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Functional central limit theorems for a large network in @i
customers join the shortest of several queues

CARL GRAHAM *

Abstract. We considetV single server infinite buffer queues with service rat€ustomers arrive at raféa,
chooseL queues uniformly, and join the shortest. We study the psestss R, — RY = (RN (k))ken for
large N, whereRY (k) is the fraction of queues of length at le&sat timet. Laws of large numbers (LLNs)
are known, see Vvedenskaya et @[15], Mitzenmac@r [18]@raham mS]. We consider certain Hilbert
spaces with the weak topology. First, we prove a functioeatrml limit theorem (CLT) under tha priori
assumption that the initial daf&)’ satisfy the corresponding CLT. We use a compactness-uméggsenethod,
and the limit is characterized as an Ornstein-UhlenbecK)(@blcess. Then, we study tiiz" in equilibrium
under the stability condition: < (3, and prove a functional CLT with limit the OU process in eduilm. We
use ergodicity and justify the inversion of limilisny_, o lim; o, = lim;_, o limy_,, by a compactness-
uniqueness method. We dedwcposteriorithe CLT for B} under the invariant laws, an interesting result in
its own right. The main tool for proving tightness of the inefily defined invariant laws in the CLT scaling
and ergodicity of the limit OU process is a global expondrgiability result for the nonlinear dynamical
system obtained in the functional LLN limit.
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tions, equilibrium fluctuations, birth and death processpsctral gap, global exponential stability
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1 Introduction

1.1 Preliminaries

We consider a Markovian network constituted/f> L > 1 infinite buffer single server queues.
Customers arrive at rat¥ «, are each allocatedl distinct queues uniformly at random, and join the
shortest, ties being resolved uniformly. Servers work i@ FaArrivals, allocations, and services are
independent. Fof. = 1 we have i.i.d.M,/Ms/1/0o queues. Fol, > 2 the interaction structure
depends only on sampling from the empirical measurd.-dfiples of queue states: in statistical
mechanics terminology, the system isfifdbody mean-field interaction. We continue the lafge
study introduced by Vvedenskaya et &l][15] and Mitzenmaffi#] and continued in Graharf [5].

The proces$ XY )1<i<n is Markov, whereX Y (¢) denotes the length of queudat timet in R .

lts empirical measurg”™ = + Zﬁl dx~ has samples i®(ID(R,N)), and its marginal process
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XN = (XN )so with XY =y = L3N, dxn(y has sample paths B(R+, P(N)). We are

interested in the tails of the marginal§" and consider
| XN
RN = (RM)z0, R =(RY(K)ken, R (k)= N > T~ y>k
i=1
and R} (k) is the fraction of queues of length at leasat timet. For the uniform topology on

1
V={(wk)ken : v(0) =1, v(k) >v(k+1), imv=0} C ey, V¥=Vn NNN,

coinciding here with the product topology, the proc& has sample paths [D](R+, VN).

The processeX " and R are in relation throughp € P(N) «— v € V for v(k) = p[k, c0) and
p{k} = v(k)—v(k+1) for k in N. This classical homeomorphism maps the subspace of pfitpabi
measures with finite first moment ontbn ¢;, corresponding to a finite number of customers in the

network. The symmetry structure implies that these prasease Markov.

The stationary regime has great practical relevance. Bbdigg conditiona < G (Theorem 5 (a)
in [I5], Lemma 3.1 in[[12], Theorem 4.2 if] [5]) is obtained rfreergodicity criteria yielding little
information. We study the largd asymptotics of?", first for transient regimes with appropriately
converging initial data, and then in equilibrium using adifact approach involving ergodicity in
well-chosen transient regimes and an inversion of limitddage N and large times. Law of large

numbers (LLN) results are already known, and we obtain fanat central limit theorems (CLTSs).

1.2 Previous results: laws of large numbers

We relate results found in essence in Vvedenskaya dt L. J¥&}follow Graham([b] which extends
these results, notably by considering the empirical messan path space” and thus yielding
chaoticity results (asymptotic independence of queuelpp@r 3 in Mitzenmachef J]L2] gives re-
lated results. (The ratesand3 correspond to\ and1 in [1§, 2] andv and\ in [§].)

Consider the mappings with valuesdhgiven forv in co by
Fr()(k) = a(v(k — DF —o(k)"),  F_()(k) = Blo(k) —o(k+1)), k>1, (L1
andF = F, — F_, and the nonlinear differential equatian= F'(u) onV, given fort > 0 by
(k) = a(up(k = 1" —up(k)") = Blus(k) — w(k + 1))
= awy(k — 1)" — (aw (k)" + Buy(k)) — Bu(k+1),  k>1. (1.2)

This corresponds to the systems (1.6)[ir [15], (3.5] i [R] €3.9) in [5]. Note thaf_ is linear.

Theorem 1.1 There exists a unique solutian= (u;):>o taking values inV for (L.2), andu is in
C(R4, V). If ug isinV N ¢4 thenu takes values iy N /.
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Proof. We use Theorem 3.3 and Proposition 2.3[lh [5]. These exfieithomeomorphism be-
tween P(N) with the weak topology and’ with the product topology. Therd (1.2) corresponds
to a non-linear forward Kolmogorov equation for a pure jumpgess with uniformly bounded
(time-dependent) jump rates. Uniqueness within the clégsonded measures and existence of
a probability-measure valued solution are obtained ugiegdtal variation norm. Theorem 1 (a) in

[LH] yields existence (and uniqueness)im /;. O

Firstly, a functional LLN for initial conditions satisfyia LLN is part of Theorem 3.4 if][5] and
can be deduced from Theorem 2in][15].

Theorem 1.2 Assume thatR}’) n> 1, converges in law ta in V. Then(RY) v, converges in law

in D(R, V) to the unique solutiom = (u;);>o starting atu for (L.2).
Secondly, forx < 3 the limit equation[(1]2) has a globally attractive stablenpain V N ¢;.

Theorem 1.3 Letp = o/ < 1. The equation[(1]2) has a unique stable poinVigiven by

W= (akphen, (k) = pF TGN < gL

)

and the solution of (1.2) starting at any.g in V N ¢; is such thafim;_.., u; = .

Proof. Theorem 1 (b) in[[15] yields thait is globally asymptotically stable it N ¢;. A stable point
win V satisfies3u(k + 1) — au(k)* = Bu(k) — au(k — 1)* = --- = Bu(1) — o and converges to

0, henceu(1) = o/p andu(2), u(3), ... are successively determined uniquely. O

Lastly, a compactness-uniqueness argument justifies teesion of limitslim y_. o lim;_,oc =
lim¢, 0 limn—, 0, Which yields a result in equilibrium. This method, used biiM[L§] for the star-
shaped loss network, is detailed in Grahm [6] Sectionsr&i®a7.3. The following functional LLN
in equilibrium (Theorem 4.4 i{]5]) can be deduced frm [16] is not stated there, and implies that
under the invariant lawsmy .. E(R) (k)) = a(k) for k € N (Theorem 5 (c) in[[15]).

