆt; vÆt) and (u; v) a weak solution of thesystem (7)-(8) in �H1(
� (0; T ))\L1(
� (0; T ))�� �H1(
� (0; T ))\L1(
� (0; T ))� su
h that, we havethe 
onvergen
es, as j ! +1:uÆtj ��! u strongly in L2(0; T ;H1(
)); (13)vÆtj ��* v weakly in L2(0; T ;H1(
)): (14)The proof of this theorem will be given in se
tion 6.4 Dis
retizationTo dis
retize (9)-(10) we denote by uni;j (resp. vni;j) the approximation of u (resp. v) at point (ih; jh)(0 � i; j � N) and time t = n Æt, where the size of the initial image u0 is given by N � N and h = 1=N .Using the following �nite-di�eren
es formulas:�x+w = wi+1;j � wi;j ; �x�w = wi;j � wi�1;j ;�y+w = wi;j+1 � wi;j et �y�w = wi;j � wi;j�1;the approximation of div �g(v)Du� at point (ih; jh) and at s
ale t = (n+ 1) Æt is given by:1h2��x��g(vni;j)�x+un+1i;j �+�y��g(vni;j)�y+un+1i;j ��:Then the equation (9) be
omes:un+1i;j � uni;jÆt = 1h2ng(vni;j)�un+1i+1;j � un+1i;j �� g(vni�1;j)�un+1i;j � un+1i�1;j�+ g(vni;j)�un+1i;j+1 � un+1i;j �+ g(vni;j�1)�un+1i;j � un+1i;j�1�o (15)with the Neumann boundary 
ondition:un+1i;0 � un+1i;1 = 0; un+1i;N�1 � un+1i;N = 0; for 0 � i � N;un+10;j � un+11;j = 0; un+1N�1;j � un+1N;j = 0; for 0 � j � N:4



Rearranging the right hand side of (15), we getun+1 � unÆt + h�2A(vn)un+1 = 0;where the matrix A(vn) is tridiagonal by blo
ks, and positive de�ned. By 
lassi
al arguments [5℄ we knowthat [I + Æth�2A(vn)℄ is invertible.To avoid any additional anisotropy in the s
heme, we try to build a dis
rete gradient of u in (10) asrotationally invariant as possible. We use the dis
retization proposed in [4℄ and [19℄ whi
h writes:�xw = (1 + 2 12 )�1n�wi+1;j � wi�1;j�+ 2� 12 �wi+1;j�1 � wi�1;j�1�+ 2� 12 �wi+1;j+1 � wi�1;j+1�o;�yw = (1 + 2 12 )�1n�wi;j+1 � wi;j�1�+ 2� 12 �wi+1;j+1 � wi+1;j�1�+ 2� 12 �wi�1;j+1 � wi+1;j�1�o:The dis
retization of (10) is then written (assuming that in the whole range �0;max �(�xu)2 + (�yu)2��, wehave F (s) = s) vn+1i;j = 11 + Æt�Æt h�2((�xu)2 + (�yu)2) + vni;j�: (16)We 
an now give a dis
rete version of the maximum prin
iple and show that the proposed algorithm willnot 
reate new information (lo
al extrema).Lemma 1. For all n > 0 and (k; l), 0 � k; l � N , we have:mini;j u0i;j � : : : � mini;j uni;j � un+1k;l � maxi;j uni;j � � � � � maxi;j u0i;j ; (17)In parti
ular, if un+1k;l is a stri
t lo
al maximum (resp. stri
t lo
al minimum) of �un+1i;j � thenun+1k;l < unk;l �resp. un+1k;l > unk;l�: (18)Proof : Let un+1k;l a global maximum of �un+1i;j �, then in parti
ular:un+1k;l � un+1k+1;l � 0; un+1k;l � un+1k�1;l � 0;un+1k;l � un+1k;l+1 � 0; un+1k;l � un+1k;l�1 � 0: (19)Using (15), and the fa
t that g > 0, we obtain: un+1k;l � unk;l;and we dedu
e: maxi;j un+1i;j � maxi;j uni;j � � � � � maxi;j u0i;j :In the same way we prove the \min" part of (17), by 
onsidering un+1k;l a global minimum of �un+1i;j �. Weprove (18) by using the same argument and the fa
t that we now have stri
t inequalities in (19). �5 ExperimentsIn �gure 1 we 
ompare the performan
es of our s
heme to the Catt�e and al. model [4℄ and in �gure 2 wepresent an example of restoration on a natural image. The experiments have been done with the edgestopping fun
tion g(s2) = 11 + (s2=�2) :5



