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An Approximate Model for the Adhesive Contact

of Viscoelastic Spheres
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September 20, 2002

Abstract

We present a simple model for the adhesive contact of viscoelastic
bodies relevant for soft solids. This approach couples the interaction zone
creep and the contact zone stress relaxation through a transform of the
interaction stresses g(a). We show that g(a), which is proportional to the
interaction stress intensity factor, can be extracted from experimentally
determined contact variables and at the same time expressed as a function
of the interfacial adhesive process. Therefore, the characteristic parame-
ters for adhesion, such as adhesion energy and characteristic tensile stress,
for example, can be derived from contact data of viscoelastic bodies. The
model also emphasizes the role of stress relaxation within the contact zone
in the viscoelastic adhesive contact.
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1 Introduction

1.1 Adhesive Contact

The archetypal adhesive contact experiment is the so called JKR test 1, where a
sphere is pressed against a flat plane and force is measured as a function of con-
tact radius for both inward (increasing contact radius) and outward (decreasing
contact radius) directions 2,3. Nanoindentation 4, surface force microscopy 5,6

and similar rapidly developing nanoscale technologies are also relevant to the
same question. In these cases, however, the contact radius usually eludes detec-
tion, so that the contact variables measured are the force and the penetration.
To summarize, the quantities accessible experimentally are: 1) the force F ;
2) the penetration δ; 3) the contact radius a. We will subsequently call them
the macroscopic variables.

The aim of a contact theory is to obtain relations between these macroscopic
variables. Three groups of parameters play a role in these relations: 1) the
mechanical behaviour of the contacting bodies; 2) their shape; 3) the adhesive
process. With a contact theory, numerical values characteristic of the adhesive
process can be derived from experimental data, knowing mechanical response
and shape. Alternatively, one can predict the behavior of an adhesive contact
knowing all three sets of parameters.

1.2 Previous Viscoelastic Models

Several papers have recently dealt with theoretical aspects of the adhesive con-
tact between viscoelastic bodies 7–10. We now recall the main elements of these
models.

Contact qualifies the observation that bodies pressed together conform. This
happens inside a region called the contact zone (Fig. 1), where a distribution
of compressive stresses is generated. In addition, we understand by adhesive

processes the interfacial phenomena which generate tensile stresses between sur-
faces standing at close separation. These adhesive stresses are present not only
inside the contact zone, but also outside, whithin the so-called interaction zone,
where the surfaces interact but without contact.

The question, for an adhesive contact, is to consistently model conforma-
tion inside the contact zone (the inner problem) and adhesive stresses outside
(the outer problem). As a result, this problem is generally treated by linear
superposition of a modified adhesionless contact solution with a solution to a
ring-shaped crack problem 11–13. In the adhesive contact the adhesive process
mirrors the cohesive process in the fracture problem.

The difficulty in the contact problem for viscoelastic bodies is the moving
boundary conditions. In the absence of adhesion, the problem was first solved
for increasing contact radius only 14, but proved to be quite a challenge for
decreasing contact radius 15,16. The viscoelastic linear crack problem has been
solved by Schapery 17–20 for both opening and closing cracks. As to the full
viscoelastic adhesive contact, Schapery 20 and Hui et al. 21 coupled the closing
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viscoelastic crack problem to the viscoelastic contact problem for increasing

contact radius. More recently, Lin et al. 8 proposed a solution (subsequently
called LHB) to the inner problem for the receding contact radius case. They
came across two ”major difficulties” 9: 1) their theory cannot handle the tran-
sition between increasing and decreasing contact radius phases 2) they cannot
explicitly couple their adhesive contact solution to a crack problem (”the details
of the surface forces are not included”).

Fourier transform, Sneddon showed 22, is a powerful method to treat linear
elastic contact problems. We have recently applied it to adhesive contacts 13.
More recently still, we extended this method to derive an exact solution to
the linear viscoelastic adhesion problem 10. This model treats the inner and
outer problems on the same footing. In the present paper, we now consider the
soft solid limit of this model, in which the size of the interaction zone is small
compared to the contact zone. The resulting model neatly couples equations
typical for both Ting’s adhesionless contact 16 and Schapery’s viscoelastic crack
models 17–20.
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2 Model

2.1 Adhesive Elastic Contact

From earlier work 13, we introduce the auxiliary functions g(r), which is a suit-
able transform of the surface stress distribution σ(r) (Fig. 1). This transform is
defined by (35) in appendix A. Similarly, θ(r) is a transform, given by (36), of
the surface displacement distribution uz(r). These transforms have been chosen
so that, under the conditions of linear elastic behavior (Young’s modulus E,
Poisson ratio ν) and in the absence of shear stresses at the interface, mechanical
equilibrium leads to

g(s) = Kθ(s) for all s (1)

where

K =
E

2(1 − ν2)
· (2)