Theorem 1.4 Letp = /3 < 1 and the networks of siz& be in equilibrium. Ther(RY)y>1,
converges in probability if)(R, V) to a.

Note thati(k) decays hyper-exponentially infor L > 2 instead of the exponential decaf
corresponding to i.i.d. queues in equilibriuth & 1). For finite networks in equilibrium there is at
most exponential decay sinB X{" +--- + X > Nk) <P(X{' > k)+---+P(XJ > k) and
by comparison with ad/y./Myg/1 queue

E(RY (k) =P(XN(t) > k) > %ka, k>0. (1.3)



The asymptotic queue sizes are dramatically decreasedssirtfiple load balancing (or resource
pooling) procedure, which carries little overhead evenléoge N since L is fixed (for instance
L = 2). This feature is quite robust and true for many systems aasilustrated on several examples
by Mitzenmacher[[12] and Turnef J14] using proofs as well iasutations. It can be used as a
guideline for designing practical networks. In contralsg bound [(1]3) assumes the best utilization

of the NV servers, fully collaborating even for a single customer.

Theorem 3.5 in Grahanf][5] gives convergence bounds on bduirde intervalg0, 7] for i.i.d.
(x¥

7

(0))1<i<n using results in Graham and Méléafdl [7]. This can be exérfithe initial laws

satisfya priori controls, but it is not so in equilibrium (the bounds are exgrtially large inT’).

1.3 The outline of this paper

The study of the fluctuations around the functional LLN wiktlgd for instance asymptotically tight
confidence intervals for the procelss» N~'Card{i =1,...,N : X}¥(t) € A}. In arealistic set-
ting (finite number of finite buffer queues) such confidenterirals would allow network evaluation
or dimensioning in function of quality of service requireme on delays and overflows. The LLN
on path space concerns objects suchasCard{i = 1,..., N : (t — X}¥(¢)) € B} with aricher

temporal structure, but topological difficulties usuallgdk the corresponding fluctuation study.

We consider the proces?" and solutionu for ([-2) starting atz)’ in V~ andug in V, and
ZN = VN(RN — ). (1.4)

The processeg? = (Z});>o will be studied in the Skorokhod spaces on appropriate KHiligaces

with the weak topology. These spaces are not metrizableeandre appropriate tightness criteria.

We first consider a wide class @t andwu, under theassumptiorthat (Z}') >, converges
in law (for instance satisfies a CLT). We obtain a function&ll Gn relation to Theorenf 1.2, with
limit given by an Ornstein-Uhlenbeck (OU) process startatighe limit of the (Z})n>p. This
covers without constraints am and 8 manytransientregimes withexplicit initial conditions, such

as initially empty networks, or more generally i.i.d. inltqueue sizes.

We then focus on thetationaryregime fora. < (. The initial data is nowmplicit: the law of
R} is the invariant law foiR" andug = @. We prove tightness fofZ)¥) >, using the ergodicity
of ZN for fixed N and intricate fine studies of the long-time behavior of thelimear dynamics
appearing at the larg® limit. The main result in this paper is a functional CLT in ddprium for
(ZN) y>, with limit the OU process in equilibrium. Thimpliesa CLT under the invariant laws for

(Z{) N>1, an important result which seems difficult to obtain dirgctl

Section[R introduces without proof the main notions andltes8ectior{]B gives the proof of the

functional CLT for converging initial data by compactnessgueness and martingale techniques.
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We then considet, = @. We study the OU process in Sectidn 4, derive a spectralseptation
for the linear operator in the drift, and prove the existeoica spectral gap. A main difficulty is that
the scalar product for which the operator is self-adjoirto strongfor the limit dynamical system
and the invariant laws for finitd/. We consider appropriate Hilbert spaces in which the opeiat

not self-adjoint and prove exponential stability.

In Sectior{ b we likewise prove thatis globally exponentially stable for the non-linear dyneati
system. In Sectiof] 6 we obtain bounds & uniform for¢ > 0 and largeN, using the preceding
stability result in order to iterate the bounds on intenal$ength 7. Bounds on the invariant laws
of Z" follow using ergodicity. The proof for the functional CLT &quilibrium follows from a

compactness-uniqueness argument involving the fundt©ba for converging initial data.

2 The functional central limit theorems

2.1 Preliminaries

The exponential of a bounded linear operator is given by sualseries expansion. Lz%tandﬂg for

p > 1 be the subspaces of sequences vanishifg#the classical sequence spaegéwith limit 0)
and/, (with summablep-th power). In matrix notation we use the canonical basiecheequences
vanishing ao are identified with infinite column vectors indexed f, 2, - - - }. The diagonal matrix
with terms given by the sequeneeis denoted byliag(a). Sequence inequalities, etc., should be
interpreted termwise. Empty sums are equdl samd empty products tb. Constants such & may

vary from line to line. Letyy = (9’“),@1 be the geometric sequence with paraméter

For a sequence = (w(k));>1 such thatu(k) > 0 we define the Hilbert spaces
Lay(w) = {x e RN : 2(0) = 0, [|2]|7, 0 = Z(%)Zw(kz) => a(k)’wk) " < oo}
k>1 k>1

and in matrix notatior{z, y) r,, () = r*diag(w!)y. We use the notatiofi,(w) since its elements
will often be considered as measures identified with theirsilies with respect to the reference
measurew. In this perspective.; (w) = ¢{ and if w is summable theffjz|; < ||w||}/2||x\|L2(w)
and Lo(w) C £9. Using Ly(1) = ¢J as a pivot space, for boundedwe have the Gelfand triplet
La(w) C £ C La(w)* = La(w™1).

Another natural perspective dip(w) is that it is ands space with weights, and we consider the
£1 space with same weights (the notation being chosen for stemgiy)

0 (w) = {CE cRY: z(0) =0, ||x\|gl(w) = Z |:U(k:)|w(k:)71 < oo}
E>1

andz € Ly(w) & 22 € £1(w) with ||x\|%2(w) = ||.’E2Hgl(w). The inclusiony N 41 (w) < VN La(w)

is continuous since? < |z| for |z| < 1. The following result is trivial.
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Lemma 2.1 If w = O(v) andv = O(w) then theLy(v) and Ly(w) norms are equivalent, and the

¢1(v) and/; (w) norms are equivalent.