We have 
hosen a value of � = 6, for images in the range [0; 255℄ and with a spatial grid size h = 1 (
ontrarilyto the 
onvention in the previous se
tion). The temporal in
rement we have used is Æt = 0:1.Figure 1-(a) is a syntheti
 image (128�128) representing superimposed shapes having ea
h one a 
onstantgrey level. Figure 1-b shows image 1-a where 20% of gaussian noise is added. We represent by �gures 1-(
)the restoration of the noisy image with the Catt�e et al. model (3) at s
ales 4 and 8 (from left to right) andby �gures 1-(d) the restoration with our s
heme at the same s
ales. Noti
e that respe
tively, the s
ales 4and 8 
orrespond to the stopping time t = 8 and 32. As explained in [4℄ by the authors of the model (3),the s
ale � used in the 
onvolution term G� � u must be in taken in relation to the stopping time. Thus in�gures 1-(
) we have used � = 4 and 8.As mentionned in se
tion 2 the threshold introdu
ed by F impli
itly exists in the numeri
al s
heme.Indeed, sin
e the dis
rete s
heme satis�es the maximum prin
iple and the fa
t that spatial in
rement isassumed to be 1, then the dis
rete gradient is always bounded by p2(maxu0�minu0) and M 
an be 
hosento be 2(maxu0 �min u0)2.In the left image of 1-(b), the noise is smoothed in the homogeneous areas but is kept near the edges. Thisdrawba
k is 
aused by the fa
t that the di�usion is inhibited also in the neighborhood of edges. Whereasin the left image of 1-(
), the noise is only partially smoothed but in a uniform way. In the right image of1-(b) the edges and 
orners are blurred. Indeed, we know that kDG� � ukL1 de
reases for large values of �
onsequently for large values of � we di�use more near edges: in parti
ular, if kDG� �ukL1 < �, the di�usionis never inhibited. Whereas in the right image of 1-(
), the noise has disappeared and the re
onstru
tedimage is very 
lose to the original.Figure 2-(Right) represents a natural image (256� 256) without additive noise and �gure 2-(Left) repre-sents its restoration with our s
heme at s
ale 5 that 
orresponds to the stopping time t = 12:5. We remarkthat salient edges and textures are preserved (see for example the top of the hat) whereas the noise inhomogeneous areas is smoothed.6 Numeri
al analysisFirst we 
he
k that our s
hemes makes sense. Indeed, for all Æt > 0, the sequen
e (unÆt; vnÆt) exists and isunique. Equation (10) allows to write vn+1Æt expli
itly:vn+1Æt = 11 + Æt�Æt F (jDun+1Æt j2) + vnÆt�: (20)and by indu
tion we �nd0 � vn+1Æt � �1� (1 + Æt)�(n+1)�M+ �1 + Æt��(n+1)jjv0jjL1(
):We dedu
e that (vnÆt) is uniformly bounded in L1(
) and satis�es:0 � vnÆt � max(M; jjv0jjL1(
)) := M0; for all n and Æt: (21)Using the fa
t that g is a positive non-in
reasing fun
tion, we have 0 < g(M0) � g(vnÆt) � 1. Thereforeequation (9) is stri
tly ellipti
 and we know that there exists a unique solution un+1Æt in H1(
). In addition,un+1Æt is given by the problemmin�E(Æt;n)(w) = Z
 g(vnÆt)jDwj2 dx+ 12Æt Z
 jw � unÆtj2 dx : w 2 H1(
)� : (22)By the maximum prin
iple, it is 
lear that for almost all x 2 
 we haveinf u0 � � � � � inf unÆt � un+1Æt (x) � supunÆt � � � � � supu0: (23)Multiplying by un+1Æt the equation (9) and integrating on 
 we get0 � ÆtZ
 g(vnÆt)jDun+1Æt j2dx � Z
 unÆtun+1Æt dx � Z
 jun+1Æt j2; (24)6



Figure 1: Top Left: (a) Original image. Top Right: (b) Image (a) with 20% of gaussian noise. MiddleLine: (
) Image (b) restored by the Catt�e et al. model [4℄ with s
ales 4, and 8. Bottom Line: (d) Image(b) restored by our s
heme with s
ales 4, and 8.
7



Figure 2: Right : Original natural image. Left: The output of our s
heme at s
ale 5.from whi
h we dedu
e jjun+1Æt jjL2(
) � jjunÆtjjL2(
) � � � � � jju0jjL2(
): (25)We now de�ne the pie
ewise aÆne (in t > 0)buÆt(x; t) = (1� �)u[t=Æt℄Æt (x) + �u[t=Æt℄+1Æt (x)with � = t=Æt � [t=Æt℄ 2 [0; 1). We also de�ne (bvÆt) in the same way. Then we 
an write dis
rete system(11)-(12) in the form �buÆt�t = div (g(��ÆtvÆt)DuÆt); (26)�bvÆt�t = F (jDuÆtj2)� vÆt: (27)Lemma 2. ��bvÆt=�t� is uniformly bounded in L1((0; T )�
), and in parti
ularlimÆt!0 jjbvÆt � vÆtjjL1((0;T );L2(
)) = 0: (28)Proof : From (27) and the inequalities (21), we easily dedu
e the uniform bound of ��bvÆt=�t�,�������bvÆt�t ������L1((0;T )�
) � M0:Let t 2 (0; T ). We set � = t=Æt� [t=Æt℄, and writeZ
 jbvÆt(x; t) � vÆt(x; t)j2 dx = Z
 j(1� �)(v[t=Æt℄Æt (x)� v[t=Æt℄+1Æt (x))j2 dx: (29)Hen
e Z
 jbvÆt(x; t)� vÆt(x; t)j2 dx � Æt2 Z
 ����bvÆt�t (x; t)���2 dx � Æt2M02 ;(28) follows � 8