Now, the surface displacement is specified inside the contact zone because the
surfaces must conform (Fig. 1). Then, θ is determined inside the contact zone
by (36). Furthermore, the surface stress is specified outside the contact zone,
inside the interaction zone, by a self-consistent procedure which is discussed in
previous papers 13, and also sketched in appendix B. Then, g is determined
outside the contact zone by (35). Finally, under the additional assumption
that continuity of the stress distribution at the contact radius a holds, we have
continuity of the θ (and thus g) functions. For an elastic contact:

g(a) = Kθ(a) ≡ K(δ − δ0(a)) (3)

where δ is the penetration and δ0(r) is defined by (38) in appendix A. As
a result, relation (3) couples interaction stresses (outer problem) through g
and penetration (inner problem) through θ. This equation will subsequently be
called the coupling equation.

Suppress the adhesive interactions, take g = 0, and δ0(r) turns out to be
the Hertz (i.e. adhesionless) penetration for the prescribed indenter shape at
contact radius r. Thus, it readily appears that θ(a) is this additional flat-punch
displacement that, added to the Hertz solution, forms the modified adhesion-
less contact solution central to the JKR theory 1 and subsequent contact mod-
els 12,23. In a Maugis-Barquins approach 11, in terms of fracture mechanics, (3)
expresses the cancellation of the inner and outer stress intensity factors. Indeed,
g(a) is related in some sense to the stress intensity factor induced by the ad-
hesive stresses: if the interaction zone is small, from (35) one may express the
stress intensity factor as a function of g(a) by

Kσ =
−2g(a)√

πa
· (4)
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2.2 Viscoelastic Contact

For a linear viscoelastic material, the equilibrium equation (1) must incorporate
the time dependence of the mechanical response. From the usual time convo-
lution of the surface displacement with the stress relaxation function ψ(t), we
obtain:

g(t) =

∫ t

0

dτψ(t− τ)
d

dτ
θ(τ). (5)

Inversely, with the creep function φ(t)

θ(t) =

∫ t

0

dτφ(t− τ)
d

dτ
g(τ). (6)

The response functions ψ(t) and φ(t) are inverse for the time convolution oper-
ator.

Obviously, the response of the system will depend upon its history. It is now
necessary to plot the variables as a function of time: a typical contact radius a
as a function of time t curve, as considered in the present paper, is displayed on
Fig. 2. Note that θ(r, t) is known in the region below the contact radius curve
(r < a(t)) while g(r, t) is known – or at least can be determined self-consistently
– in the region above (a(t) < r).

We can now generalize the coupling equation (3). For increasing contact
radius, we write the continuity of the θ function at (a(t),t) with a combination
of (37) and (6):

δ(t) = δ0(a(t)) +

∫ t

0

dτφ(t− τ)
∂

∂τ
g(a(t), τ). (7)

The time convolution of the g function is depicted by the wavy line in Fig. 2.
Since g is negative, (7) expresses the reduction of the penetration necessary to
obtain a given contact radius due to the deformation and creep induced by the
attractive interactions. Eq. 7 generalizes (37a) in Ting 16 to the adhesive case.
It is identical to (33) in Hui et al. 21.

For decreasing contact radius, it is easier to write the continuity of the g
function. Thus, we have to determine g(r, t) inside the contact zone (r < a(t)).
Here, both (5) and (6) are needed to express g(r, t) as a function of the history
of g and θ in the domains where they are known. To wit:

g(r, t) =

∫ t

ta
−

(r)

dτψ(t− τ)
∂

∂τ
θ(r, τ)

+

∫ ta
−

(r)

0

dτψ(t− τ)
∂

∂τ

(
∫ τ

0

dτ ′φ(τ − τ ′)
∂

∂τ ′
g(r, τ ′)

)

. (8)

Denoting tmax the time at which the maximum contact radius amax is reached
(Fig. 3), ta

−

(r) is defined for r < amax as the inverse to a(t) for t < tmax: for a
given r, it is the time at which a(t) = r with t < tmax. Eq. 8 is valid for both
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increasing and decreasing contact radius. Then, continuity of the g function at
time t and radius a(t), for t > tmax, reads

g(a(t), t) =

∫ t

ta
−

(a(t))

dτψ(t− τ)
∂

∂τ
{δ(τ) − δ0(a(t))} + ḡ(a(t), t). (9)

Eq. 9 is the coupling equation for a decreasing contact radius. It generalizes
(40) in Ting 16 to the adhesive case. It will be compared to the LHB model in
the discussion below. The first term on the right-hand side is depicted by the
plain wavy line in Fig. 3. The corrective term ḡ, depicted by the dashed wavy
line, is

ḡ(a(t), t) =

∫ ta
−

(a(t))

0

dτψ(t− τ)
∂

∂τ

(
∫ τ

0

dτ ′φ(τ − τ ′)
∂

∂τ ′
g(a(t), τ ′)

)

.