In the sequel we often assume that= (wy,);>1 Satisfies the condition that
Je,d>0,Vk>1,0<cw(k+1) <w(k) <dw(k+1), (2.1)

which is satisfied by, = (6%)x>; with ¢ = d = 1/0 for § > 0. It implies thatw(1)d(1/d)* <
w(k) < w(1)e(1/c)* which boundse by geometric sequences. The norms have exponentiallygstron

weights forc > 1. We give a refined existence result fiir). (Proofs are left for later.)

Theorem 2.2 Letw satisfy [2.]L). Then iw the mappings”, F; and F_ are Lipschitz for thel,(w)
and the/; (w) norms. Existence and uniqueness holds[fo} (1.2) inLs(w) and inV N ¢ (w).

2.2 The functional CLT for converging initial data

The time-inhomogeneous Ornstein-Uhlenbeck process

In V, the linearization of[(1]2) around a particular solutions the linearization of the recentered

equation satisfied by = g — u whereg is a generic solution fof (1.2). It is given for> 0 by
z = K(ug)z (2.2)
where forv in V the linear operatoK (v) : o — K(v)x oncj is given by
K()z(k) = alv(k — )tk — 1) — (aLv(k)E™Y + B)z(k) + Bx(k+1), k>1, (2.3)

and is identified with its infinite matrix in the canonical &),1,0,0...), (0,0,1,0...), ...

= (aLv())L1 + ) 16 0
aLv(1)E1 — (aLv(2)L71 + ) g
K(v) = 0 aLv(2)F1 — (aLv(3)L71 + )
0 aLy(3)F1

0

Let (M (k))ren be independent real continuous centered Gaussian maesngietermined in

law by their deterministic Doob-Meyer brackets givenfor 0 by

(M (k) = /O [ (us) (k) + F_(us) (k) ds. (2.9)

The processes! = (M (k))r>o and(M) = ((M(k))),cx have values iff).

Theorem 2.3 Let w satisfy [2.]1) anduy be inV N ¢1(w). Then the Gaussian martingal®/ is

square-integrable Lo (w).



Proof. We haveE(HMtH%Q(w)) = [[(M)¢]l¢, () @and we conclude using (p.4), Theor¢m| 2.2, and

uniform bounds ir?; (w) on (us)o<s<¢ in function ofug given by the Gronwall Lemma. O

The limit equation for the fluctuations is a Gaussian pedtion of (2.2), the inhomogeneous
affine SDE given fot > 0 by

t
Zy = Zo + / K (us)Zs ds + M, . (2.5)
0

A well-defined solution is called an Ornstein-Uhlenbeckoass, in short OU process. We recall that

strong (or pathwise) uniqueness implies weak uniquenesisthat/; (w) C Lo(w).

Theorem 2.4 Let the sequence satisfy [2.]1).

(a) For v in V, the operatorK (v) is bounded inLs(w) with operator norm uniformly bounded in
(b) Letu, be inV N Ly(w). Then inLs(w) there is a unique solution; = elo K(u:)ds 2 for (2:2)
and strong uniqueness of solutions holds for](2.5).

() Letu, be inV N £1(w). Then inLy(w) there is a unique strong solutiaf, = efo K(uws)ds 7, 4
Ji el K@) drgpr, for @38) and ifE<||Z0H%2(w)) < o0 thenE<supt§T \|Zt||%2(w)) < 0.

Tightness bounds and the CLT

The finite-horizon bounds in the following lemma will yieldhtness estimates for the procesgés

used in the compactness-uniqueness proof for the subgatheenem.

Lemma 2.5 Letw satisfy [2.]1). Lety be inV N ¢1(w) and RY be inV™. For anyT > 0

. N2 . N2
lim sup E (12817 y) < 0 = h};ljgopE<ogggT |12 HL2<w>) <o

We refer to Jakubowsk{][8] for the Skorokhod topology for frartrizable topologies. For the
weak topology of a reflexive Banach space, the relativelyparhsets are the bounded sets for the
norm, see Rudin[[]3] Theorems 1.15 (b), 3.18, and 4.3. Hedhdg(r) denotes the closed ball
centered at O of radius, a set7 of probability measures is tight if and only if for all > 0 there

existsr. < oo such thap(B(r:)) > 1 — ¢ uniformly for p in 7. We state the functional CLT.

Theorem 2.6 Letw satisfy [2]1). Considef.,(w) with its weak topology ant(R, La(w)) with
the corresponding Skorokhod topology. kgtbe inV N ¢1(w), RY in VI, and Z¥ be given by
@3). 1f (Z))n>1 converges in law tdZ, and is tight, then(Z™)y>;, converges in law to the

unique OU process solvingl (P.5) starting 4 and is tight.
2.3 The functional CLT in equilibrium
We assume the stability conditipn= «/5 < 1 holds, and consider, = .
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The Ornstein-Uhlenbeck process
We setkC = K(@) and (2.B) yields that’ : x € ¢ — Kz € ¢ is given by
Ka(k) = K(@)z(k) = BLp" "a(k — 1) — (ﬁLpL‘“ + 6) a(k)+ Bz(k+1), k>1, (2.6)

identified with its infinite matrix in the canonical basis

— (BLp" + ) 8 0 0
Lot —(BLe" + ) 8 0
K = 0 Lo = (BLp" + ) 8 @
0 0 8L —»<BLpL4%—ﬁ>

Note thatC = .A* whereA is the generator of a sub-Markovian birth and death prod&'sgyive
the Karlin-McGregor spectral decomposition #61in Section[4]2, to which we make a few forward

references (it isot a resolution of the identity, see RudinJ13]). The potentiafficients of4 are
7= (r(k)is1,  w(k) = Lt p /=D = ot gl gy (2.8)

and solve the detailed balance equatiei + 1) = Lo~ (k) with 7(1) = 1. The linearization of

(L-2) around its stable poitatis the forward Kolmogorov equation fot given fort > 0 by
Zt == ICZt (29)

which is special case of (2.2). Considerifig}2.4) d&d) = F,(a) — F_(a) = 0, the martingale
M = (M (k))ken has the same law aggrvalued sequencB = (B(k))xen Of independent centered

Brownian motions such tha#(0) = 0 and fork > 1
3(k) = var(Bi (k) = B(Bu(k)?) = 28 (a(k) — alk + 1)) = 2600 D/ =D (1 - oy |

and B has diagonal infinitesimal covariance matdixg(v). The following result is obvious.

Theorem 2.7 The process3 is an Hilbertian Brownian motion ity (w) if and only ifa is in 41 (w).

This is true forw = 7 andw = gy for § > 0 whenL > 2 or for w = gg for 6 > p whenL = 1.

The Ornstein-Uhlenbeck (OU) proce8s= (Z(k))ren Solves the affine SDE given for> 0 by
t

a:%+/mgw+& (2.10)
0

which is a Brownian perturbation of (2.9). Fér> 2, existence and uniqueness results hold under

much weaker assumptions than |2.1).