Lemma 3. (uÆt) is uniformly bounded in L1�0; T ;H1(
)�. More pre
isely we have:jjDuÆtjj2L1(0;T ;L2(
)) � 1g(M0)�jjDu0jj2L2(
) + Cg(M0) jju0jj2L2(
)� (30)with C = � sup jg0j��������bvÆt�t ������L1((0;T )�
).Proof : First we establish a uniform bound on (uÆt) in L2(0; T ;H1(
)), and prove the lemma byshowing the following inequality:jjDuÆtjj2L1(0;T ;L2(
)) � C1jjDu0jj2L2(
) + C2jjDuÆtjj2L2(0;T ;L2(
)) (31)where C1; C2 > 0 are 
onstants that will be made pre
ise.Multiplying (9) by un+1Æt and integrating by part in 
 as in (24), we obtaing(M0) Z (n+1)ÆtnÆt Z
 jDuÆtj2dxdt = g(M0)Æt Z
 jDun+1Æt j2dx =� Æt Z
 g(vnÆt)jDun+1Æt j2dx� jjunÆtjj2L2(
) � jjun+1Æt jj2L2(
):Then we dedu
e (for simpli
ity we use the notation k := [T=Æt℄)g(M0) Z T0 Z
 jDuÆtj2 dx dt= g(M0) Z Ætk0 Z
 jDuÆtj2 dx dt+ g(M0) Z TÆtk Z
 jDuÆtj2 dx dt� (jju0jj2L2(
) � jjukÆtjj2L2(
)) + T � ÆtkÆt (jjukÆtjj2L2(
) � jjuk+1Æt jj2L2(
))� jju0jj2L2(
) + T � Æt(k + 1)Æt jjukÆtjj2L2(
) � T � ÆtkÆt jjuk+1Æt jj2L2(
)and sin
e Ætk � T � Æt(k + 1), we obtainZ T0 Z
 jDuÆtj2 dx dt � 1g(M0) jju0jj2L2(
): (32)This prove that (uÆt) is uniformly bounded in L2(0; T ;H1(
)).Now we show (31). For all n � 0, we haveZ
 g(vn+1Æt )jDun+1Æt j2 dx� Z
 g(vnÆt)jDunÆtj2 dx =Z
 �g(vn+1Æt )� g(vnÆt)�jDun+1Æt j2dx + Z
 g(vnÆt)�jDun+1Æt j2 � jDunÆtj2�dx : (33)Using the minimum problem (22) we have E(Æt;n)(un+1Æt ) � E(Æt;n)(unÆt), that is,Z
 g(vnÆt)jDun+1Æt j2 dx+ 12Æt Z
 jun+1Æt � unÆtj2 dx � Z
 g(vnÆt)jDunÆtj2 dx ; (34)9



Then the se
ond integral of (33) satis�esZ
 g(vnÆt)�jDun+1Æt j2 � jDunÆtj2�dx � 0:The �rst integral of (33) we 
an be writtenZ
 �g(vn+1Æt )� g(vnÆt)�jDun+1Æt j2dx � Æt Z
 ����g(vn+1Æt )� g(vnÆt)Æt ���� jDun+1Æt j2dx (35)� C Æt Z
 jDun+1Æt j2 dx;with C := (sup jg0j)�������bvÆt�t ������L1((0;T )�
): Using this estimate in (33), we getZ
 g(vn+1Æt )jDun+1Æt j2 dx� Z
 g(vnÆt)jDunÆtj2 dx � C Æt Z
 jDun+1Æt j2 dx:Taking the sum as n varies from 0 to [t=Æt℄ and using the fa
t that uÆt(�; t) = u[t=Æt℄+1Æt , we obtainZ
 g(v[t=Æt℄+1Æt )jDu[t=Æt℄+1Æt j2 dx� Z
 g(v0)jDu0j2 dx � C [t=Æt℄Xn=0 ÆtZ
 jDun+1Æt j2 dx� C Z Æt([t=Æt℄+1)0 Z
 jDuÆtj2 dx dt:We 
on
lude that for all t 2 (0; T )Z
 g(vÆt(�; t))jDuÆt(�; t)j2 dx � Z
 g(v0)jDu0j2 dx+ C Z T0 Z
 jDuÆtj2 dx dt:Sin
e g(M0) � g(vÆt) � 1, we getjjDuÆt(�; t)jj2L2(
) � 1g(M0)�Z
 jDu0j2 dx+ C Z T0 Z
 jDuÆtj2 dx dt�;this proves (31). To 
on
lude the proof of the lemma we 
ombine the last result with (32) to obtain (30). �Lemma 4. (buÆt) is uniformly bounded in H1�(0; T )�
� and satis�es the inequality12 �������buÆt�t ������2L2((0;T )�
) � jjDu0jj2L2(
) + Cg(M0) jju0jj2L2(
); (36)where C is the 
onstant of lemma 3. In parti
ular we havelimÆt!0 jjbuÆt � uÆtjjL2((0;T );L2(
)) = 0: (37)Proof : First we rewrite the inequality (34) in the formZ (n+1)ÆtnÆt �������buÆt�t ������2L2(
)dt = Æt Z
 ����un+1Æt � unÆtÆt ����2 dx� 2�Z
 g(vnÆt)jDunÆtj2 dx� Z
 g(vnÆt)jDun+1Æt j2 dx�:10



