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Time-delay regularization of anisotropi di�usion andimage proessingA. Belahmidi, A. ChambolleJanuary 2004AbstratWe study a time-delay regularization of the anisotropi di�usion model for image denoising of Malikand Perona, whih has been proposed by Nitzberg and Shiota. In the two-dimensional ase, we show theonvergene of a numerial approximation and the existene of a weak solution. Finally, we show someexperiments on images.Key words : Image restoration, Variational methods, Numerial approximation, Time-delay regularization, Malik andPerona equation.1 IntrodutionIn a well-known paper, Malik and Perona [15℄ have proposed a model for image restoration based on thefollowing partial di�erential equation :�u�t = div �g(jDuj2)Du� u(�; 0) = u0 : (1)Here u0 is the grey level intensity of the original image, u(�; t) is the restored version, that depends on thesale parameter t, and g is a smooth non-inreasing positive funtion with g(0) = 1 and sg(s2) ! 0 atin�nity. The main idea is that the restoration proess obtained by the equation is onditional: if x is an edgepoint, where the gradient is large, then the di�usion will be stopped and therefore the edge will be kept.If x is in homogeneous area, the gradient has to be small, and the di�usion will tend to smooth around x.By introduing an edge stopping funtion g(jDuj2) in the di�usion proess, the model has been onsideredas an important improvement of the theory of edge detetion [17℄. The experiments of Malik and Peronawere very impressive, edges remained stable over a very long time. It was demonstrated in [16℄ that edgedetetion based on this proess learly outperforms the Canny edge detetor [3℄.Unfortunately, the Malik and Perona model is ill-posed. Indeed, among the funtions whih Malik andPerona advoate in their papers, we �nd g(s2) = 1=(1 + s2) or g(s2) = e�s2 for whih no orret theory ofequation (1) is available. By writing the equation in dimension two:�u�t = g(jDuj2)jDujdiv� DujDuj�+ �g(jDuj2) + 2jDuj2g0(jDuj2)�D2u� DujDuj ; DujDuj�; (2)where D2u( DujDuj ; DujDuj) is the seond derivative of u in the gradient diretion and jDujdiv ( DujDuj ) is the seondderivative in the orthogonal diretion, we observe that the di�usion runs bakwards if sg(s2) is non-inreasing.Then, in the regions where the gradient of a solution is large, the proess an be interpreted as a bakwardheat equation whih is atually ill posed. In the ontinuous setting, it means that (1) may have no solution atall. One ould also imagine very lose pitures produing divergent solutions [11℄. In pratie, the equationis disretized into a (obviously well-posed) �nite-dimensional version of (1), however, it does not seem orretto interpret suh a disretization as an approximation of the ill-posed problem (1).1



For these reasons, there have been many attempts to understand the Malik and Perona equation and�nd out whether (1) an be given a sound interpretation. There are essentially two approahes: The �rst,motivated by favorable numerial results, onsists in studying the original equation and in establishingtheoretial results that explain the observed behaviour. The seond approah onsists in modifying theequation by regularizing the term g(jDuj2) in order to get a well-posed equation.2 The Malik and Perona equation and the regularized versionsFirst, we expose the main mathematial results established on the Malik and Perona model. Most of theseresults are restrited to the dimension one; the unique result in dimension two, given by You et al. [21℄on�rms the ill{posedness of the equation. Kawohl and Kutev [13℄ establish, in 1D, nonexistene of globalweak solution, and prove the existene and uniqueness of a lassial solution only if the initial data haseverywhere a small slope. In this ase the equation remains paraboli for all time and there is no edge topreserve: the di�usion smoothes the data, like the heat equation would do. They also prove a omparisonpriniple under speial assumptions on the initial data.Kihenassamy [14℄ shows that in general the Malik and Perona equation does not have a weak solution ifthe initial data is not analyti in a neighborhood of high gradient regions. His argument is based on interiorregularity properties of paraboli equations. Only in dimension one, he proposes a notion of generalizedsolutions, whih are pieewise linear with jumps, and shows existene.Adopting a numerial viewpoint, Esedoglu [7℄ studies the one-dimensional Malik and Perona sheme. Heestablishes by a saling argument the onvergene to an evolution in the ontinuous setting. The resultingevolution solves a system of heat equations oupled to eah other through nonlinear boundary onditions.Working in dimension one learly redues the diÆulty by eliminating the �rst term of (2) whih isnothing but the mean urvature motion operator with the oeÆient g(jDuj2). As it is known, the meanurvature motion evolves eah level line fu = Cg with a normal speed proportional to its urvature (see[8, 1℄ for more details).In dimension two, You et al. [21℄ express the anisotropi di�usion of Malik and Perona as the steepestdesent of an energy surfae and analyze the behaviour of the model. They prove that the ill{posedness isaused by the fat that the energy funtional has an in�nite number of global minima that are dense in theimage spae. Eah of these minima orresponds to a pieewise onstant image. This means that slightlydi�erent initial images may end up in di�erent minima for large t.As mentionned, another approah relies on the idea that the ill{posedness may be alleviated through theintrodution of a smooth version of g(jDuj2). There are essentially two propositions whih we onsider as adiret derivation from the Malik and Perona Model. The �rst onsists in a spatial regularization, as in thefollowing model: �u�t = div �g(jDG� � uj2)Du�; (3)whereby g(jDuj2) is replaed by g(jDG� � uj2), where G� is a Gaussian with variane �. In [4℄, Catt�e etal. prove existene, uniqueness and regularity of a solution. It is known that G� � u(x; t) is nothing but thesolution at sale � of the heat equation with u(x; t) as initial data.A �rst observation is that near a sharp orner, the di�usion oeÆient g(jDG� � uj2) may remain verylarge, hene this model will be unable to preserve orners.Another problem is the hoie of the regularization parameter �. In fat, this hoie is ritial in the sensthat the di�usion proess would be ill{posed if � = 0, while image features would be blurred for too large an�. As proposed by Whitaker and Pizer [20℄, the regularization parameter � should be a dereasing funtionin t, by using large � initially to suppress noise and reduing � so that image features are not further blurred.In spite of this, the hoie of the initial and �nal values of � remains an open question.The seond proposition is a time-delay regularization, where one replaes jDuj2 with an average of its
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values from 0 to t. Then g(jDuj2) is replaed with g(v) with:v(x; t) = e�tv0(x) + Z t0 es�tjDu(x; s)j2 ds; (4)where v0 is an initial data, for example v0 = 0 or jDu0j2. Therefore the new di�usion proess is desribedby the following system: �u�t = div �g(v)Du� u(�; 0) = u0; (5)�v�t = jDuj2 � v v(�; 0) = v0: (6)Proposed by Nitzberg and Shiota [19℄, this model is very lose to the Malik and Perona equation sine thereis no spatial smoothing. In partiular, it should mean that there is no previous movement of the featuresin the di�usion proess. In [2℄ the authors of the present paper have shown that in any dimension, thesystem (5)-(6) admits a unique lassial solution (u; v) whih an blow up in �nite time, and that as long asthe solution exists, the equation satis�es the maximum priniple and does not reate spurious information(that is, strit loal extrema). These properties of the system (5)-(6) have enouraged us to study it froma numerial viewpoint. Let us mentione that time-delay regularization has been already used in imageproessing by Cottet and El Ayyadi [6℄ as anisotropi di�usion tensors.This paper is organized as follows: In setion 3 we propose a natural disretization in time of (5)-(6)with jDuj2 replaed by F (jDuj2), F being a sort of trunation. Numerially this modi�ation does not haveany impat on the output images sine the threshold impliitly exists in the numerial sheme. Indeed,if the disrete sheme satis�es the maximum priniple, then the disrete gradient is always bounded (forexample by (maxu0 �minu0)=�x, �x being the grid size). Theoretially, the introdution of F is a hugeregularization of the system (we will see that it yields existene of a weak solution for all time). Setion4 proposes a numerial sheme for solving the system, and setion 5 shows some experiments on synthetiand natural images. In setion 6 we establish a priori estimates and regularity results on the proposedapproximation and prove the main result of this paper. In the setion 7 we give the proofs of two tehnialresults on ellipti equations that are needed in setion 6.3 Numerial approximationThe goal of this paper is to study and approximate numerially the system:�u�t = div (g(v)Du) u(�; 0) = u0; (7)�v�t = F (jDuj2)� v v(�; 0) = v0; (8)in 
� (0; T ) where 
 = (0; 1)2, 0 < T < 1. We will show that the system admits a weak solution, underthe following tehnial assumptions:- g 2 C1([0;+1)) is a positive non-inreasing funtion with g(0) = 1 and g(+1) = 0.- F 2 C1([0;+1)) is a smooth version of s ! min(s;M), where M > 0 is a (large) real number (inpartiular, we assume 0 � F 0 � 1).Fixed Æt > 0, we de�ne the sequene (unÆt; vnÆt)n by the semi-impliit sheme:(u0Æt; v0Æt) = (u0; v0) 2 �H1(
) \ L1(
)�� �H1(
) \ L1(
)�; v0 � 0 and3