Theorem 2.8 Letw be such that there exists> 0 andd > 0 with
0<cwlk+1)<wk) <dp 2L wk+1), k>1.

(@) In Ly(w), the operatork is bounded, the equatiofi (2.9) has a unique solutipn= "z,
wheree!t has a spectral representation given Iy [4.1), and there iqueness of solutions for the
SDE (2.1p). The assumptions and conclusions holasfer 7 andw = gy for 6 > 0.

(b) In addition letw be such thati is in ¢1 (w). The SDE[2.30) has a unique solutigh= " Z, +
5 =9 dBy in Ly(w) further made explicit in[(4]2). This the case for= 7 andw = gy for

f# > 0whenL > 2 or for w = gg for6 > pwhenL = 1.

We use results in van Doorfl [3] to prove the existence of atsglegap, and use this fact for an

exponential stability result inspired from Callaert andig@n [3] Section 10.

Theorem 2.9 (Spectral gap.) The operatd€ is bounded self-adjoint itk (7). The least pointy
of the spectrum ok is such that) < v < 3. The solutionz; = "'z, for (R.9) in Lo(n) satisfies

261l Lo (ry < €7 20l Loy () -

For L > 2 the sequence decays hyper-exponentially, s¢e [2.8), gnd (1.3) imptiastheLs ()
norm is too strong for the CLT. Further, the mappifig is not Lipschitz iny N Ly(7) for the L ()
norm, see Theorenis 2.2 apd]2.8 and their contrasting assms@nd proofs. Hence we prove

exponential stability and (exponential) ergodicity foe U process in appropriate spaces.

Theorem 2.10 Let0 < 8 < 1whenL > 2orp < 6 < 1whenL = 1. There existsy > 0 andCy <

oo such that the solution, = "'z for (2:3) in L2 (go) satisfies| 2| 1,(5y) < €' Coll20( 1.5(g)-

Theorem 2.11 Letw = worw = gy with0 < 8 < 1whenL > 2orletw = ggwithp < 0 < 1
whenL = 1. Any solution for the SDE (2.10) ib, (w) converges in law for large times to its unique
invariant law (exponentially fast). This law is the law e®dB; which is Gaussian centered with
covariance matrix/;* e*‘diag(v)e""*dt made more explicit in[(43) and (#.4). There is a unique
stationary OU process solving the SOE (2.10¥i(w).

Global exponential stability for ([L.2), infinite-horizon and invariant law bounds, and the CLT

We state an important global exponential stability resuli for the non-linear dynamical system.
This is essential in the proof of the subsequent infinitézdoor bounds for the marginals of the
processes, which yield bounds on their long time limit, theriant law. We need uniformity over

the state space, and results for the linearized equdtighgeenot enough.



Theorem 2.12 Letp < 6 < 1 andu be the solution of[(1.2) starting aty in V N Ly(gy). There

existsys > 0 andCy < oo such thatf|u; — [, (4,) < € 7" Chllug — @l 1, (gy)-

This doeshothold in Ly () for L > 2, else Lemm@ 2.13 below would also holdlin(r), which
would contradict[(1]3). Theorem 3.6 in MitzenmacHet [12}es$ a related result for some weighted

£1 norms obtained by potential function techniques.

Lemma2.13 Letp < 6 < 1whenL > 2or p < 6 < 1whenL =1. Then

. N |2 - N2
hjrvn—?;lopE <HZO HLz(ge)) s h]r\?jgopggE <HZt HL2(9@)> =

and under the invariant lawsm supy_, .. E (\\ZéV]]%Q(ge)) < 0.

Our main result is the functional CLT in equilibrium, obtathwith a compactness-uniqueness
method using tightness of the invariant laws (based on Le@d®) and Theoren{s 2.6 ahd 3.11.

Theorem 2.14 Let the networks of siz& be in equilibrium. ForZ > 2 considerLs(g,) with
its weak topology an® (R, L2(g,)) with the corresponding Skorokhod topology. THER ) x>,
converges in law to the unique stationary OU process soltiedsDE [2.70), in particulatZ¥ ) x> 1,
converges in law to the invariant law for this process (seedfém[2.1]1). For. = 1 the same result

holds inLy(gg) for p < 6 < 1.

3 The proofs for converging initial conditions

3.1 Existence and uniqueness results

Proof of Theorem 2.2 (refined existence result for[(1.2))

We give the proof foi,(w), the proof for/; (w) being similar. The assumptiop (R.1) and the identity
ol —yl = (z —y) (@l + 252y + - + P 1) yield
(u(k — 1) = ok — 1)) w(k) ™ < (u(k — 1) — v(k — 1)) L2dw(k — 1),
(u(B)E = v(k)")*w(k) ™ < (ulk) —v(k)? Lw(k) ",
(w(k +1) — vk +1))2wk)™ < (uk+1)—ovlk+1)2ctwk+1)7,

hence we have the Lipschitz boungig, (u) — F+(v)\|%2(w) < 222L2%(d + 1)|lu — v||%2(w) and
[F-(u) = F- ()7, < 26°(c™! + 1)llu — 0|7, Existence and uniqueness follows by a

classical Cauchy-Lipschitz method.
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The derivation of the Ornstein-Uhlenbeck process
Let () = x(z —1)--- (x — k+ 1) for z € R (the falling factorial of degreé € N). Considering
(L.1), let the mappings'Y and F¥ with values inc]) be given forv in ¢y by

(Nv(k —1))p — (Nv(k))r,
(N)L ’

FY () (k) =a k>1; FNuw)=FY@w)-F_(v). (3.1)

The proceskR” is Markov onV?, and when in state has jumps in its:-th coordinate > 1, of
sizel/N atrateNFY (r)(k) and size-1/N at rateN F_(r)(k).

Lemma 3.1 Let R} be inV", u solve [1P) starting ati, in V, and Z" be given by|[(1]4). Then
t
zN =2z +/ VN (FN(RY) — F(uy)) ds + MY (3.2)
0

defines an independent family of square-integrable maategy\/¥ = (M” (k))ren independent

of Z}¥ with Doob-Meyer brackets given by
t
(MN(k)), = /0 {FN(RY)(k) + F_(RY)(k)} ds. (3.3)

Proof. This follows from a classical application of the Dynkin rfiaula. O

The first lemma below shows that it is indifferent to chooseltlgueues with or without replace-

ment at this level of precision. The second one is a linetizdormula.

Lemma3.2 For N > L > 1 anda in R we have

L-1

N(g) — (Na)L_aL: a— 1)l i
AN(@) = ; 1) 1SZ_1<_§J_SL_1(N_il)...(N_Z-j)

and AN (a) = N~1O(a), uniformly for0 < a < 1, and AV (k/N) <0fork =0,1,...,N.