It decreases as ψ(t − ta
−

(a(t))). If the stress relaxation is fast, this term will
be negligible throughout the outward run, except for the initial stage, just after
tmax. Then, indeed, g(amax, tmax) = ḡ(amax, tmax), which ensures continuity of
the penetration δ(t) at t = tmax.

The adhesive stresses will now be explicitly incorporated in the model. This
is actually done in two steps. We first choose a functional form for the spatial
distribution of adhesive stresses, which we will call a crack model. Then we
specify relations between the parameters which describe the stress distribution
so that it approximates a physical adhesive process.

2.3 Double Hertz Crack Model and Small Interaction Zone

This crack model is the so called ”double-Hertz” approach of Greenwood and
Johnson 24: for mathematical convenience, an ellipsoidal (Hertz-like) distribu-
tion of amplitude σ0 approximates the attractive stress distribution outside the

contact zone. The term ”double-Hertz” is somewhat of a misnomer here, since
we assume an arbitrary shape for the indentor, and are left with only one Hertz
distribution...Assuming the interaction zone extends from a to c, we calculate
from (35):

g(r) =

{

π
4σ0

r2−c2

√
c2−a2

if a ≤ r ≤ c,

0 if c < r .
(10)

Of course, here, a and c are time dependent. As a new assumption, which gives
rise to the present simplified version of the viscoelastic adhesive contact, we now
suppose that the interaction zone is small, as relevant to soft solids:

ε ≡ c− a� a. (11)

Then, to leading order in ε,

g(a) = −π
4
σ0

√
2aε. (12)
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In addition, the time integrals accounting for the adhesive interactions can be
treated on a local scale: the interaction radius c(t) is then expanded to first
order, and the derivative dc/dt assumed to equal the contact radius velocity
da/dt, as in previous works on cracks in viscoelastic media 17,18,21. We then
introduce a fracture dwell time tr defined by

da

dt
=

ε(t)

tr(t)
. (13)

From this small interaction zone assumption, a number of simplifications
result in the coupling equations (7) and (9). To leading order, the inward
penetration (7) is

δ(t) = δ0(a) −
π

4
σ0

√
2aεφ0(tr) (14)

where

φ0(tr) =
1

tr

∫ tr

0

dτφ(tr − τ) (15)

is a momentum of the function φ. Similarly, in (9), we have

ḡ(a(t), t) ' −π
4
σ0

√
2aε

1

tr

∫ ta
−

(a(t))

ti

dτψ(t− τ)
∂

∂τ

∫ τ

ti

dτ ′φ(τ − τ ′) (16)

with

tr = tr(ta
−

(a(t))), (17)

ti = ta
−

(a(t)) − tr. (18)

The total force is obtained from a spatial integration of the g function (cf
(39)). The contribution of the interaction zone to the total force is of higher
order in ε, so that the integration range can actually be restricted to the contact
zone. Then,

P = 4

∫ t

0

dτψ(t− τ)
d

dτ

∫ min
(

a(t),a(τ)
)

0

dr

(

δ(τ) − δ0(r)

)

. (19)

As with (8), this expression is valid for the inward and outward runs. In the
latter case, using (9), we have

P = 4

∫ ta
−

(a(t))

0

dτψ(t− τ)
d

dτ

∫ a(τ)

0

dr

(

δ(τ) − δ0(r)

)

+4a(t)
{

g(a(t), t) − ḡ(a(t), t)
}

. (20)

Once again, (20) generalizes (42c) in Ting 16 to the adhesive case.
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2.4 A Specific Example: Reversible Adhesion

Any adhesive process can be included in the present theory as long as a model
expressing the adhesive stresses as a function of the other variables exist. A
rate dependent adhesive process – induced by interdigitation at the interface,
for instance – would involve the time derivative of the contact radius da/dt. In
principle, the present adhesive contact theory is valid for such an adhesive pro-
cess, and will couple the dissipation induced by the linear viscoelastic response
of the bodies to the intrinsic interfacial dissipation; we can even anticipate that
the numerics in the solution would not be much more involved.