un+1Æt � unÆtÆt = div (g(vnÆt)Dun+1Æt ) �un+1Æt�n ����
 = 0 (9)vn+1Æt � vnÆtÆt = F (jDun+1Æt j2)� vn+1Æt : (10)We de�ne the pieewise onstant (in t > 0), funtionsuÆt(x; t) = u[t=Æt℄+1Æt (x);where [�℄ denotes the integer part. We also de�ne (vÆt) in the same way. Then we an write the disretesystem (9)-(10) in the form (��Æt is de�ned by ��Ætf(�; t) = f(�; t� Æt)):uÆt � ��ÆtuÆtÆt = div (g(��ÆtvÆt)DuÆt); �uÆt�n ����
 = 0; (11)vÆt � ��ÆtvÆtÆt = F (jDuÆtj2)� vÆt: (12)The main result of this paper is the following theorem:Theorem 1. Let T > 0. There exists a subsequene (uÆtj ; vÆtj ) of (uÆt; vÆt) and (u; v) a weak solution of thesystem (7)-(8) in �H1(
� (0; T ))\L1(
� (0; T ))�� �H1(
� (0; T ))\L1(
� (0; T ))� suh that, we havethe onvergenes, as j ! +1:uÆtj ��! u strongly in L2(0; T ;H1(
)); (13)vÆtj ��* v weakly in L2(0; T ;H1(
)): (14)The proof of this theorem will be given in setion 6.4 DisretizationTo disretize (9)-(10) we denote by uni;j (resp. vni;j) the approximation of u (resp. v) at point (ih; jh)(0 � i; j � N) and time t = n Æt, where the size of the initial image u0 is given by N � N and h = 1=N .Using the following �nite-di�erenes formulas:�x+w = wi+1;j � wi;j ; �x�w = wi;j � wi�1;j ;�y+w = wi;j+1 � wi;j et �y�w = wi;j � wi;j�1;the approximation of div �g(v)Du� at point (ih; jh) and at sale t = (n+ 1) Æt is given by:1h2��x��g(vni;j)�x+un+1i;j �+�y��g(vni;j)�y+un+1i;j ��:Then the equation (9) beomes:un+1i;j � uni;jÆt = 1h2ng(vni;j)�un+1i+1;j � un+1i;j �� g(vni�1;j)�un+1i;j � un+1i�1;j�+ g(vni;j)�un+1i;j+1 � un+1i;j �+ g(vni;j�1)�un+1i;j � un+1i;j�1�o (15)with the Neumann boundary ondition:un+1i;0 � un+1i;1 = 0; un+1i;N�1 � un+1i;N = 0; for 0 � i � N;un+10;j � un+11;j = 0; un+1N�1;j � un+1N;j = 0; for 0 � j � N:4