Proof. We develop&ae — it Na—i — L1 (a + (a— 1)Ni_.> to obtain the identity for

(N)L N—i i
AN (a) which is clearlyN~'O(a), uniformly for0 < a < 1. Fora = k/N, [/, X! is com-
posed of terms bounded layor contains a term equal tband cannot exceed". 0

Lemma 3.3 For L > 1 anda andh in R we have
L oL
B h) = hL— L_L L*lh: L*Z’hi
(a,h) == (a+h)" —a a ;—2 . )a

with B(a,h) = 0 for L = 1 and B(a,h) = h? for L = 2. For L > 2 we have0 < B(a,h) <
hl + (2F — L — 2) ah? for a anda + hin [0, 1].

11



Proof. The identity is Newton’s binomial formula. A convexity amgent yieldsB(a, h) > 0. Fora
anda + hin [0,1], B(a,h) < hY + 315" (F)ah? = hP + (28 — L — 2) ah?. O

Letwv be inV andz in ¢). Considering[(T]1)[(31) and Lemrfia]3.2,d&Y : V — ¢ be given by
GN)(k) = aAN (v(k = 1)) —aAN (v(k)),  k>1, (3.4)
and considering[(1.1)[ (2.3) and Lemfng 3.3/Bt V x ¢J — ¢] be given by
H(v,z)(k) = aB(v(k —1),z(k — 1)) — aB(v(k), z(k)), k>1, (3.5)
so that forv + z in V
FN=F4+GN, Fw+4z)-FW)=K@)z+Hw,z), (3.6)

and we derive the limit equatiof (2.5) arid [2.4) for the flations from [3]2) and (3.3).

Proof of Theorem [2.4 (existence and uniqueness for the OU press)
Considering[(2]3)y < 1, convexity bounds, and (2.1), we have

1K)l ) < 2(aL +8) S (aLa(k — 12dw(k — 1) + (aL + Ba(k)w(k) "
k>1

+ Br(k + 1)%c tw(k +1)71)
< 2(aL + B)(aL(d +1) + B(c™ +1))|z]2, )

and (a) and (b) follow. For, in V N ¢;(w) the martingaleM is square-integrable ify(w). If
E<||Zo\|%2(w)) < oo then the formula forZ is well-defined, solves the SDE, and the Gronwall

Lemma yieIdsE<supt§T\|Zt||%2(w)> < oo. Else for anye > 0 there isr. < oo such that

P(HZOHLQ(H,) > 7“5) < ¢ and a localization procedure using pathwise uniquenegdsyéxistence.

3.2 The proof of the CLT
Proof for Lemma R.3 (finite-horizon bounds)
Using (3.2) and[(3]6)
zN =78 + MY + \/N/Ot GN(RYN)ds + /Ot\/N(F(Ri,V) — F(uy)) ds (3.7)
where Lemm4 3|2 yield6&™¥ (RY) (k) = N"'O(RY (k — 1) + RY (k)) and considering[(3.1)
I~ (R

)HLg(w) = N_lo(HRéVHLQ(w)) : (3.8)

We have
HRéVHLz(w) < sl gy + N7 HZéVHLg(u» (3.9)
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and sinceF,, F_ and F are Lipschitz (Theorerh 4.2) the Gronwall Lemma yields tlatdome
Kr < oo we havel|us|| () < Kr [[uo]| 1, and
. N N ~1/2 . N
R L P o (R P L

We conclude using the Doob inequality, {3.3),]3.6).](3B)), and

| P (RY) + F_(RY < KHRéVHLQ(w). (3.10)

) HLg(w)
Tightness for the process

Lemma 3.4 Letw satisfy [2.]), and considdi,(w) with its weak topology anB (R, Lo (w)) with
the corresponding Skorokhod topology. ketbe inV N ¢1(w) and RYY in V¥, and ZV be given by

). 1f(ZY)n>1 is tight then(ZN) >, is tight and its limit points are continuous.

Proof. Fore > 0 letr. < oo be such thaP(Z}¥ € B(r.)) > 1 — e for N > 1 (see the discussion
prior to Theoren] 2]6). LeR. be equal tak) on {Z)Y € B(r.)} and such thaz_ < is uniformly
bounded inLy(w) on {ZY ¢ B(r.)}. Then Zé\/’€ is uniformly bounded inLy(w) and we may
use a coupling argument to constrtl - and Z" coinciding on{Z}¥ € B(r.)}. Hence to prove
tightness of Z%) x>, we may restrict our attention {@&}") v, uniformly bounded inLy(w), for

which we may use Lemn{a 2.5.

The compact subsets @f,;(w) are Polish, a fact yielding tightness criteria. We deducenfr
Theorems 4.6 and 3.1 in JakubowdRi [8], which considers ¢eimly regular Hausdorff spaces (Ty-

chonoff spaces) of which. (w) with its weak topology is an example, thg ™) x>, is tight if

1. For eacHl’ > 0 ande > 0 there is a bounded subskty . of Ly (w) such that forV > L we
haveP (Z" € D([0,T], K7,.)) > 1 —e.

2. For eachl > 1, thed-dimensional processé&™ (1), ..., 2V (d)) N>, are tight.

Lemma[2 and the Markov inequality yield condition 1. We 34) (see [(3]2) and (3.6)),

and (3.B) and[(3]6), and the boundls](3.8).] (3.9) &nd](3.16% bbunds in Lemmp 2.5 and the fact
that ZV (k) has jumps of sizé /v/N = o(N) classically imply that the above finite-dimensional
processes are tight and have continuous limit points, seiedtance Ethier-Kurt]4] Theorem 4.1
p. 354 or Joffe-Métivier[]9] Proposition 3.2.3 and theiogfs. d

Proof of Theorem 2.6 (the functional CLT)

Lemma[3}4 implies that from any subsequenceZdf we may extract a further subsequence which

converges to somg> with continuous sample paths. Necessaffy has same law ag). In (B.7)
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we have considerind (3.6) that
VN (F(RY) (k) = F(ug) (k) = K(us) ZY +VNH (us, N2 ZN) . (3.11)
We use the bound$ (3.8], (3.9) afd (8.10), the uniform boimtdlemma[2.p, and additionally (3.5)

and Lemmd 3]3. We deduce by a martingale characterizatairth has the law of the OU process
unique solution for[(2]5) irl.(w) starting atZ5°, see Theorerh 3.4; the drift vector is given by the
limit for (8.3) and [3.)) considerind (3]11), and the magtite bracket by the limit fo (3.3). See for
instance Ethier-Kurtz[J4] Theorem 4.1 p. 354 or Joffe-Mieti [J] Theorem 3.3.1 and their proofs
for details. Thus, this law is the unique accumulation p&ntthe relatively compact sequence of

laws of (ZV) y>1, which must then converge to it, proving Theoren] 2.6.

