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Aging of dephasing by a classical intermittent noise

J. Schriefl,1, 2 M. Clusel,1 D. Carpentier,1 and P. Degiovanni1

1CNRS-Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, 69007 Lyon, France
2Institut für Theoretische Festkörperphysik Universität Karlsruhe,76128 Karlsruhe, Germany
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We propose a phenomenological model for intermittent classical 1/fµ noise and study the dephas-
ing of a two level system (e.g a qubit) in presence of this noise. Within this model, the evolution of
the relative phase of the two level system is described as a continuous time random walk (CTRW).
We find exact expressions for the dephasing factor in various regimes. The non-stationarity and
pronounced non-Gaussian features of this noise induce new anomalous dephasing scenarii. In par-
ticular, for strong coupling between the two level system and the noise, the dephasing time depends
explicitly on the age of the noise (aging).

PACS numbers: 03.65.Yz, 73.23.-b

The question of the phase coherence of quantum two
level systems (TLS) in a noisy environment has motivated
numerous recent works. It is of crucial interest in the con-
text of quantum computing[1], but might also be relevant
to other areas like the dielectric response of glasses at low
temperatures[2]. In the case of solid state quantum bits,
it is now believed that dephasing of the TLS by a low
frequency 1/f noise is a limiting mechanism which cer-
tainly deserves further studies. It is the purpose of this
letter to propose a model for intermittent classical 1/fµ

noise and study the corresponding dephasing scenarii of
the TLS. Usual models for a 1/f environment consist in
a set of harmonic oscillators (spin-Boson model)[3] or a
set of independent bistable fluctuators with judiciously
chosen parameters[4]. In the last case, these fluctuators
can be identified as localized defects interacting electro-
statically or elastically with the TLS[5, 6]. The noise is
then described by the sum of the contributions of these
independent fluctuators. In the limit of a classical lon-
gitudinal noise (see below), the phase difference between
the two states of the TLS diffuses.

In this letter, we describe the physics corresponding to
an anomalous diffusion of this relative phase. It can be
considered as an effective model for the situations where
the mutual interaction between the fluctuators (of same
nature as the one with the TLS) cannot be neglected, as
opposed to previous proposals. Indeed, in the analogous
physics of glasses at very low temperatures[6], interac-
tions between TLS were found recently to play a crucial
role in the dielectric response[7]. As in this last case, we
expect these interactions and the associated frustration
to bring very slow relaxational cooperative dynamics into
the problem. A common picture to describe the evolu-
tion of a glassy system is a random walk in phase space,
where time intervals τ(E) between subsequent rearrange-
ments are related to the energy barriers E to overcome :
τ(E) ≃ τ0e

E/kT where τ0 is a microscopic time. This very
non-linear relation implies that the distribution of the
trapping times P (τ) is generally broad, typically with al-
gebraic tail of the form P (τ) ≃ τ−1−µ. Here µ ∼ kT/E0
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FIG. 1: A configuration of the noise X(tp+τ ) in our model (as
a function of τ ) between tp = 105τ0 and tp +τ = 1.1 105τ0. In
this figure, the waiting times are distributed with an algebraic
distribution P (τi) ≃ τ−2.1

i . The bottom part of the figure
shows the corresponding continuous time random walk of the
accumulated phase of the TLS between tp and tp + τ .

where E0 is the typical height of the energy barriers.
In the following, we address the question of the TLS de-

phasing by such intermittent collective fluctuations of an
environment by considering a phenomenological model.
The conditions for such a noise to be the dominant source
of dephasing is of main importance but deserves a sepa-
rate study [9].