Rearranging the right hand side of (15), we getun+1 � unÆt + h�2A(vn)un+1 = 0;where the matrix A(vn) is tridiagonal by bloks, and positive de�ned. By lassial arguments [5℄ we knowthat [I + Æth�2A(vn)℄ is invertible.To avoid any additional anisotropy in the sheme, we try to build a disrete gradient of u in (10) asrotationally invariant as possible. We use the disretization proposed in [4℄ and [19℄ whih writes:�xw = (1 + 2 12 )�1n�wi+1;j � wi�1;j�+ 2� 12 �wi+1;j�1 � wi�1;j�1�+ 2� 12 �wi+1;j+1 � wi�1;j+1�o;�yw = (1 + 2 12 )�1n�wi;j+1 � wi;j�1�+ 2� 12 �wi+1;j+1 � wi+1;j�1�+ 2� 12 �wi�1;j+1 � wi+1;j�1�o:The disretization of (10) is then written (assuming that in the whole range �0;max �(�xu)2 + (�yu)2��, wehave F (s) = s) vn+1i;j = 11 + Æt�Æt h�2((�xu)2 + (�yu)2) + vni;j�: (16)We an now give a disrete version of the maximum priniple and show that the proposed algorithm willnot reate new information (loal extrema).Lemma 1. For all n > 0 and (k; l), 0 � k; l � N , we have:mini;j u0i;j � : : : � mini;j uni;j � un+1k;l � maxi;j uni;j � � � � � maxi;j u0i;j ; (17)In partiular, if un+1k;l is a strit loal maximum (resp. strit loal minimum) of �un+1i;j � thenun+1k;l < unk;l �resp. un+1k;l > unk;l�: (18)Proof : Let un+1k;l a global maximum of �un+1i;j �, then in partiular:un+1k;l � un+1k+1;l � 0; un+1k;l � un+1k�1;l � 0;un+1k;l � un+1k;l+1 � 0; un+1k;l � un+1k;l�1 � 0: (19)Using (15), and the fat that g > 0, we obtain: un+1k;l � unk;l;and we dedue: maxi;j un+1i;j � maxi;j uni;j � � � � � maxi;j u0i;j :In the same way we prove the \min" part of (17), by onsidering un+1k;l a global minimum of �un+1i;j �. Weprove (18) by using the same argument and the fat that we now have strit inequalities in (19). �5 ExperimentsIn �gure 1 we ompare the performanes of our sheme to the Catt�e and al. model [4℄ and in �gure 2 wepresent an example of restoration on a natural image. The experiments have been done with the edgestopping funtion g(s2) = 11 + (s2=�2) :5



We have hosen a value of � = 6, for images in the range [0; 255℄ and with a spatial grid size h = 1 (ontrarilyto the onvention in the previous setion). The temporal inrement we have used is Æt = 0:1.Figure 1-(a) is a syntheti image (128�128) representing superimposed shapes having eah one a onstantgrey level. Figure 1-b shows image 1-a where 20% of gaussian noise is added. We represent by �gures 1-()the restoration of the noisy image with the Catt�e et al. model (3) at sales 4 and 8 (from left to right) andby �gures 1-(d) the restoration with our sheme at the same sales. Notie that respetively, the sales 4and 8 orrespond to the stopping time t = 8 and 32. As explained in [4℄ by the authors of the model (3),the sale � used in the onvolution term G� � u must be in taken in relation to the stopping time. Thus in�gures 1-() we have used � = 4 and 8.As mentionned in setion 2 the threshold introdued by F impliitly exists in the numerial sheme.Indeed, sine the disrete sheme satis�es the maximum priniple and the fat that spatial inrement isassumed to be 1, then the disrete gradient is always bounded by p2(maxu0�minu0) and M an be hosento be 2(maxu0 �min u0)2.In the left image of 1-(b), the noise is smoothed in the homogeneous areas but is kept near the edges. Thisdrawbak is aused by the fat that the di�usion is inhibited also in the neighborhood of edges. Whereasin the left image of 1-(), the noise is only partially smoothed but in a uniform way. In the right image of1-(b) the edges and orners are blurred. Indeed, we know that kDG� � ukL1 dereases for large values of �onsequently for large values of � we di�use more near edges: in partiular, if kDG� �ukL1 < �, the di�usionis never inhibited. Whereas in the right image of 1-(), the noise has disappeared and the reonstrutedimage is very lose to the original.Figure 2-(Right) represents a natural image (256� 256) without additive noise and �gure 2-(Left) repre-sents its restoration with our sheme at sale 5 that orresponds to the stopping time t = 12:5. We remarkthat salient edges and textures are preserved (see for example the top of the hat) whereas the noise inhomogeneous areas is smoothed.6 Numerial analysisFirst we hek that our shemes makes sense. Indeed, for all Æt > 0, the sequene (unÆt; vnÆt) exists and isunique. Equation (10) allows to write vn+1Æt expliitly:vn+1Æt = 11 + Æt�Æt F (jDun+1Æt j2) + vnÆt�: (20)and by indution we �nd0 � vn+1Æt � �1� (1 + Æt)�(n+1)�M+ �1 + Æt��(n+1)jjv0jjL1(
):We dedue that (vnÆt) is uniformly bounded in L1(
) and satis�es:0 � vnÆt � max(M; jjv0jjL1(
)) := M0; for all n and Æt: (21)Using the fat that g is a positive non-inreasing funtion, we have 0 < g(M0) � g(vnÆt) � 1. Thereforeequation (9) is stritly ellipti and we know that there exists a unique solution un+1Æt in H1(
). In addition,un+1Æt is given by the problemmin�E(Æt;n)(w) = Z
 g(vnÆt)jDwj2 dx+ 12Æt Z
 jw � unÆtj2 dx : w 2 H1(
)� : (22)By the maximum priniple, it is lear that for almost all x 2 
 we haveinf u0 � � � � � inf unÆt � un+1Æt (x) � supunÆt � � � � � supu0: (23)Multiplying by un+1Æt the equation (9) and integrating on 
 we get0 � ÆtZ
 g(vnÆt)jDun+1Æt j2dx � Z
 unÆtun+1Æt dx � Z
 jun+1Æt j2; (24)6