4 The properties of = K(u)
4.1 Proof of Theorem[2.B (existence and uniqueness results)

Considering[(2]6) and convexity bounds we have

1212 = 23 (02 2k = 1) = (Lo™ 4 1)2(k) 4+ 2(k + 1)) ()

k>1

<ﬁ22L+2< STk - 1)2wk) T LY P

k>1 k>1

+ Z 2(k)2w(k)™! + Z 2(k + 1)2w(k)1>

k>1 E>1

< B%(2L +2) (Ldz 2k = 1D?w(k — 1)~ + (Lp*" + 1)) 2(k)w(k) ™

k>2 k>1

+e ' ak+ 1) wlk+1)" )

k>1

< BP2L+2) (Lp*" + Ld + ¢ +1) 1217, ()
The Gronwall Lemma yields uniqueness. kor 1 we have
(LpL)_1 mk+1) <wk) = (Lka)_1 m(k+1) < (LilpL,oJLk) m(k+1),
9~ Lpk+1 < gk < (9 1 L —2Lk)9k+1.

When B is an Hilbertian Brownian motion, the formula faryields a well-defined solution.

4.2 Arelated birth and death process, and the spectral decoposition

Considering [(2]7),A = K* is the infinitesimal generator of the sub-Markovian birttd ateath
process on the irreducible clagk 2, . ..) with birth rates\, = ﬂLka and death rateg;, = 3 for

k > 1 (killed at ratei; = (3 at statel). The process is well-defined since the rates are bounded.
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Karlin and McGregor[[1d, 11] give a spectral decompositiansiuich processes, used by Callaert
and Keilson [IL[]2] and van Doorif][3] to study exponential €iigity properties. The state space in
these works ig0, 1,2, .. .), possibly extended by an absorbing barrier or graveyatd ata-1. We
consider(1, 2, ...) and adapt their notations to this simple shift.

The potential coefficients|[([10] eq. (2.2)] [3] eq. (2.10% given by

PYREE

W(k) — ﬂ — Lle e Lka71 — Lk_lp(Lk_L)/(L_1)7 k > 1
M2 i

and solve the detailed balance equatipps;7(k + 1) = A\pm(k) with 7(1) = 1, see [2.8).

The equationdQ(z) = —xQ(z) for an eigenvecto)(z) = (Qn(z))n>1 Of eigenvalue—z

yields A\ Q2 (z) = (A1 + 1 — 2)Q1(z) and A, Qi1 () = (An + i, — ) Qn () — pnQn—1(z) for
n > 2. With the natural conventio), = 0 and normalizing choic€); = 1, we obtain inductively

@, as the polynomial of degree— 1 satisfying the recurrence relation

—2Qn(z) = BQn-1(x) — (BLP"" + 8) Qn(x) + BLP"" Qui1(2) , n>1,
corresponding tq[10] eq. (2.1) ar{d [3] eq. (2.15). Such asecge of polynomials is orthogonal with
respect to a probability measugeon R, and, fori, j > 1 with i # j, [ Q;(x)? ¢(dx) = w(i)~*
and [;* Qi(2)Q;(x) 1 (dz) = 0 or in matrix notation[;* Q(z)Q(z)* ¢ (dx) = diag(w ).

Let P, = (p+(4,7))ij>1 denote the sub-stochastic transition matrix for The adjoint matrix
Py is the fundamental solution for the forward equatign= A*z; = Kz given in (2.9). The
representation formula of Karlin and McGregpr|[L0, 11], &e@) and (2.18) in[J3], yields

eKt = Pt* = (pr(i7j))i7j21 ) P:(Za]) = pt(j7 Z) = 7'('(2) /0 eixtQi(x)Qj(x) w(d.%') ) (41)
or in matrix notatiore* = diag(m) [;° e™*'Q(z)Q ()" ¢ (dz).
The probability measure is called the spectral measure, its sup@oit called the spectrum,

and we sety = min S. The OU process in Theorejn P.8 (b) and its invariant law asmddtariance
matrix in Theorem$ 2.11 ajd 2]14 can be written

7 = ding(m) [ Qe (zo [ st> Q) (da), (4.2)
K = diag(m z)* Ooe_” T T
[ e am, = g >/S(Q<>/0 d&)Q(wcz), (4.3)
[ a1 i = ding(o) [ LETEDLY) ) ety dins ). 4.4

4.3 The spectral gap, exponential stability, and ergodicyt

Proof of Theorem (spectral gap and exponential stabilitin the self-adjoint case)

The potential coefficientsr(k))x>1 solve the detailed balance equationsfoand henceC = A* is

self-adjoint inLy (7). For the spectral gap, we follow Van Doofl [3], Section 2.Be Brthogonality
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properties imply thaf),, hasn — 1 distinct zero$) < x,, 1 < ... < &y p—1 SUChthate, 1 ; < z,,; <
Tpt1,i1 forl < i < n—1. Hence; = limy, o0 y,; > 0 €Xists,§; < &1, ando = lim; o &
exists in[0, oo]. Theorem 5.1 in[[3] establishes that> 0 if and only if o > 0 and Theorem 5.3 (i)
in [B] thato = (\/limk Ae — /1imy, uk)z = 3> 0. (Theorem 3.3 in[[3] states that= &; < o, but

estimatingg; is impractical.)

For the exponential stability, we hayie:|7 () = (Xt 20, et ZO)LQ(W) and the fact thatt is

self-adjoint inLy(7) and the spectral representatipn4.1) yield

(eICtZO, eICtZO)LQ(ﬂ) = (ZOa QQICtZO)LQ(ﬂ) = /Se_thZSQ('I)Q('I)*ZO T/J(dx)

IN

2 [ Q@) vde) = ¢ Gor)

Proof of Theorem [2.I) (exponential stability, non self-adjint case)

It is similar to and simpler than the proof for Theor¢m P.12vitich Sectior{]5 is devoted, and we

postpone the proof until the end of that section.

Proof of Theorem (ergodicity for the OU process)

We use the uniqueness result and explicit formula in The@gnand Theorerh 2.9 ér 2]10.

5 Exponential stability for the nonlinear system
5.1 Some comparison results

Considering [(3]6) withC = K (@) and F(@) = 0, if u solves [LR) inV theny = u — @ solves the
recentered equation given by(k) = F(a + y) = Ky.(k) + H(a, y:)(k) or

in(k) = BLM y(k = 1) + aB(a(k — 1), y(k — 1))
- (ﬂLPkat(k) + aB(a(k), ye(k)) + ﬁyt(k)) +By(k+1), k>1. (5.1)
If ugisinV N ¢y thenuisiny N#; and hencey is in é? and fork > 1 we have
ge(k) + gk +1) +--- = ﬂLPLk_lyt(k‘ —1) +aB(u(k —1),y:(k — 1)) — Bye(k) . (5.2)

If y solves [5.]1) starting afy such thaty, + @ is in V, thenu = y + @ solves [1]2) inV starting at
up = yo + . Then—ua <y <1-aand—1 <y < 1. Foryy + @ in VN ¢; we havey in 4.