Here however, we will consider a simpler adhesive process: reversible adhe-
sion. We thus introduce an adhesion energy w. The second parameter which
characterizes this adhesive process is the stress amplitude σ0 introduced ear-
lier. The relevant self-consistency equation is developed in appendix B. For the
inward run,

w =
π

8
σ2

0εφ1,a(tr) (21)

where

φ1,a(tr) =
2

t2r

∫ tr

0

dτ(tr − τ)φ(tr − τ) (22)

is a momentum of the function φ. Similarly, for the outward run,

w =
π

8
σ2

0εφ1,r(tr) (23)

where

φ1,r(tr) =
2

t2r

∫ tr

0

dττφ(tr − τ) (24)

is a different momentum of the function φ. Thus, knowing the adhesion energy
w and the typical stress σ0, one can determine the interaction zone size ε, or
equivalently (cf (13)) the dwell time tr as a function of crack velocity da/dt.
The φ1 functions play the role of effective compliances at the crack tip. Once
the crack behavior is determined, it can be coupled to the macroscopic variables
through (14) for increasing contact radius, and through (9) along with (16) for
decreasing contact radius.

2.5 Resolution

2.5.1 Outline

We now sketch the resolution of the viscoelastic adhesive contact problem by the
present model. Let the penetration history, shape of indentor and viscoelastic
response be given. At each time step, we solve a set of two equations with two
variables: interaction zone extension ε and dwell time tr. The first equation is
the self-consistency equation ((21) or (23)), which treats the crack tip response,
and determines the adhesive stress distribution inside the interaction zone. The
second is the coupling equation((7) or (9)), which links these two local variables
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to the macroscopic variables through g(a(t), t). Then, ε and tr determine the
time derivative of the contact radius a through (13). Finally, the contact radius
is calculated by integration of this derivative, and the force computed.

If the force is given, the procedure is identical, except that the coupling
equation is (19) (or (20) for the outward run). Then the penetration is calculated
from (7) or (9). For that purpose, one could be tempted to derive from (9) an
explicit expression for δ(t), in the manner of Ting ((41b) in Ting 16). Note
however that numerically solving the integral equation (9) for δ(t) is simpler
than numerically calculating the explicit expression. The former involves one
time-integral 25, while the latter requires two nested integrals: the price to pay
for an explicit expression of δ. Let us also mention that for data treatment, one
may always assume that the penetration is the given quantity, even for fixed
load experiments: for the same penetration history, the force history will be
the same, whether the experiment was done at fixed load or fixed grip (in the
stability region). Note also that in practice, the first term in (20) may be derived
directly from the force history during the inward phase and the knowledge of
the relaxation function, as suggested by Lin et al. 8.

2.5.2 Numerical Details

We here assume that the indenter is a sphere, and that the adhesion model
described above (par. 2.4) applies. Then, the standard Maugis 12 normalization
can be used, as detailed in appendix C. The program implemented takes as
input an arbitrary pair of viscoelastic functions, provided they are inverse for
the convolution integrals (5) and (6). In the following, we assume a normalized
standard viscoelastic solid model with creep and relaxation functions given by

φ(t) = 1 +
k

1 − k
(1 − exp(−t)), (25)

ψ(t) = k + (1 − k) exp(−t/k), (26)

where k is the characteristic parameter of the normalized creep process. The
relaxation and creep functions for k = 0.09, as assumed below, are illustrated
in Fig. 4. Note that for this value of k, the relaxed modulus is about ten times
smaller than the instantaneous modulus. The adhesion parameter λ, which is
the normalized characteristic stress σ0, as defined by (49), is 4, except where
specifically mentioned. Due to the local approximation, a difficulty arises at the
maximum contact radius amax, where the velocity da/dt vanishes and the dwell
time diverges. This problem is crudely dealt with in the following manner: when
the dwell time tr(t) becomes larger than the real time t, the algorithm switches
to the backward leg (decreasing contact radius). As shown below, this condition
is adequate for the numerical parameters assumed for the present calculations.
In some cases, it would probably need to be refined by taking into account the
interaction zone size in the time cut-off. The differential of the contact radius
a was integrated by a Runge-Kutta algorithm 25, starting from an initial value
of 1.5.
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2.6 Results