Let k := [T=Æt℄; we obtain using the last inequality12 Z T0 �������buÆt�t ������2L2(
)dt == 12� k�1Xn=0 Æt������un+1Æt � unÆtÆt ������2L2(
) + (T � Ætk) ������uk+1Æt � ukÆtÆt ������2L2(
)�;� k�1Xn=0�Z
 g(vnÆt)jDunÆtj2 dx� Z
 g(vnÆt)jDun+1Æt j2 dx�+ T � ÆtkÆt �Z
 g(vkÆt)jDukÆtj2 dx� g(vkÆt)jDuk+1Æt j2 dx�;� Z
 g(v0)jDu0j2 dx (38)+ k�1Xn=1�Z
 g(vnÆt)jDunÆtj2 dx� Z
 g(vn�1Æt )jDunÆtj2 dx� (39)+�T � ÆtkÆt Z
 g(vkÆt)jDukÆtj2 dx � Z
 g(vk�1Æt )jDukÆtj2 dx� (40)�T � ÆtkÆt Z
 g(vk+1Æt )jDuk+1Æt j2 dx : (41)Let us estimate the last four terms. Sin
e g � 1, (38) satis�esZ
 g(v0)jDu0j2 dx � jjDu0jj2L2(
):For the term (39), we pro
eed as in (35)k�1Xn=1�Z
 g(vnÆt)jDunÆtj2 dx � Z
 g(vn�1Æt )jDunÆtj2 dx� � C Z Æt(k�1)Æt Z
 jDuÆtj2 dx dt:We use T � Ætk � Æt to estimate the term (40),�T � ÆtkÆt Z
 g(vkÆt)jDukÆtj2 dx� Z
 g(vk�1Æt )jDukÆtj2 dx� � C Z ÆtkÆt(k�1) Z
 jDuÆtj2 dx dt;and sin
e T � Ætk � 0, (41) is non-positive. Thus12 Z T0 �������buÆt�t ������2L2(
)dt � jjDu0jj2L2(
) + C Z T0 Z
 jDuÆtj2 dx dt :To �nd (36), in the last inequality we put the right hand side of (32) in pla
e of the integral term.To show (37) we pro
eed as in (29), then we obtain after integrating on (0; T )Z T0 Z
 jbuÆt(x; t) � uÆt(x; t)j2 dx dt � Æt2 Z T0 Z
 ����buÆt�t ���2 dx dt ;whi
h goes to 0 as Æt goes to 0. �Now we will fo
us on the regularity and the 
onvergen
e of the sequen
e (vÆt). The idea is the following:the fa
t that v0Æt 2 H1(
), allows us to establish a regularity on the se
ond derivative of u1Æt whi
h in his turnused to show that v1Æt 2 H1(
), and so on. For this, we will use the 
lassi
al topologi
al degree's theory anda regularity results of solutions of ellipti
 equations given by D. Gilbarg and N-S. Trudinger [9℄ and N-G.Meyers [18℄, to establish the following lemma. 11