Lemma 5.1 Letu andv be two solutions fof{ (1} 2) i such thatuy < vg. Thenu; < v for t > 0.
Letyo + @ be inV andy solve [5.]1). Ifyy > 0 theny, > 0 and ifyy < 0 theny; < 0 for ¢ > 0.
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Proof. Lemma 6 in [1p] yields the result fof (1.2) (the proof writtéor L = 2 is valid for L > 1).
The result for [[5]1) follows by considering= y + @ andu which solve [1R). O

We compare solutions of the nonlinear equation| (5.1) anetdémn linear equations.

Lemma 5.2 Let A be the generator of the sub-Markovian birth and death preceih birth rate
A, > 0 and death rated at k > 1. Letsup,, A, < co. The linear operator: — A*z given by

A x(k) = Mrx(k — 1) — (M + B)(k) + Bk +1),  k>1,

is bounded in¢9. There exists a unique = (z)i>0 given byz, = e*"'z, solving the forward
Kolmogorov equatiort = A*zin 9. Itis such that ifzg > 0 thenz; > 0 and if zo < 0 thenz; <0,
andé’t(/{?) + Zt(/{? + 1) + - = 5\]6,12}(]{ — 1) — th(/{?) for k > 1.

Proof. The operator norm iff) of A* is bounded by (sup,, e + (), hence existence and uniqueness.
Uniqueness and linearity imply thatif = 0 thenz, = 0 and else ifzy > 0 thenz||zo||; " is the
instantaneous law of the process startingyéito||;* and hence; > 0. If 2y < 0 then—z solves the

eqguation starting at zo > 0 and hence-z; > 0. The last result is obtained by summation. O

Lemma 5.3 LetL > 2 andy = (y;):>0 solve [5.1) withy + @ in V N ¢;. Under the assumptions of
Lemmd5J2, let = (z)¢>0 Solvez = A*zin 2. Leth = (hy)s>o be given intd by

h(k) =z(k)+z(k+1)+-- —(yk)+ylk+1)+---), k>1.

(a) Let);, > BLp-" + a(l+ (28 = L —2)a(k)) fork > 1,y > 0, andhg > 0. Thenh; > 0 for
t>0.

(b) Let )\, > BLpL" for k > 1, yo < 0, andhgy < 0. Thenh, < 0 for ¢ > 0.

Proof. We prove (a). Foe > 0 let A* correspond to\; = \; + . The operator norm i
of A* — A* is bounded by2s, hencelim, etz = z in 2 and we may assume thaj, >
BLpL" + a(l+ (28 = L —2) a(k)) for k > 1. Sincez; = eA"t 2, depends continuously of in
/) we may assumég > 0. Let7 = inf{t > 0: {k > 1: hy(k) = 0} # 0} be the first time when
h(k) = 0 for somek > 1. We haver > 0.

The result (a) holds if = cc. If 7 # oo, Lemma[5.P and[(F.2) yield

he(k) = Apo1yr(k = 1) = BLE™ " yr(k = 1) — aB(a(k — 1), y-(k — 1))

At (r k= 1) = gk = 1)) = Bz (k) — g (R)).
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Lemma5.]L yields; > 0 and Lemmd 3]3 ang < 1 yield
B(u(k —1),y(k — 1)) < y(k — 1)¥ + (28 = L — 2) a(k — 1)y(k — 1)
<1+ -L-2)a(k-1)yk-1),

hencelv_1y(k — 1) — BLpY "y(k — 1) — aB(i(k — 1), y(k — 1)) > 0 with equality only when
y(k—1)=0.Forkin Z ={k >1: h, (k) =0} # () we have

(k=1 —yr(k=1) = he(k—=1) >0, 2 (k) —yr(k) = —h,(k+1) <0,

henceh. (k) > 0 with equality if only if k — 1isin Z U {0} andk + 1 is in Z. Moreoverh, (k) > 0

fort < 7 andh, (k) = 0imply i, (k) < 0. Henceh.(k) = 0, and the above signs and equality

cases yield that, (k — 1) = y.(k — 1) = 0andk — 1isin Z U {0} andk + 1 is in Z. By induction

2. (1) = y-(i) = 0 for ¢ > 1 which impliesz, = y; = 0 for ¢t > 7, and the proof of (a) is complete.
The proof for (b) is similar and involves obvious changesighsThe assumption;, > ﬁLka

suffices to conclude sincB(a(k — 1),y(k — 1)) > 0 (Lemma[3.B) and the non-linearity “pushes”

in the right direction. d

Lemma 5.4 For any0 < 6 < 1 there exists{y < oo such that forz in Ly(gg) C £9
@ (k) + 2k + 1) + - Dez1ll Ly gy < Kollll Latan) -
Proof. Using a classical convexity inequality

D (@lk) +a(k+1) - )20

k>1

IN

> on(ek) +ak+17 4ok +n—2°+ @k+n—1)+ax(k+n)+---)?) 6"
k>1

<nl40+-+0"2)> (k)0 +n0" > (a(k) +a(k+1)+--)%07"

k>1 k>1

and we take: large enough that¢" ! < 1andKj =n(1+60+---+6"2) (1 —no" 1)1, O

5.2 Proofs of the exponential stability results
Proof of Theorem[2.12 forL > 2
If ug isin VN La(ge), then so arey; = min{ug, @} andud = max{ug, @} and hence the corre-

sponding solutions~ andu™ for [L.2), see Theorefn 2.2. Lemmal5.1 yields that< u; < ;" and

u; <4 <w fort>0. Then



solve the recentered equatign {5.1), and termwise
lyol = max{yg, —yg }, |y <max{y, -y}, t>0. (5.3)
We consider the birth and death process with generatdefined in Lemm@ 5] 2 with
A= max {BLo" +a(l+ (28— L-2)a(k) B0}, k21,

which satisfies the assumptions of Lemmg 5.3 (a) and (b). Wedece the spectral study in Sec-
tion 4.2 and the proof of Theorem .9 in Sectjon 4.3fprcorresponding objects being denoted with
a hat. Forp < 6 < 1 we havea < 36 and hence\; is equivalent ta36 for largek, Theorems 5.1
and 5.3 (i) in [3] yield thad < 4 < 6 = (v/30 — vB)” = 5 (1 — vF)”, and if = solves: = A*z
then||z¢| 1, ) < e (|20l 1, #) for ¢ > 0. Moreover

k—1
OF 1 < 7(k) = k1 H max {HfleLk + Hflp(l + (2L —L— 2) &(k:)) ,1}
i=1

and the product converges, heridg) = O(6%) andd* = O(#(k)) and Lemm&2]1 yields that there
existsc > 0 andd > 0 such that:™ || - [| 1, ) <