The Hamitonian of a dissipative quantum two-level
system can be written in the form:

H = ǫ σz + ∆ σx −
1

2
X σz + Henv(X) , (1)

where ǫ and ∆ are control parameters which we assume
to be time-independent, and X describes the fluctuat-
ing extra bias induced by the environment described by
Henv. For simplicity we will focus on the case of longitu-
dinal coupling ∆ = 0 and a classical noise X(t)[8]. We
model the intermittent noise as a succession of spikes of
weight vi (see Fig.1). Thus the statistics of the noise is
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characterized by the distributions of waiting times P (τi),
and of weights P(v) (related respectively to the energy
barrier, and both the energy difference between the suc-
cessive environment configurations and the coupling with
the TLS). The distribution P(v) is assumed to have zero
mean and a finite width g2 =

〈

v2
〉

: it will be taken
as gaussian without loss of generality (see [9] for other
cases). Following the above discussion, we consider an
algebraic distribution of waiting times characterized by
an exponent µ :

P (τ) =
µ

τ0

(

τ0

τ0 + τ

)1+µ

, (2)

where τ0 is a microscopic time. Note that the average
τ = τ0/(µ−1) of this distribution is finite only for µ > 1.
The two point noise correlation decays for 0 < µ < 1 as

X(t + t′)X(t) − X(t) X(t + t′) ≃ X(t)
2
(t/t′)

1−µ
, (3)

where the overline corresponds to an average over noise
realizations. Therefore its power spectrum exhibits a
1/fµ divergence at low frequencies. However let us stress
that this noise cannot be described solely by its power
spectrum. In particular for µ < 1, (3) implies a non
stationarity of this noise.

Let us now focus on the dephasing of the TLS by this
noise. The two TLS states |±〉 get between time t and
t + t′ a random relative phase :

Φ(t, t′) =

∫ t+t′

t

X(t′′) dt′′ . (4)

The corresponding dephasing factor is defined by the
average over many realizations of noise of D(t, t′) =
eiΦ(t,t′)[10], and the dephasing time τφ as the charac-

teristic time scale of the decay of D(t, t′). In the case of
gaussian phase fluctuations, this dephasing factor reads
D(t, t′) = exp(− 1

2Φ2(t, t′)). Hence in this case, τφ cor-
responds to the typical time over which the phase of the
TLS becomes statistically uncertain : Φ2(t, τφ) ∼ 1.

In previous studies [3, 5], stationarity of the noise
and consequently of the phase was assumed: D(t, t′) ≃
D(0, t′), and the noise was characterized by its power
spectrum. In the present case, the presence of broadly
distributed waiting times is expected to bring non sta-
tionarity into the physics. Note that in the context of
glassy systems (with quenched disorder as opposed to
the present case), the presence of such broad distribution
of relaxation times is intimately related to the notion of
weak-ergodicity breaking[11]. This formal analogy leads
us to pay attention to the aging of the dephasing factor
D(tp, t′), i.e its dependence on the preparation time tp of
the system.

We first consider the case of weak coupling (or weak
noise amplitude) g ≪ 1. Within the reasonable gaus-
sian approximation (i.e a usual random walk approxima-
tion of the CTRW) we focus on the phase fluctuations

Φ2(tp, t) to extract the dephasing behavior of the TLS.

This phase is expressed as Φ(tp, t) =
∑N(tp,t)

i=1 vi where
N(tp, t) corresponds to the number of spikes between tp
and tp + t. The dephasing time is simply defined by

Φ2(tp, τφ(g, tp)) = N(tp, τφ(g, tp)) g2 = 2 . (5)

Let us first consider the common situation where the
past history of the noise is neglected: tp = 0. As the τis
are independent from each other and distributed accord-
ing to the same distribution (2), the generalized central
limit theorem (GCLT) determines N(0, t) in the limit of
weak g (large N) (see e.g [12]). According to the GCLT,
three cases must be considered : (i) when τ and τ2 are fi-

nite (µ > 2), the limit distribution of
∑N

i=1 τi is gaussian

and N(0, t) ≃ t/τ , corresponding to

Φ2(0, t) = 2t/τ
(0)
φ ; τ

(0)
φ ≡ τφ(g, tp = 0) = 2τ/g2 .