Figure 1: Top Left: (a) Original image. Top Right: (b) Image (a) with 20% of gaussian noise. MiddleLine: () Image (b) restored by the Catt�e et al. model [4℄ with sales 4, and 8. Bottom Line: (d) Image(b) restored by our sheme with sales 4, and 8.
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Figure 2: Right : Original natural image. Left: The output of our sheme at sale 5.from whih we dedue jjun+1Æt jjL2(
) � jjunÆtjjL2(
) � � � � � jju0jjL2(
): (25)We now de�ne the pieewise aÆne (in t > 0)buÆt(x; t) = (1� �)u[t=Æt℄Æt (x) + �u[t=Æt℄+1Æt (x)with � = t=Æt � [t=Æt℄ 2 [0; 1). We also de�ne (bvÆt) in the same way. Then we an write disrete system(11)-(12) in the form �buÆt�t = div (g(��ÆtvÆt)DuÆt); (26)�bvÆt�t = F (jDuÆtj2)� vÆt: (27)Lemma 2. ��bvÆt=�t� is uniformly bounded in L1((0; T )�
), and in partiularlimÆt!0 jjbvÆt � vÆtjjL1((0;T );L2(
)) = 0: (28)Proof : From (27) and the inequalities (21), we easily dedue the uniform bound of ��bvÆt=�t�,�������bvÆt�t ������L1((0;T )�
) � M0:Let t 2 (0; T ). We set � = t=Æt� [t=Æt℄, and writeZ
 jbvÆt(x; t) � vÆt(x; t)j2 dx = Z
 j(1� �)(v[t=Æt℄Æt (x)� v[t=Æt℄+1Æt (x))j2 dx: (29)Hene Z
 jbvÆt(x; t)� vÆt(x; t)j2 dx � Æt2 Z
 ����bvÆt�t (x; t)���2 dx � Æt2M02 ;(28) follows � 8



Lemma 3. (uÆt) is uniformly bounded in L1�0; T ;H1(
)�. More preisely we have:jjDuÆtjj2L1(0;T ;L2(
)) � 1g(M0)�jjDu0jj2L2(
) + Cg(M0) jju0jj2L2(
)� (30)with C = � sup jg0j��������bvÆt�t ������L1((0;T )�
).Proof : First we establish a uniform bound on (uÆt) in L2(0; T ;H1(
)), and prove the lemma byshowing the following inequality:jjDuÆtjj2L1(0;T ;L2(
)) � C1jjDu0jj2L2(
) + C2jjDuÆtjj2L2(0;T ;L2(
)) (31)where C1; C2 > 0 are onstants that will be made preise.Multiplying (9) by un+1Æt and integrating by part in 
 as in (24), we obtaing(M0) Z (n+1)ÆtnÆt Z
 jDuÆtj2dxdt = g(M0)Æt Z
 jDun+1Æt j2dx =� Æt Z
 g(vnÆt)jDun+1Æt j2dx� jjunÆtjj2L2(
) � jjun+1Æt jj2L2(
):Then we dedue (for simpliity we use the notation k := [T=Æt℄)g(M0) Z T0 Z
 jDuÆtj2 dx dt= g(M0) Z Ætk0 Z
 jDuÆtj2 dx dt+ g(M0) Z TÆtk Z
 jDuÆtj2 dx dt� (jju0jj2L2(
) � jjukÆtjj2L2(
)) + T � ÆtkÆt (jjukÆtjj2L2(
) � jjuk+1Æt jj2L2(
))� jju0jj2L2(
) + T � Æt(k + 1)Æt jjukÆtjj2L2(
) � T � ÆtkÆt jjuk+1Æt jj2L2(
)and sine Ætk � T � Æt(k + 1), we obtainZ T0 Z
 jDuÆtj2 dx dt � 1g(M0) jju0jj2L2(
): (32)This prove that (uÆt) is uniformly bounded in L2(0; T ;H1(
)).Now we show (31). For all n � 0, we haveZ
 g(vn+1Æt )jDun+1Æt j2 dx� Z
 g(vnÆt)jDunÆtj2 dx =Z
 �g(vn+1Æt )� g(vnÆt)�jDun+1Æt j2dx + Z
 g(vnÆt)�jDun+1Æt j2 � jDunÆtj2�dx : (33)Using the minimum problem (22) we have E(Æt;n)(un+1Æt ) � E(Æt;n)(unÆt), that is,Z
 g(vnÆt)jDun+1Æt j2 dx+ 12Æt Z
 jun+1Æt � unÆtj2 dx � Z
 g(vnÆt)jDunÆtj2 dx ; (34)9



Then the seond integral of (33) satis�esZ
 g(vnÆt)�jDun+1Æt j2 � jDunÆtj2�dx � 0:The �rst integral of (33) we an be writtenZ
 �g(vn+1Æt )� g(vnÆt)�jDun+1Æt j2dx � Æt Z
 ����g(vn+1Æt )� g(vnÆt)Æt ���� jDun+1Æt j2dx (35)� C Æt Z
 jDun+1Æt j2 dx;with C := (sup jg0j)�������bvÆt�t ������L1((0;T )�
): Using this estimate in (33), we getZ
 g(vn+1Æt )jDun+1Æt j2 dx� Z
 g(vnÆt)jDunÆtj2 dx � C Æt Z
 jDun+1Æt j2 dx:Taking the sum as n varies from 0 to [t=Æt℄ and using the fat that uÆt(�; t) = u[t=Æt℄+1Æt , we obtainZ
 g(v[t=Æt℄+1Æt )jDu[t=Æt℄+1Æt j2 dx� Z
 g(v0)jDu0j2 dx � C [t=Æt℄Xn=0 ÆtZ
 jDun+1Æt j2 dx� C Z Æt([t=Æt℄+1)0 Z
 jDuÆtj2 dx dt:We onlude that for all t 2 (0; T )Z
 g(vÆt(�; t))jDuÆt(�; t)j2 dx � Z
 g(v0)jDu0j2 dx+ C Z T0 Z
 jDuÆtj2 dx dt:Sine g(M0) � g(vÆt) � 1, we getjjDuÆt(�; t)jj2L2(
) � 1g(M0)�Z
 jDu0j2 dx+ C Z T0 Z
 jDuÆtj2 dx dt�;this proves (31). To onlude the proof of the lemma we ombine the last result with (32) to obtain (30). �Lemma 4. (buÆt) is uniformly bounded in H1�(0; T )�
� and satis�es the inequality12 �������buÆt�t ������2L2((0;T )�
) � jjDu0jj2L2(
) + Cg(M0) jju0jj2L2(
); (36)where C is the onstant of lemma 3. In partiular we havelimÆt!0 jjbuÆt � uÆtjjL2((0;T );L2(
)) = 0: (37)Proof : First we rewrite the inequality (34) in the formZ (n+1)ÆtnÆt �������buÆt�t ������2L2(
)dt = Æt Z
 ����un+1Æt � unÆtÆt ����2 dx� 2�Z
 g(vnÆt)jDunÆtj2 dx� Z
 g(vnÆt)jDun+1Æt j2 dx�:10



