Cycles algébriques sur les surfaces K3 réelles - Archive ouverte HAL Access content directly
Journal Articles Mathematische Zeitschrift Year : 1997

Cycles algébriques sur les surfaces K3 réelles

Frédéric Mangolte


For a real algebraic K3 surface X, we give all possible values of the dimension of the group of algebraic cycles of X(R). In particular, we prove that if X is not an M-surface, X can always be deformed over R to some X' with totally algebraic homology. Furthermore, we obtain that in certain moduli space of real algebraic K3 surfaces, the collection of real isomorphism classes of K3 surfaces X such that h^1_{alg}(X(R)) is greater or equal than k is a countable union of subspaces of dimension 20-k.

Dates and versions

hal-00001386 , version 1 (30-03-2004)



Frédéric Mangolte. Cycles algébriques sur les surfaces K3 réelles. Mathematische Zeitschrift, 1997, 225, pp.559-576. ⟨hal-00001386⟩
67 View
0 Download



Gmail Facebook Twitter LinkedIn More