(6a)
This case corresponds to the usual model of independent
fluctuators considered in [5]. The dephasing factor decays
exponentially over a well defined time scale τφ ∼ g−2. (ii)

when τ is finite but τ2 diverges (1 < µ < 2), the limit

distribution of
∑N

i=1 τi is a fully asymmetric Lévy distri-
bution Lµ,1 with algebraic tail ∼ τ−1−µ. In this case the
τis strongly fluctuate around their average, which pro-
vides the expression for N and consequently for

Φ2(0, t) =
2t

τ
(0)
φ

(

1 +
1

1 − µ

(

t

τ0

)1−µ
)

, (6b)

where τ
(0)
φ is defined in (6a). The difference with nor-

mal dephasing (6a) lies only in the subdominant correc-
tions. Finally in the case (iii) where none of τ , τ2 is finite
(0 < µ < 1), the limit distribution is also a Lévy distri-

bution L1,µ, but the sum
∑N

i=1 τi is now dominated by
its maximum, leading to:

1

2
Φ2(0, t) =

(

t

τ̃
(0)
φ

)µ

; τ̃
(0)
φ = τ0

(

2πµ

sin(πµ)

)1/µ

g−2/µ .

(6c)
In this case, we have both an anomalous decoherence
scenario and an anomalous dependence of τφ in g.

Let us now discuss the past history dependence of the
dephasing (tp 6= 0). For very broad distributions (e.g for

µ < 1), N(tp, t) is expected to decrease as tp increases
since larger and larger values of τi occur as the sampling
of P (τ) goes on. A priori, we can discuss this history de-
pendence of D(tp, t) within the above random walk pic-

ture. The average number of spikes N(tp, t) is expressed
in terms of the density distribution of spikes S(t) at time

t [12]: N(tp, t) =
∫ tp+t

tp

S(t′) dt′. The behavior of S(t)

follows from the simple integral relation

S(t) = P (t) +

∫ t

0

P (τ)S(t − τ)dτ . (7)
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This equation states that a spike occurring at time t is
either the first one, or that a previous spike occurred at
time t − τ , where τ is distributed according to (2). De-
noting by L[f ] the Laplace transform of the distribution
f , eq.(7) can be rewritten as L[S] = L[P ]/(1 − L[P ]).
This exact Laplace transform can be inverted to get the
behavior of the dephasing factor. For µ > 2, as expected
no tp dependence is found and we recover (6a). In the
case 1 < µ < 2, only the subdominant corrections to
Φ2(tp, t) depend on tp :

Φ2(tp, t) =
2t

τ
(0)
φ

+
2

2 − µ

τ0

τ
(0)
φ

[

(

tp + t

τ0

)2−µ

−

(

tp
τ0

)2−µ
]

.

In the limit of t ≫ tp, the memory of the noise history
is lost and we recover exactly (6b). The tp dependence
of the corrections matters only at short times and for
µ close to 1. This modifies significantly the dephasing
scenario only for strong coupling g ≃ 1 (see inset of Fig.
2). Finally, when 0 < µ < 1, (6c) is replaced by

1

2
Φ2(tp, t) =

(

tp + t

τ̃
(0)
φ

)µ

−

(

tp

τ̃
(0)
φ

)µ

. (8)

Similarly to 1 < µ < 2, on time intervals t ≪ tp, the
noise appears stationary. It is described by an effective
switching rate S(tp) and therefore N(tp, t) ≃ t S(tp). In
this transient aging regime, the dephasing factor is an
explicit algebraic function of tp. At longer times, where
dephasing of the TLS occurs, the tp independent behavior
(6c) is recovered. Hence in spite of the non stationarity of
the noise the dephasing of the TLS seems to always occur
outside of the aging regime of D(t, tp). However, the
previous analysis fails in two limits : for strong coupling
or on times longer than τφ. In these regimes, the large
fluctuations of N(tp, t) cannot be neglected.