Lemma 5. Let w 2 H1(
) \ L1(
;R+ ) su
h that 0 < � � w(x) a.e. in 
, f 2 L2(
) and u 2 H1(
) thesolution of the ellipti
 problemdiv (wDu) = f; �u�n ����
 = 0; Z
�u(x) dx = 0: (42)Then for all bounded 
ontinuous fun
tion  2 C(℄0;1[;R) satisfying j (s)j � �0 and js (s)j � �1 for alls > 0, we have jj (jDuj)D2ujjL2(
) � ��1��0jjf jjL2(
) + �1jjDwjjL2(
)�: (43)The proof of the lemma 5 is given in se
tion 7.Remark 1. Sin
e the divergen
e term of (9) has zero average, we have for all Æt > 0 and all n R
�u0(x) dx =R
�unÆt(x) dx. Thus, using the fa
t that our model is grey level shift invariant, we 
an assume that u0 has zeroaverage in 
: it is not restri
tive as we may always repla
e u0 with u0 � R
�u0(x)dx. This allows to haveR
�unÆt(x) dx = 0 for all Æt and all n.Lemma 6. For all n � 0, we have vnÆt 2 H1(
).Proof : We begin by proving that v1Æt 2 H1(
) Sin
e v1Æt is a linear 
ombination of F (jDu1Ætj2) andv0 2 H1(
), its amounts to show that F (jDu1Ætj2) 2 H1(
). The �rst step is to determine the distributionalderivative of F (jDu1Ætj2). For simpli
ity we use the notation u := u1Æt.By applying lemma 5 to the equation (9) with n = 0, we know (from the proof of the same lemma) thatthere exists � 2 (0; 1) su
h that D2u 2 L1+�(
), and sin
e u 2 H1(
) in parti
ular we have u 2 W 2;1(
).Then, there exists a sequen
e of C2 fun
tions (un)n that strongly 
onverges to u in W 2;1(
) and satisfyun ! u, Dun ! Du a.e. in 
.Let � 2 C10 (
). Sin
e F is bounded and 
ontinous we have jF (jDunj2) �i�j � Mj�i�j and F (jDunj2) !F (jDuj2) a.e. in 
. Then by applying the Lebesgue Theorem we obtain the 
onvergen
eZ
 F (jDunj2) �i� dx! Z
 F (jDuj2) �i� dx; as n!1: (44)By the fa
t that F 0(s) = 0 for large values of s its 
lear that (F 0(jDunj2)�jun)n is bounded in L1(
).Then there exists a fun
tion � 2 L1(
) and a subsequen
e still denoted by (F 0(jDunj2)�jun)n su
h thatF 0(jDunj2)�jun ?* � in L1(
). By using the 
ontinuity of F 0 we have F 0(jDunj2)�jun ! F 0(jDuj2)�jua.e. in 
. Then � = F 0(jDuj2)�ju. Combining the last weak 
onvergen
e with the strong 
onvergen
e�ijun�! �iju� in L1(
)(here we use jj�ijun�� �iju�jjL1 � jj�jjL1 jj�ijun � �ijujjL1 ! 0), we obtainZ
�2F 0(jDunj2)�ijun �jun � dx! Z
�2F 0(jDuj2)�iju�ju� dx; as n!1: (45)The fa
t that the two sequen
es in the left hand side of (44) and (45) are identi
al, proves that the distri-butional derivative of F (jDuj2) is given by �2F 0(jDuj2)D2uDu.The se
ond step is to show that D(F (jDuj2)) 2 L2(
). Indeed, we have jF 0(jDuj2)�iu (1 + jDuj)j �C(M) a.e. in 
 with C(M) = (M 12 +M). Then we 
an write����D�F (jDuj2)�����L2(
) � C(M)������ D2u1 + jDuj ������L2(
): (46)Applying on
e more the lemma 5 to the equation (9), with n = 0 and  (s) = 1=(1+ s) to 
on
lude that theright hand side of (46) is bounded in L2(
) by writing������ D2u1 + jDuj ������L2(
) � (g(M 0))�1�������u� u0Æt ������L2(
) + jjDv0jjL2(
)�: (47)We return to equation (20). Sin
e v0 2 H1(
), we dedu
e that v1Æt 2 H1(
). By indu
tion we 
on
lude thatvnÆt 2 H1(
) for all n > 0. This proves the lemma.�12



Lemma 7. The sequen
e (vÆt) is uniformly bounded in L1(0; T ;H1(
)). In addition we havejjDvÆt(�; t)jjL2(
) � eKtjjDv0jjL2(
) +K Z t0 eK(t�s)�������buÆt�t (�; s)������L2(
) ds:with K = (g(M 0))�1�M 12 +M�.Proof : Deriving the equation (20) with n = 0, and using the L2 norm, we getjjDv1ÆtjjL2(
) � Æt1 + Æt jjD�F (jDu1Ætj2)�jjL2(
) + 11 + Æt jjDv0jjL2(
):Then using (46) and (47), we obtainjjDv1ÆtjjL2(
) � KÆt1 + Æt ������u1Æt � u0Æt ������L2(
) + 1 +KÆt1 + Æt jjDv0jjL2(
);with K := (g(M 0))�1C(M). We may prove in the same way thatjjDvn+1Æt jjL2(
) � KÆt1 + Æt ������un+1Æt � unÆtÆt ������L2(
) + 1 +KÆt1 + Æt jjDvnÆtjjL2(
):Then by indu
tion we get for all njjDvnÆtjjL2(
) � K1 + Æt nXj=1 n�1 +KÆt1 + Æt �n�jÆt������ujÆt � uj�1ÆtÆt ������L2(
)o+ �1 +KÆt1 + Æt �njjDv0jjL2(
):Finally by using the inequality �1 +KÆt1 + Æt �n�j � eKÆt(n�j);we obtain for all t 2 (0; T ) (n = [t=Æt℄),jjDvÆt(�; t)jjL2(
) � K Z t0 eK(t�s)�������buÆt�t (�; s)������L2(
) ds+ eKtjjDv0jjL2(
):In parti
ular we havejjDvÆt(�; t)jjL2(
) � KT eKT �������buÆt�t ������L2((0;T );L2(
)) + eKT jjDv0jjL2(
);whi
h is bounded a

ording to lemma 4.�Proof of theorem 1. A

ording to (23) and the lemma 3 and 4 there exists two subsequen
es, (uÆtj )and (buÆtj ), and a fun
tion u 2 H1(
� (0; T )) \ L1(
� (0; T )) su
h thatbuÆtj ; uÆtj j!+1��! u strongly in L2(
� (0; T ));buÆtj ; uÆtj j!+1��* u weakly in L2(0; T ;H1(
));buÆtj j!+1���* u weakly in H1(
� (0; T )):We draw the same 
on
lusion from (21) and the lemma 2 and 7 if we repla
e (uÆtj ; buÆtj ) with (vÆtj ; bvÆtj ) andu with v. It remains to prove the strong 
onvergen
e (13) and the fa
t that (u; v) is a solution of a system(7)-(8). 13