I 1 a(g9) < @l - |1 1o(5)- Hence fort > 0
12| o (9) < dll2tl Loz < €M dl20l| Lo(a) < € edl|20] 1o (gy) -
Hence ifz* solvesz = A*z* starting atzj” =y > 0 then Lemma§ 5|3 (a) affd .4 yield
19 N 2a(g0) < N (B) + 4 (k4 1) + - ezl £y (g6)
< 1= (k) + 2 (k +1) + - i1l Lo )
< Kollz 1 (g0) < e_%CdKeHySFHLQ(ge)
and similarly if 2~ solvesz— = A*z~ starting atz, =y, < 0thenLemma$ 53 (b) arjd 5.4 yield
197 1112 (g9) < €V cdEKgllyg || 1y(5)- We Setyy = 4 andCy = cdKy. Considering [(5]3),
Hyt||%2(g@) < Hy;r||%2(g@) + Hyt_H%Q(gg) < e PWICF (IIyJIIi(ge) + Hyo_||%2(g@)>
and we complete the proof by remarking that fop> 1, eitheryg (k) = yo(k) andy, (k) = 0 or
Yo (k) = yo(k) andyg (k) = 0, and hencélyy |17, ;. + 190 17,40 = 190117, 4)-

Proof of Theorem[2.10 and of Theoren{ 2.32 foi. = 1

The linearization[(2]9) of Equatiof (1.2) is obtained bylaeng B and H in Equation [5.1) by
and coincides with Equation (b.1) fdr= 1. Likewise, the equation fof (2.9) corresponding|to](5.2)
is obtained by omitting the termsB(a(k — 1),y:(k — 1)). We obtain a result for Equatiof (.9)
corresponding to Lemmja .3 (a) and (b) under the sole as@mpt > ﬂL,oLk fork > 1. The
proof proceeds as for Theordm 2.12 for> 2 with the difference thak;, = max {ﬂL,oLk,ﬁe}. We
have),, equal to3d for largek for 0 < 6 < 1 whenL > 2 and forp <6 < 1whenL = 1.
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6 Tightness estimates and the functional CLT in equilibrium
6.1 Proof of Lemma[2.IB (infinite horizon and invariant law bainds)

Let Uy (v) be the solution of[(T]2) at timk > 0 with initial valuev in V. Forty > 0 let 2, =
VN (RN, — Un(RY)) . Thenz}N = ZN, + /N (Uy(Rf) — @) and Theorenh 2.12 yields

1285 1| aggp) < N Ze0ll g + 07" CollZi (6.1)

HL2(99)'

The conditional law of 2, )1>0 given R = r is the law of Z" started withR{’ = ug = r, in
particular withZ}¥ = Z ; = 0. We reason as if (3.7)=(3]10) except that the bolindl (3.9rbes

0,

HRig‘i‘SHLQ(g(.)) é HaHLQ(QG) + N_1/2 HZt](\)[‘f‘SHLQ(g(.))

and we use[(6]1) and obtain that for sofig < oo

O;IET \\Zg7h|]L2(99) < Kr <N1/2 @l gy +N " Co HZgXHLQ(ge)*'O;EET [ Mt]:HLQ(gQ)>

which combined with[(6]1) yields that for sonig- < co we have fol) < h < T
B (120, < Lr + 25N 4o PG (12N, ). 62)
We fix T' large enough foBe 27T C2 < ¢ < 1. Uniformly for N > Kpe¥?, form € N
E (|1 20mnrl7,) < L +<E (120701

and by induction

2 oL 2 L 2
E (\\ZﬁT\\LQ(g9)> <LpY el 4 emE (HZéV\\LQ(ge)) <3 _Te +E (HZ(J]VHLQ(QQ)) :
=1

and [6.p) also yields

) 2
O;EETE (HZﬁTJthLz(ge)) < Lt +8C5E <HZ7]XTHL2(99)) ’

hence the infinite horizon bound

B (12, < Lr+ 53 (

LT 2
t>0 1—¢ +E(HZ(J]VHL2(99))> .

Ergodicity and the Fatou Lemma yield that #8f distributed according to the invariant law

2 .. 2 2
E <HZ£HL2(QG)> < hr{lzlonfE (HZt]VHLQ(g@)> < iggE (HZt]VHLQ(gg))

and the invariant law bound follows if we show that we can ced®) in VV such that

. . N2
thVn:élopE (HZO HLg(g9)> < 0. (6.3)
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For this we considel. > 2, the casel. = 1 being similar, and?}’ given fork > 0 by RY (k) =
iN“twith1 <i< Nsuchthat-2"'!N-! < (k) —iN"! <27!N-L Forz>0and0 <y <1

y=p"" D o g —log (14 (L — 1) log y/log p) / log L

© 07" = (14 (L —1)logy/log p)~ /18

hence forz(N) = inf{k > 1: R{'(k) =0} we havez(N) = inf{k >1:a(k) <27'N'} =
inf{k € N: k >1log (14 (L —1)log (27'N~') /logp) /log L}. Then

z(N)—1
120 gy = N D0 (B — k) 0"+ N> (k)
k=1 k>2z(N)
with
z(N)—1 ) gfz(N) g
N Z (Rév(k) —a(k)) 0~k <27 N 11 ) (N_l(log N)_logg/logL)

k=1

and for large enoughV (and hence(NV))

N ST a2t = Na(z(v))? S pPE WD/ (N)
k>z(N) J=0

)

< 9-2N-1 ZpLZW)(LLn/(LA) _ O(Nfl)
Jj=>0

hence [[6]3) holds and the proof is complete.

6.2 The functional CLT: Proof of Theorem

Lemma[2.13 and the Markov inequality imply that in equilibri (ZY)n>1 is tight for the weak
topology ofL»(g,), for which all bounded sets are relatively compact. Considsubsequence. We
can extract a further subsequence along whi€fY) v~ 1, converges in law to some square-integrable
Z§° in La(g,), and Theorenp 2.6 yields that along the further subsequéfite v~ converges in
law to the OU proces& > unique solution for[(2.0) itLy(g,) starting atZs°.

The limit in law of a sequence of stationary processes isostaty (Ethier-Kurtz [[#] p. 131,
Lemma 7.7 and Theorem 7.8). Hence the law&f is determined as the unique law of the stationary
OU process given by (2.10), see Theorem]2.11. From evenegqubsce we can extract a further

subsequence converging in law46°, hencelimy_.o. Z~ = Z in law.
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