Going beyond the above random walk approximation
can be achieved by using CTRW techniques (see [13]) and
taking special care of initial conditions at tp. First, we
need to understand the origin of aging in the present case
: the τi being independent from each other (and thus of
the past history), the tp dependence of e.g D(tp, t) comes
only from the first τ1 between tp and the first subsequent
spike. Indeed the previous spike didn’t occur at tp but
at some previous time tp − τ̃1. Hence τ1 is distributed
according to a new distribution Htp

(τ1) which replaces
(2) and depends explicitly on tp. As we show, all the

aging properties of D(tp, t) can be derived from those of
Htp

(τ1). Now, all we need is an expression for Htp
(τ1).

Separating noise histories that have their first spike at
tp + τ1 from the others straightforwardly leads to :

Htp
(τ1) = P (tp +τ1)+

∫ tp

0

dτ̃1 P (τ1 + τ̃1)S(tp− τ̃1), (9)

where S(t) was defined in (7). Note that for tp large
compared to τ0, the first term can be neglected. For
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FIG. 2: Dephasing factor D(tp = 106, t) obtained by numeri-
cal inversion of (11). For µ = 0.8, g = 10−4, the dephasing fac-
tor behaves as exp(−(t/τφ)µ) up to τφ (and apart from a small
time aging regime). Beyond τφ, it decays algebraically. For
strong coupling, it behaves as Π0(tp, t) beyond τφ (g = 10−1)
or for any time (g = 1). Inset shows the dephasing time τφ(g)
for µ = 0.8, 1.2. Note that for µ = 0.8, g = 10−4, τφ scales as

g−2/µ for weak couplings g < gc(µ, tp), and is proportional to
the age of the system for g > gc(tp) : τφ ≃ c(µ)tp.

µ > 2, S is constant and Htp
(τ1) coincides with P (τ1).

This expresses the memoryless property of the noise. For
µ < 2, the time dependence of S(t) implies an explicit
history dependence of Htp

(τ1). For instance, for 1 < µ <
2, S(t) ≃ τ−1(1 +

(

τ0/t)µ−1
)

, and the average value of
〈τ1〉 increases as t2−µ

p . In the following, we will need an
expression of the Laplace transform as a function of τ1 of
Htp

(τ1) which can be derived from (9). For 0 < µ < 1, it
reads L[Htp

](s) = estpΓ(µ, stp)/Γ(µ) (see [9]).
Now understanding the origin of aging, we decompose

noise configurations into those without any event be-
tween tp and tp + t, and those with at least one event
in the same interval, the first of which occurring at time
tp + τ . In the second case, at tp + τ the noise starts anew
:

D(tp, t) = Π0(tp, t)+f(g)

∫ t

0

Htp
(τ)D(0, t − τ) dτ. (10)

In this equation, f(g) =
〈

eiv
〉

= exp(−g2/2) is the char-

acteristic function of P(v) and Π0(tp, t) =
∫ +∞

t Htp
(τ) dτ

denotes the probability that no spike occurs between tp
and tp + t. More conveniently, using the Laplace trans-

form as a function of t : L[Dtp
](s) ≡ L[D(tp, .)](s)

and specializing (10) to tp = 0, we find L[D0](s) =
s−1(1 − L[P ](s))/(1 − f(g)L[P ](s)). Plugging it back
into the Laplace transform of (10) we obtain

L[Dtp
](s) =

1

s

(

1 −
(1 − f(g))L[Htp

]

1 − f(g)L[P ]

)

. (11)
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This expression is one of the central result of this ap-
proach. Indeed, we can apply a numerical Laplace Trans-
form inversion to obtain the complete behavior of the de-
phasing factor D(tp, t). Some of these results are shown

in Figure 2. The behavior of D(tp, t) is shown for both
weak (g = 10−4) and strong coupling (g = 10−1, 1). We
now turn to a discussion of the results we can derive from
eq. (11). The derivations being technically involved, we
refer the reader to [9] for further details.