Let k := [T=Æt℄; we obtain using the last inequality12 Z T0 �������buÆt�t ������2L2(
)dt == 12� k�1Xn=0 Æt������un+1Æt � unÆtÆt ������2L2(
) + (T � Ætk) ������uk+1Æt � ukÆtÆt ������2L2(
)�;� k�1Xn=0�Z
 g(vnÆt)jDunÆtj2 dx� Z
 g(vnÆt)jDun+1Æt j2 dx�+ T � ÆtkÆt �Z
 g(vkÆt)jDukÆtj2 dx� g(vkÆt)jDuk+1Æt j2 dx�;� Z
 g(v0)jDu0j2 dx (38)+ k�1Xn=1�Z
 g(vnÆt)jDunÆtj2 dx� Z
 g(vn�1Æt )jDunÆtj2 dx� (39)+�T � ÆtkÆt Z
 g(vkÆt)jDukÆtj2 dx � Z
 g(vk�1Æt )jDukÆtj2 dx� (40)�T � ÆtkÆt Z
 g(vk+1Æt )jDuk+1Æt j2 dx : (41)Let us estimate the last four terms. Sine g � 1, (38) satis�esZ
 g(v0)jDu0j2 dx � jjDu0jj2L2(
):For the term (39), we proeed as in (35)k�1Xn=1�Z
 g(vnÆt)jDunÆtj2 dx � Z
 g(vn�1Æt )jDunÆtj2 dx� � C Z Æt(k�1)Æt Z
 jDuÆtj2 dx dt:We use T � Ætk � Æt to estimate the term (40),�T � ÆtkÆt Z
 g(vkÆt)jDukÆtj2 dx� Z
 g(vk�1Æt )jDukÆtj2 dx� � C Z ÆtkÆt(k�1) Z
 jDuÆtj2 dx dt;and sine T � Ætk � 0, (41) is non-positive. Thus12 Z T0 �������buÆt�t ������2L2(
)dt � jjDu0jj2L2(
) + C Z T0 Z
 jDuÆtj2 dx dt :To �nd (36), in the last inequality we put the right hand side of (32) in plae of the integral term.To show (37) we proeed as in (29), then we obtain after integrating on (0; T )Z T0 Z
 jbuÆt(x; t) � uÆt(x; t)j2 dx dt � Æt2 Z T0 Z
 ����buÆt�t ���2 dx dt ;whih goes to 0 as Æt goes to 0. �Now we will fous on the regularity and the onvergene of the sequene (vÆt). The idea is the following:the fat that v0Æt 2 H1(
), allows us to establish a regularity on the seond derivative of u1Æt whih in his turnused to show that v1Æt 2 H1(
), and so on. For this, we will use the lassial topologial degree's theory anda regularity results of solutions of ellipti equations given by D. Gilbarg and N-S. Trudinger [9℄ and N-G.Meyers [18℄, to establish the following lemma. 11



Lemma 5. Let w 2 H1(
) \ L1(
;R+ ) suh that 0 < � � w(x) a.e. in 
, f 2 L2(
) and u 2 H1(
) thesolution of the ellipti problemdiv (wDu) = f; �u�n ����
 = 0; Z
�u(x) dx = 0: (42)Then for all bounded ontinuous funtion  2 C(℄0;1[;R) satisfying j (s)j � �0 and js (s)j � �1 for alls > 0, we have jj (jDuj)D2ujjL2(
) � ��1��0jjf jjL2(
) + �1jjDwjjL2(
)�: (43)The proof of the lemma 5 is given in setion 7.Remark 1. Sine the divergene term of (9) has zero average, we have for all Æt > 0 and all n R
�u0(x) dx =R
�unÆt(x) dx. Thus, using the fat that our model is grey level shift invariant, we an assume that u0 has zeroaverage in 
: it is not restritive as we may always replae u0 with u0 � R
�u0(x)dx. This allows to haveR
�unÆt(x) dx = 0 for all Æt and all n.Lemma 6. For all n � 0, we have vnÆt 2 H1(
).Proof : We begin by proving that v1Æt 2 H1(
) Sine v1Æt is a linear ombination of F (jDu1Ætj2) andv0 2 H1(
), its amounts to show that F (jDu1Ætj2) 2 H1(
). The �rst step is to determine the distributionalderivative of F (jDu1Ætj2). For simpliity we use the notation u := u1Æt.By applying lemma 5 to the equation (9) with n = 0, we know (from the proof of the same lemma) thatthere exists � 2 (0; 1) suh that D2u 2 L1+�(
), and sine u 2 H1(
) in partiular we have u 2 W 2;1(
).Then, there exists a sequene of C2 funtions (un)n that strongly onverges to u in W 2;1(
) and satisfyun ! u, Dun ! Du a.e. in 
.Let � 2 C10 (
). Sine F is bounded and ontinous we have jF (jDunj2) �i�j � Mj�i�j and F (jDunj2) !F (jDuj2) a.e. in 
. Then by applying the Lebesgue Theorem we obtain the onvergeneZ
 F (jDunj2) �i� dx! Z
 F (jDuj2) �i� dx; as n!1: (44)By the fat that F 0(s) = 0 for large values of s its lear that (F 0(jDunj2)�jun)n is bounded in L1(
).Then there exists a funtion � 2 L1(
) and a subsequene still denoted by (F 0(jDunj2)�jun)n suh thatF 0(jDunj2)�jun ?* � in L1(
). By using the ontinuity of F 0 we have F 0(jDunj2)�jun ! F 0(jDuj2)�jua.e. in 
. Then � = F 0(jDuj2)�ju. Combining the last weak onvergene with the strong onvergene�ijun�! �iju� in L1(
)(here we use jj�ijun�� �iju�jjL1 � jj�jjL1 jj�ijun � �ijujjL1 ! 0), we obtainZ
�2F 0(jDunj2)�ijun �jun � dx! Z
�2F 0(jDuj2)�iju�ju� dx; as n!1: (45)The fat that the two sequenes in the left hand side of (44) and (45) are idential, proves that the distri-butional derivative of F (jDuj2) is given by �2F 0(jDuj2)D2uDu.The seond step is to show that D(F (jDuj2)) 2 L2(
). Indeed, we have jF 0(jDuj2)�iu (1 + jDuj)j �C(M) a.e. in 
 with C(M) = (M 12 +M). Then we an write����D�F (jDuj2)�����L2(
) � C(M)������ D2u1 + jDuj ������L2(
): (46)Applying one more the lemma 5 to the equation (9), with n = 0 and  (s) = 1=(1+ s) to onlude that theright hand side of (46) is bounded in L2(
) by writing������ D2u1 + jDuj ������L2(
) � (g(M 0))�1�������u� u0Æt ������L2(
) + jjDv0jjL2(
)�: (47)We return to equation (20). Sine v0 2 H1(
), we dedue that v1Æt 2 H1(
). By indution we onlude thatvnÆt 2 H1(
) for all n > 0. This proves the lemma.�12