Up to a subsequen
e, we 
an assume that vÆtj ! v a.e. in 
� (0; T ). In addition, by using the fa
t that(�bvÆt=�t) is bounded in L1(
 � (0; T )), we dedu
e that ��ÆtjvÆtj ! v a.e. in 
 � (0; T ) and by 
ontinuityof g, we also obtain that g(��ÆtjvÆtj )! g(v) a.e. in 
� (0; T ).Let � 2 C1(
 � (0; T )). Multiplying the equation (26) by � with Ætj in pla
e of Æt, and integrating theresult in 
� (0; T ), we getZ T0 Z
 �buÆtj�t � dx dt = � Z T0 Z
 g(��ÆtjvÆtj )DuÆtjD�dx dt:We study the limit of the two terms of the equality as j goes to +1. By using the weak 
onvergen
e�buÆtj=�t * �u=�t in L2(
� (0; T )),Z T0 Z
 �buÆtj�t � dx dt j!+1���! Z T0 Z
 �u�t � dx dt:Combining the weak 
onvergen
e of DuÆtj to Du in L2((
 � (0; T ));R2) with the strong 
onvergen
e ofg(��hjvÆtj )D� to g(v)D� in L2((
 � (0; T )));R2 ) (using Lebesgue's dominated 
onvergen
e theorem), wededu
e that Z T0 Z
 g(��hjvÆtj )DuÆtjD�dx dt j!+1���! Z T0 Z
 g(v)DuD�dx dt:Then we obtain Z T0 Z
 �u�t � dx dt = � Z T0 Z
 g(v)DuD�dx dt; (48)whi
h means that u is a weak solution of (7).Now, to prove the 
onvergen
e (13), it remains to show that DuÆtj strongly 
onverges to Du in L2((
�(0; T )));R2). For this we writeZ T0 Z
 g(��ÆtjvÆtj )jDuÆtj �Duj2 dx dt == Z T0 Z
 g(��ÆtjvÆtj )jDuÆtj j2 dx dt� 2 Z T0 Z
 g(��ÆtjvÆtj )(DuÆtj :Du) dx dt+ Z T0 Z
 g(��ÆtjvÆtj )jDuj2 dx dt= � Z T0 Z
 �buÆtj�t uÆtj dx dt+ 2 Z T0 Z
 �buÆtj�t u dx dt+ Z T0 Z
 g(��ÆtjvÆtj )jDuj2 dx dt: (49)Let us study the 
onvergen
e of ea
h term of (49) as j goes to +1. Taking into a

ount that �buÆtj=�t
onverges weakly to �u=�t and that uÆtj 
onverges strongly to u, both in L2(
� (0; T )), we obtain:Z T0 Z
 �buÆtj�t uÆtj dx dt j!+1���! Z T0 Z
 �u�t u dx dt ;Z T0 Z
 �buÆtj�t u dx dt j!+1���! Z T0 Z
 �u�t u dx dt :Using the fa
t that g(��ÆtjvÆtj ) ! g(v) a.e. and g(��ÆtjvÆtj )jDuj2 � jDuj2, we dedu
e (by Lebesgue'stheorem) Z T0 Z
 g(��ÆtjvÆtj )jDuj2 dx dt j!+1���! Z T0 Z
 g(v)jDuj2 dx dt:thus limj!+1 Z T0 Z
 g(��ÆtjvÆtj )jDuÆtj �Duj2 dx dt = Z T0 Z
 �u�t u dx dt+ Z T0 Z
 g(v)jDuj2 dx dt:14