For µ > 2, Htp
(τ) = P (τ) and from (11) Dtp

= D0. As
expected , there is no aging in this case. In the extreme
case of 0 < µ < 1, two regimes appear as a function of the

coupling constant g, separated by gc(µ, tp) ≃ λ(µ) t
−µ/2
p

(see Fig.2). For weak coupling g < gc(tp), the behav-
ior of τφ is given by eq. (6c) : it is insensitive to

tp. On the other hand, D(tp, t) is not fully described
by the previous random walk approximation which ap-
plies only for t < τφ : from (8), away from the initial

aging regime, D(tp, t) decreases as exp(−(t/τφ)µ). For
t > τφ this exponential decay is replaced by a much
slower algebraic one. Indeed, this new behavior can be
understood by noting that in this case and for t > τφ

D(tp, t) ≃ D(tp, τφ) Π0(τφ, t − τφ) ≃ (t/τφ − 1)−µ [9].
The second term of (10) corresponds to the anomalous
random walk spreading of the phase Φ : it leads to the ex-
ponential decay (8) which is subleading beyond τφ. Hence
the leading term corresponds to the remaining trace at t
of the phase configuration at τφ : it is the contribution
of the noise configurations that didn’t change between τφ

and t. This situation of a main contribution induced by
rare configurations is somehow similar to the physics of
Griffiths singularities in disordered systems.

In the strong coupling regime g > gc(µ), D(tp, t) is
dominated by the first term of eq. (10). In this limit,
the distribution of the phase of the TLS starts spread-
ing over [0, 2π]. Hence most noise configurations produce
a vanishing contribution to D(tp, t) and the whole aver-
age is dominated by those noise configurations that don’t
evolve during the experiment. Consequently, the dephas-
ing time becomes proportional to tp as seen in Fig.2. This
aging physics is indeed related to the physics of mean-
field trap models of glassy materials[11] : whereas we
are considering an annealed disorder in the present case,
this difference with the quenched disorder of [11] is irrel-
evant as for the physics at strong coupling. Indeed the
probability Π0(tp, t) is exactly the same in both situa-
tions. Hence the present aging properties of the dephas-
ing in the strong coupling regime are reminiscent of those
of the weak ergodicity breaking scenario in glasses[11].
This strong coupling regime has the very peculiar fea-
tures that its range increases with the age tp of the sys-

tem : gc ∼ t
−2/µ
p . In other words, any TLS surrounded

by a noise with 0 < µ < 1 will eventually end up in this
aging regime. Further consequences of this characteristic

property of this non-stationary noise will be explored in
[9]. Finally, let us mention that for 1 < µ < 2, this strong
coupling regime is considerably reduced.

In summary, we have studied decoherence of a TLS
due to an intermittent low frequency noise, describing
phenomenologically a slow collective environment. We
have derived exact expressions for the dephasing factor
in various regimes, and discussed the corresponding sig-
natures of such a noise as a function of the coupling with
the TLS. The most striking prediction are an anomalous
dephasing scenario in the weak coupling regime, an ag-
ing dephasing for strong coupling, and an aging critical
coupling between these two regimes. More precise con-
sequences for experimental situations, like echo[14] and
one shot measurement experiments[15], will be presented
in a forthcoming publication. Also of particular interest
would be a quantum version of the present intermittent
noise, but this certainly goes beyond the scope of the
present paper. We hope that such studies will shed some
more light on the nature of 1/f noise in solid state qubits
and the associated dephasing mechanism and raise new
questions about the experimental pertinence of non sta-
tionarity in TLS dephasing.

P. Degiovanni thanks the Institute for Quantum Com-
puting (Waterloo) and Boston University for support and
hospitality during completion of this work.
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[12] Lévy Statistics and Laser Cooling, F. Bardou et al., Cam-

bridge University Press (2002).
[13] J.W. Haus and K.W. Kehr, Phys. Rep. 150, 263 (1987).
[14] Y. Nakamura, Yu.A. Pashkin, T. Yamamoto, J.S. Tsai,

Phys. Rev. Lett. 88, 047901 (2002).
[15] O. Buisson, F. Balestro, J.P. Pekola, F.W.J Hekking,

Phys. Rev. Lett. 90, 238304 (2003).