Lemma 7. The sequene (vÆt) is uniformly bounded in L1(0; T ;H1(
)). In addition we havejjDvÆt(�; t)jjL2(
) � eKtjjDv0jjL2(
) +K Z t0 eK(t�s)�������buÆt�t (�; s)������L2(
) ds:with K = (g(M 0))�1�M 12 +M�.Proof : Deriving the equation (20) with n = 0, and using the L2 norm, we getjjDv1ÆtjjL2(
) � Æt1 + Æt jjD�F (jDu1Ætj2)�jjL2(
) + 11 + Æt jjDv0jjL2(
):Then using (46) and (47), we obtainjjDv1ÆtjjL2(
) � KÆt1 + Æt ������u1Æt � u0Æt ������L2(
) + 1 +KÆt1 + Æt jjDv0jjL2(
);with K := (g(M 0))�1C(M). We may prove in the same way thatjjDvn+1Æt jjL2(
) � KÆt1 + Æt ������un+1Æt � unÆtÆt ������L2(
) + 1 +KÆt1 + Æt jjDvnÆtjjL2(
):Then by indution we get for all njjDvnÆtjjL2(
) � K1 + Æt nXj=1 n�1 +KÆt1 + Æt �n�jÆt������ujÆt � uj�1ÆtÆt ������L2(
)o+ �1 +KÆt1 + Æt �njjDv0jjL2(
):Finally by using the inequality �1 +KÆt1 + Æt �n�j � eKÆt(n�j);we obtain for all t 2 (0; T ) (n = [t=Æt℄),jjDvÆt(�; t)jjL2(
) � K Z t0 eK(t�s)�������buÆt�t (�; s)������L2(
) ds+ eKtjjDv0jjL2(
):In partiular we havejjDvÆt(�; t)jjL2(
) � KT eKT �������buÆt�t ������L2((0;T );L2(
)) + eKT jjDv0jjL2(
);whih is bounded aording to lemma 4.�Proof of theorem 1. Aording to (23) and the lemma 3 and 4 there exists two subsequenes, (uÆtj )and (buÆtj ), and a funtion u 2 H1(
� (0; T )) \ L1(
� (0; T )) suh thatbuÆtj ; uÆtj j!+1��! u strongly in L2(
� (0; T ));buÆtj ; uÆtj j!+1��* u weakly in L2(0; T ;H1(
));buÆtj j!+1���* u weakly in H1(
� (0; T )):We draw the same onlusion from (21) and the lemma 2 and 7 if we replae (uÆtj ; buÆtj ) with (vÆtj ; bvÆtj ) andu with v. It remains to prove the strong onvergene (13) and the fat that (u; v) is a solution of a system(7)-(8). 13



Up to a subsequene, we an assume that vÆtj ! v a.e. in 
� (0; T ). In addition, by using the fat that(�bvÆt=�t) is bounded in L1(
 � (0; T )), we dedue that ��ÆtjvÆtj ! v a.e. in 
 � (0; T ) and by ontinuityof g, we also obtain that g(��ÆtjvÆtj )! g(v) a.e. in 
� (0; T ).Let � 2 C1(
 � (0; T )). Multiplying the equation (26) by � with Ætj in plae of Æt, and integrating theresult in 
� (0; T ), we getZ T0 Z
 �buÆtj�t � dx dt = � Z T0 Z
 g(��ÆtjvÆtj )DuÆtjD�dx dt:We study the limit of the two terms of the equality as j goes to +1. By using the weak onvergene�buÆtj=�t * �u=�t in L2(
� (0; T )),Z T0 Z
 �buÆtj�t � dx dt j!+1���! Z T0 Z
 �u�t � dx dt:Combining the weak onvergene of DuÆtj to Du in L2((
 � (0; T ));R2) with the strong onvergene ofg(��hjvÆtj )D� to g(v)D� in L2((
 � (0; T )));R2 ) (using Lebesgue's dominated onvergene theorem), wededue that Z T0 Z
 g(��hjvÆtj )DuÆtjD�dx dt j!+1���! Z T0 Z
 g(v)DuD�dx dt:Then we obtain Z T0 Z
 �u�t � dx dt = � Z T0 Z
 g(v)DuD�dx dt; (48)whih means that u is a weak solution of (7).Now, to prove the onvergene (13), it remains to show that DuÆtj strongly onverges to Du in L2((
�(0; T )));R2). For this we writeZ T0 Z
 g(��ÆtjvÆtj )jDuÆtj �Duj2 dx dt == Z T0 Z
 g(��ÆtjvÆtj )jDuÆtj j2 dx dt� 2 Z T0 Z
 g(��ÆtjvÆtj )(DuÆtj :Du) dx dt+ Z T0 Z
 g(��ÆtjvÆtj )jDuj2 dx dt= � Z T0 Z
 �buÆtj�t uÆtj dx dt+ 2 Z T0 Z
 �buÆtj�t u dx dt+ Z T0 Z
 g(��ÆtjvÆtj )jDuj2 dx dt: (49)Let us study the onvergene of eah term of (49) as j goes to +1. Taking into aount that �buÆtj=�tonverges weakly to �u=�t and that uÆtj onverges strongly to u, both in L2(
� (0; T )), we obtain:Z T0 Z
 �buÆtj�t uÆtj dx dt j!+1���! Z T0 Z
 �u�t u dx dt ;Z T0 Z
 �buÆtj�t u dx dt j!+1���! Z T0 Z
 �u�t u dx dt :Using the fat that g(��ÆtjvÆtj ) ! g(v) a.e. and g(��ÆtjvÆtj )jDuj2 � jDuj2, we dedue (by Lebesgue'stheorem) Z T0 Z
 g(��ÆtjvÆtj )jDuj2 dx dt j!+1���! Z T0 Z
 g(v)jDuj2 dx dt:thus limj!+1 Z T0 Z
 g(��ÆtjvÆtj )jDuÆtj �Duj2 dx dt = Z T0 Z
 �u�t u dx dt+ Z T0 Z
 g(v)jDuj2 dx dt:14