By density of C1(
� (0; T )) in H1(
� (0; T )) we substitute � by u in the equation (48), and getZ T0 Z
 �u�t u dx dt = � Z T0 Z
 g(v)jDuj2 dx dt;then g(M0) Z T0 Z
 jDuÆtj �Duj2dx dt � limj!+1 Z T0 Z
 g(��ÆtjvÆtj )jDuÆtj �Duj2 dx dt = 0this shows the strong 
onvergen
e (13).Finally, up to a subsequen
e we have that DuÆtj ! Du a.e. in 
� (0; T ) and the 
ontinuity of F allowsto obtain that F (jDuÆtj j2)! F (jDuj2) a.e. in 
� (0; T ). This prove that v is a solution of (8).�7 AppendixProof of Lemma 5. By a density argument there exists a sequen
e (wn) in C1(
) that 
onverges to w inH1(
). Using 
lassi
al trun
ation and 
onvolution arguments we 
an 
hose (wn) in L1(
;R+ ) and whi
hsatisfy � � wn for all n � 0. We dedu
e that the solution un of the ellipti
 problem:div (wnDun) = f; �un�n ����
 = 0; Z
�un(x)dx = 0: (50)exists and unique in H1(
). Moreover, from jjDwnjjL1(
) < 1, f 2 L2(
) and using 
lassi
al regularityresults it appears that un 2 H2(
).First we prove that the inequality (43) is true for the regularized problem (50). For this writing (50) inthe form wn�un = �f +DwnDun; (51)and multiplying the equation by  (jDunj), then we get using the L2-normjj (jDunj)wn�unjjL2(
) � jj (jDunj)f jjL2(
) + jj (jDunj)DwnDunjjL2(
):As 0 < � � wn, j j � �0 and js (s)j � �1 together with the last inequality, we obtainjj (jDunj)�unjjL2(
) � ��1��0jjf jjL2(
) + �1jjDwnjjL2(
)�: (52)To 
ontinue we need the following lemma that we prove in the end of this se
tion (let us re
all 
 is theplane square (0; 1)2):Lemma 8. Let u 2 H2(
) an 
-periodi
 fun
tion, then for all bounded 
ontinuous fun
tion  2 C(℄0;1[;R),we have the equality jj (jDuj)�ujjL2(
) = jj (jDuj)D2ujjL2(
):Now we extend un on all R2 by symmetry and periodi
ity to a fun
tion ~un 2
-periodi
. Then invokinglemma 8, we get jj (jD~unj)D2~unjjL2(2
) = jj (jD~unj)�~unjjL2(2
);and by symmetry of ~un in 2
, we easily dedu
e thatjj (jDunj)D2unjjL2(
) = jj (jDunj)�unjjL2(
);that we use in (52) to obtainjj (jDunj)D2unjjL2(
) � ��1��0jjf jjL2(
) + �1jjDwnjjL2(
)�: (53)15



This proves that the inequality (43) is true for the regularized problem (50).Inequality (53) implies that the sequen
e � (jDunj)D2un� is bounded. Then there exists a subse-quen
e (still denoted by ( (jDunj)D2un)) weakly 
onvergent in L2(
). Let us assume that its weak limit is (jDuj)D2u. Then by applying Fatou's lemma we obtainjj (jDuj)D2ujjL2(
) � lim infn!+1 jj (jDunj)D2unjjL2(
)� ��1 lim infn!+1 ��0jjf jjL2(
) + �1jjDwnjjL2(
)�;� ��1��0jjf jjL2(
) + �1jjDwjjL2(
)�;showing in parti
ular (43).Before proving that the weak limit of ( (jDunj)D2un) is  (jDuj)D2u, let us show that up to a subse-quen
e, (un) is strongly 
onvergent in H1(
). Indeed, multiplying div (wnDun) = f by un and integratingthe result on 
, Z
 wnjDunj2dx = � Z
 fundx:The left hand side satis�es �jjDunjj2L2(
) � Z
 wnjDunj2dx;and using the H�older and Poin
are-Wirtinger inequalities, we get for the right hand sideZ
 fundx � jjf jjL2(
)jjunjjL2(
) � Cjjf jjL2(
)jjDunjjL2(
): (54)We dedu
e that (un) is uniformly bounded in H1(
) and we havejjDunjjL2(
) � C� jjf jjL2(
): (55)Then there exists u 2 H1(
) and a subsequen
e still denoted by (un) that strongly 
onverges to u in L2(
),weakly in H1(
) and a.e. in 
. To prove the strong 
onvergen
e Dun ! Du in L2(
) we 
an writeZ
 wnjDun �Duj2dx = Z
 wnjDunj2dx � 2 Z
 wnDunDudx+ Z
 wnjDuj2dx;and Z
 wnjDunj2dx = � Z
 fundx n!+1���! � Z
 fu dx;Z
 wnjDuj2 dx n!+1���! Z
 wjDuj2dx = � Z
 fu dx;�2 Z
 wnDunDudx = 2 Z
 fu dx;thus � Z
 jDun �Duj2dx � Z
 wnjDun �Duj2dx n!+1���! 0:Now we are going to study the 
onvergen
e of the sequen
es (D2un) and ( (jDunj)) to prove that( (jDunj)D2un) ��*  (jDuj)D2u weakly in L2(
).
16



Denoting 
1 = (�1; 2)� (�1; 2) and 
hoosing a fun
tion � 2 C1
 (R2 ), su
h that 
 �� supp(�) �� 
1,and satis�es �(x) = � 1 if x 2 
0 if x 2 R2=
1:Remark that ~un� 2 W 2;1+�0 (
1) for all � 2 (0; 1) (� �xed later). Then, a

ording to Gilbarg-Trudinger [9℄Chap. 9, Corollary 10, there exists a 
onstant C(�) > 0 su
h thatjjD2(~un�)jjL1+�(
1) � C(�)jj�(~un�)jjL1+�(
1):It follows thatjjD2unjjL1+�(
) � jjD2(~un�)jjL1+�(
1);� C(�)jj�(~un�)jjL1+�(
1);� C(�)njj��~unjjL1+�(
1) + jj~un��jjL1+�(
1) + 2jjD~unD�jjL1+�(
1)o;� C(�)Cnjj�~unjjL1+�(
1) + jj~unjjL1+�(
1) + jjD~unjjL1+�(
1)o;where C := max �jj�jj1; 2jjD�jj1; jj��jj1�. ThusjjD2unjjL1+�(
) � 9C(�)Cnjj�unjjL1+�(
) + jjunjjL1+�(
) + 2jjDunjjL1+�(
)o: (56)The two sequen
es (jjunjjL1+�(
)) and (jjDunjjL1+�(
)) are bounded a