By density of C1(
� (0; T )) in H1(
� (0; T )) we substitute � by u in the equation (48), and getZ T0 Z
 �u�t u dx dt = � Z T0 Z
 g(v)jDuj2 dx dt;then g(M0) Z T0 Z
 jDuÆtj �Duj2dx dt � limj!+1 Z T0 Z
 g(��ÆtjvÆtj )jDuÆtj �Duj2 dx dt = 0this shows the strong onvergene (13).Finally, up to a subsequene we have that DuÆtj ! Du a.e. in 
� (0; T ) and the ontinuity of F allowsto obtain that F (jDuÆtj j2)! F (jDuj2) a.e. in 
� (0; T ). This prove that v is a solution of (8).�7 AppendixProof of Lemma 5. By a density argument there exists a sequene (wn) in C1(
) that onverges to w inH1(
). Using lassial trunation and onvolution arguments we an hose (wn) in L1(
;R+ ) and whihsatisfy � � wn for all n � 0. We dedue that the solution un of the ellipti problem:div (wnDun) = f; �un�n ����
 = 0; Z
�un(x)dx = 0: (50)exists and unique in H1(
). Moreover, from jjDwnjjL1(
) < 1, f 2 L2(
) and using lassial regularityresults it appears that un 2 H2(
).First we prove that the inequality (43) is true for the regularized problem (50). For this writing (50) inthe form wn�un = �f +DwnDun; (51)and multiplying the equation by  (jDunj), then we get using the L2-normjj (jDunj)wn�unjjL2(
) � jj (jDunj)f jjL2(
) + jj (jDunj)DwnDunjjL2(
):As 0 < � � wn, j j � �0 and js (s)j � �1 together with the last inequality, we obtainjj (jDunj)�unjjL2(
) � ��1��0jjf jjL2(
) + �1jjDwnjjL2(
)�: (52)To ontinue we need the following lemma that we prove in the end of this setion (let us reall 
 is theplane square (0; 1)2):Lemma 8. Let u 2 H2(
) an 
-periodi funtion, then for all bounded ontinuous funtion  2 C(℄0;1[;R),we have the equality jj (jDuj)�ujjL2(
) = jj (jDuj)D2ujjL2(
):Now we extend un on all R2 by symmetry and periodiity to a funtion ~un 2
-periodi. Then invokinglemma 8, we get jj (jD~unj)D2~unjjL2(2
) = jj (jD~unj)�~unjjL2(2
);and by symmetry of ~un in 2
, we easily dedue thatjj (jDunj)D2unjjL2(
) = jj (jDunj)�unjjL2(
);that we use in (52) to obtainjj (jDunj)D2unjjL2(
) � ��1��0jjf jjL2(
) + �1jjDwnjjL2(
)�: (53)15



This proves that the inequality (43) is true for the regularized problem (50).Inequality (53) implies that the sequene � (jDunj)D2un� is bounded. Then there exists a subse-quene (still denoted by ( (jDunj)D2un)) weakly onvergent in L2(
). Let us assume that its weak limit is (jDuj)D2u. Then by applying Fatou's lemma we obtainjj (jDuj)D2ujjL2(
) � lim infn!+1 jj (jDunj)D2unjjL2(
)� ��1 lim infn!+1 ��0jjf jjL2(
) + �1jjDwnjjL2(
)�;� ��1��0jjf jjL2(
) + �1jjDwjjL2(
)�;showing in partiular (43).Before proving that the weak limit of ( (jDunj)D2un) is  (jDuj)D2u, let us show that up to a subse-quene, (un) is strongly onvergent in H1(
). Indeed, multiplying div (wnDun) = f by un and integratingthe result on 
, Z
 wnjDunj2dx = � Z
 fundx:The left hand side satis�es �jjDunjj2L2(
) � Z
 wnjDunj2dx;and using the H�older and Poinare-Wirtinger inequalities, we get for the right hand sideZ
 fundx � jjf jjL2(
)jjunjjL2(
) � Cjjf jjL2(
)jjDunjjL2(
): (54)We dedue that (un) is uniformly bounded in H1(
) and we havejjDunjjL2(
) � C� jjf jjL2(
): (55)Then there exists u 2 H1(
) and a subsequene still denoted by (un) that strongly onverges to u in L2(
),weakly in H1(
) and a.e. in 
. To prove the strong onvergene Dun ! Du in L2(
) we an writeZ
 wnjDun �Duj2dx = Z
 wnjDunj2dx � 2 Z
 wnDunDudx+ Z
 wnjDuj2dx;and Z
 wnjDunj2dx = � Z
 fundx n!+1���! � Z
 fu dx;Z
 wnjDuj2 dx n!+1���! Z
 wjDuj2dx = � Z
 fu dx;�2 Z
 wnDunDudx = 2 Z
 fu dx;thus � Z
 jDun �Duj2dx � Z
 wnjDun �Duj2dx n!+1���! 0:Now we are going to study the onvergene of the sequenes (D2un) and ( (jDunj)) to prove that( (jDunj)D2un) ��*  (jDuj)D2u weakly in L2(
).
16