ording to (54) and (55). For thesequen
e (jj�unjjL1+�(
)) we use (51), and writejj�unjjL1+�(
) � ��1�jjf jjL1+�(
) + jjDvnDunjjL1+�(
)�: (57)Then it remains to show that the sequen
e (jjDwnDunjjL1+�(
)) is bounded. Remark that by the symmetryand the fa
t that un satis�es the Neumann type boundary, the equation~f = div ( ~wnD~un)still holds in 
2 := (�2; 3)�(�2; 3) where the fun
tions ~f and ~wn are de�ned in the same way that ~un. Thena

ording to Meyers' Theorem 2 in [18℄, there exists p > 2, depending only on max ~w=min ~w � kwk1=�,su
h that for all x 2 
2 and for all R > 0 satisfying B(x;R) � B(x; 2R) � 
2, we have:jjD~unjjLp(B(x;R)) � CfR2( 1p� 12 )�1jj~unjjL2(B(x;2R)) +R2( 1p� 12 )+1jj ~f jjL2(B(x;2R))g:Choosing x 2 
 and R su
h that 
 � B(x;R), for example x = ( 12 ; 12 ) and R = p2, we dedu
e that (jDunj)is bounded in Lp(
).Coming ba
k to (57) and 
hoosing � = (p � 2)=(p + 2), then the sequen
e (DwnDun) is bounded inL1+�(
) and 
onsequently (D2un) is bounded in L1+�(
). We 
on
lude that up to extra
ting a subsequen
eD2unn!+1��* D2u weakly in L1+�(
): (58)Consider � 2 C1(
). Sin
e Dun ! Du a.e. in 
, the 
ontinuity and boundness of  , we obtain usingthe Lebesgue theorem  (jDunj)� n!+1���!  (jDuj)� in Lq(
) for all q 2 [1;1):Finaly, 
hoosing q su
h that 1=(1 + �) + 1=q = 1 and 
ombining the last strong 
onvergen
e with the weak
onvergen
e (58), we obtain Z
  (jDunj)D2un � dx n!+1���! Z
  (jDuj)D2u� dx:17



This 
on
lude the proof of the lemma.�To prove the lemma 8 we need the following result whi
h 
omes from the topologi
al degree's theory, andis a parti
ular 
ase of the lemma 2.10 of [12℄ (see also the theorem 6 of [10℄):Lemma 9. Let f 2 C1(R2 ;R2 ) an 
-periodi
 fun
tion. Then for all  2 C0(℄0;+1[) we haveZ
  (jf(x)j)Jf (x)dx = 0; (59)where Jf (x) is the Ja
obian of f at point x, i.e. Jf (x) = det ��if j(x)�.Proof of Lemma 8. Let u 2 C2(R2 ) an 
-periodi
 fun
tion,  2 C0(℄0;1[;R). Using (59):Z
  (jDuj)JDu dx dy = 0;that is, Z
  (jDuj)�xxu �yyu dx dy = Z
  (jDuj)��xyu�2 dx dy:This impliesZ
  (jDuj)���xxu�2 + ��yyu�2 + 2�xxu�yyu� dx dy = Z
  (jDuj)���xxu�2 + ��yyu�2 + 2��xyu�2� dx dy;that is, Z
  (jDuj)j�uj2 dx dy = Z
  (jDuj)jD2uj2 dx dy: (60)Sin
e jDuj is bounded (u 2 C2(R2 ) and 
-periodi
) its 
lear that (60) remains true if  is only boundedand 
ontinuous fun
tion from R+ to R.Now we show that (60) is true for u in H2(
). Indeed, by density argument there exists a sequen
e(wn) 2 C2(R2 ) \H2(
) that 
onverges to u in H2(
). In parti
ular we have �wn ! �u, D2wn ! D2u etDwn ! Du in L2(
). In addition, there exists a subsequen
e still denoted by (wn) su
h that Dwn ! Dua.e. in 
.Using the fa
t that  is bounded, there exists a fun
tion h 2 L1(
) and a subsequen
e still denoted by(wn) su
h that  2(Dwn) ?* h in L1(
). Combining this with the strong 
onvergen
es j�wnj2 ! j�uj2 andjD2wnj2 ! jD2uj2 in L1(
), then we obtain: 2(Dwn)j�wnj2 ! h j�uj2 and  2(Dwn)jD2wnj2 ! h jD2uj2 in L1(
):Now using the fa
t that Dwn ! Du strongly and a.e. in 
 and the 
ontinuity of  we dedu
e thath =  2(Du). Finally, the sequen
e (wn) 
an be 
hosen 
-periodi
 (for example as a 
onvolution of u witha smooth kernel), then we obtain the desired result by applying the equality (60) to wn and passing to thelimit. �A
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