Denoting 
1 = (�1; 2)� (�1; 2) and hoosing a funtion � 2 C1 (R2 ), suh that 
 �� supp(�) �� 
1,and satis�es �(x) = � 1 if x 2 
0 if x 2 R2=
1:Remark that ~un� 2 W 2;1+�0 (
1) for all � 2 (0; 1) (� �xed later). Then, aording to Gilbarg-Trudinger [9℄Chap. 9, Corollary 10, there exists a onstant C(�) > 0 suh thatjjD2(~un�)jjL1+�(
1) � C(�)jj�(~un�)jjL1+�(
1):It follows thatjjD2unjjL1+�(
) � jjD2(~un�)jjL1+�(
1);� C(�)jj�(~un�)jjL1+�(
1);� C(�)njj��~unjjL1+�(
1) + jj~un��jjL1+�(
1) + 2jjD~unD�jjL1+�(
1)o;� C(�)Cnjj�~unjjL1+�(
1) + jj~unjjL1+�(
1) + jjD~unjjL1+�(
1)o;where C := max �jj�jj1; 2jjD�jj1; jj��jj1�. ThusjjD2unjjL1+�(
) � 9C(�)Cnjj�unjjL1+�(
) + jjunjjL1+�(
) + 2jjDunjjL1+�(
)o: (56)The two sequenes (jjunjjL1+�(
)) and (jjDunjjL1+�(
)) are bounded aording to (54) and (55). For thesequene (jj�unjjL1+�(
)) we use (51), and writejj�unjjL1+�(
) � ��1�jjf jjL1+�(
) + jjDvnDunjjL1+�(
)�: (57)Then it remains to show that the sequene (jjDwnDunjjL1+�(
)) is bounded. Remark that by the symmetryand the fat that un satis�es the Neumann type boundary, the equation~f = div ( ~wnD~un)still holds in 
2 := (�2; 3)�(�2; 3) where the funtions ~f and ~wn are de�ned in the same way that ~un. Thenaording to Meyers' Theorem 2 in [18℄, there exists p > 2, depending only on max ~w=min ~w � kwk1=�,suh that for all x 2 
2 and for all R > 0 satisfying B(x;R) � B(x; 2R) � 
2, we have:jjD~unjjLp(B(x;R)) � CfR2( 1p� 12 )�1jj~unjjL2(B(x;2R)) +R2( 1p� 12 )+1jj ~f jjL2(B(x;2R))g:Choosing x 2 
 and R suh that 
 � B(x;R), for example x = ( 12 ; 12 ) and R = p2, we dedue that (jDunj)is bounded in Lp(
).Coming bak to (57) and hoosing � = (p � 2)=(p + 2), then the sequene (DwnDun) is bounded inL1+�(
) and onsequently (D2un) is bounded in L1+�(
). We onlude that up to extrating a subsequeneD2unn!+1��* D2u weakly in L1+�(
): (58)Consider � 2 C1(
). Sine Dun ! Du a.e. in 
, the ontinuity and boundness of  , we obtain usingthe Lebesgue theorem  (jDunj)� n!+1���!  (jDuj)� in Lq(
) for all q 2 [1;1):Finaly, hoosing q suh that 1=(1 + �) + 1=q = 1 and ombining the last strong onvergene with the weakonvergene (58), we obtain Z
  (jDunj)D2un � dx n!+1���! Z
  (jDuj)D2u� dx:17



This onlude the proof of the lemma.�To prove the lemma 8 we need the following result whih omes from the topologial degree's theory, andis a partiular ase of the lemma 2.10 of [12℄ (see also the theorem 6 of [10℄):Lemma 9. Let f 2 C1(R2 ;R2 ) an 
-periodi funtion. Then for all  2 C0(℄0;+1[) we haveZ
  (jf(x)j)Jf (x)dx = 0; (59)where Jf (x) is the Jaobian of f at point x, i.e. Jf (x) = det ��if j(x)�.Proof of Lemma 8. Let u 2 C2(R2 ) an 
-periodi funtion,  2 C0(℄0;1[;R). Using (59):Z
  (jDuj)JDu dx dy = 0;that is, Z
  (jDuj)�xxu �yyu dx dy = Z
  (jDuj)��xyu�2 dx dy:This impliesZ
  (jDuj)���xxu�2 + ��yyu�2 + 2�xxu�yyu� dx dy = Z
  (jDuj)���xxu�2 + ��yyu�2 + 2��xyu�2� dx dy;that is, Z
  (jDuj)j�uj2 dx dy = Z
  (jDuj)jD2uj2 dx dy: (60)Sine jDuj is bounded (u 2 C2(R2 ) and 
-periodi) its lear that (60) remains true if  is only boundedand ontinuous funtion from R+ to R.Now we show that (60) is true for u in H2(
). Indeed, by density argument there exists a sequene(wn) 2 C2(R2 ) \H2(
) that onverges to u in H2(
). In partiular we have �wn ! �u, D2wn ! D2u etDwn ! Du in L2(
). In addition, there exists a subsequene still denoted by (wn) suh that Dwn ! Dua.e. in 
.Using the fat that  is bounded, there exists a funtion h 2 L1(
) and a subsequene still denoted by(wn) suh that  2(Dwn) ?* h in L1(
). Combining this with the strong onvergenes j�wnj2 ! j�uj2 andjD2wnj2 ! jD2uj2 in L1(
), then we obtain: 2(Dwn)j�wnj2 ! h j�uj2 and  2(Dwn)jD2wnj2 ! h jD2uj2 in L1(
):Now using the fat that Dwn ! Du strongly and a.e. in 
 and the ontinuity of  we dedue thath =  2(Du). Finally, the sequene (wn) an be hosen 
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