An example is now given to compare our previous exact 10 and the present
approximate calculations. The penetration history, which is imposed, is given
in graph 5 (right-hand scale). The resulting contact radius history, calculated
with the full model and the present approximate scheme is shown on the same
graph (left-hand scale), and the resulting force, for both models on graph 6.
Satisfactory agreement is found between the two curves, while calculation time
dropped by two orders of magnitude. The difference in terms of adherence
force between exact and approximate models is less than 10%. The origin of
this small discrepancy is in the slightly different maximum contact radii, a
difference which may originate from the approximate matching of inward and
outward solution at amax in the simplified model. More generally, both curves
exhibit this constant contact radius region typical for the adhesive contact of
very viscoelastic systems, to which we refer as the ”stick” region 10. In terms
of adherence force, both models give a value around 15. It is noteworthy that
this value is in the ratio 1/k with the 1.5 expected in the purely elastic case for
such a large λ, i.e. ten times larger. The ”stick” effect and the adherence force
enhancement are the most prominent manifestations of contact zone viscoelastic
effects, and will be discussed in more details below.

Let us now examine the crack tip effects. The self-consistency relations (21)
for the inward run and (23) for the outward run actually provide a one-to-one
relation between dwell time (or interaction zone size) and crack velocity. This
relation is shown explicitly for the present test values in Fig. 7. We observe
that the interaction zone size increases with increasing velocity 20, due to the
larger effective material stiffness, and that the difference between in- and out-
ward cases are minute, as expected 7. This difference is due to the asymmetry
of the direction of motion relative to the crack tip, which is reflected in (21)
and (23). To provide further insight into the local variables and their coupling
with the macroscopic variables, let us assume an imposed penetration history
as given in Fig. 8 (right-hand scale). The calculated interaction zone size ε is
displayed on Fig. 8 for λ = 4. It decreases during the inward run, then increases,
in accordance with the general behavior of the interaction zone size with con-
tact velocity. A pronounced cusp at t = 2.6 is due to the approximate matching
condition between inward and outward equations at amax described above. We
also plotted g(a(t)) on the same graph. In this low penetration example, the
variation of the contact radius is weak and according to (12), g(a(t), t) is dom-
inated by the behavior of the interaction zone size, except close to the initial
and final stages, where the curvature of the contact radius is more pronounced.

Increasing λ from 4 to 8, the ”stick” phenomenon becomes more and more
pronounced (Fig. 9): after tmax, the contact zone radius flattens, owing to
decreasing crack tip velocity 20,8. The ”stick” time however, and the adherence
force, are little affected, because g(a), which determines both, depends only
weakly upon λ when the interaction zone size is small (cf (53) and (61) or (63)),
a result reminiscent of the JKR limit in the elastic adhesive contact.
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3 Discussion

3.1 Structure of the Solution

We have seen that the viscoelastic adhesive contact model separates into two
problems: 1) the viscoelastic crack, which couples the adhesive process with
the viscoelastic response; 3) the viscoelastic adhesive contact, which couples the
viscoelastic contact with the viscoelastic crack.

3.1.1 The Viscoelastic Crack

The surface stress generated by the adhesive process inside the interaction zone
induce mechanical deformations there. In the small interaction zone size limit,
this creep is a purely local process, in which no macroscopic variable is involved,
but three local (or ”crack”) variables: contact radius velocity (or ”crack tip” ve-
locity), interaction zone size and dwell time. There is a simple relation (Eq. 13)
between these variables. Once the adhesive process and the viscoelastic response
are specified, a self-consistent treatment of stress and deformation provides a
second relation between two of the local variables, reducing the number of free
variables to one, as illustrated in Fig. 7.

The crack tip equation proposed here as an example ((21) for the inward leg
and (23) for the outward leg) result from two assumptions: 1) a ’Double-Hertz’
crack model 2) a reversible adhesive process, characterized by an adhesion en-
ergy w and a stress amplitude σ0. These equations can be directly compared to
Schaperys 18,20: for a power law creep compliance, they result in identical ex-
pressions within numerical factors of the order unity; for an arbitrary viscoelastic
response, they give φ1(tr) as another explicit form for Schaperys approximate
effective compliance at the crack tip φ(tr/3).

As expected, an alternative local variable is the stress intensity factor Kσ.
Indeed, combining (4) and (12), it readily appears that

Kσ = −
√

π

2
σ0

√
ε. (27)

The stress intensity factor will thus follow the interaction zone size and decrease
with decreasing contact radius velocity. In addition, with (21) or (23), we obtain

w =
K2

σφ1(tr)

4
· (28)

Such an expression cast the self-consistency equations (21) and (23) into the
standard form of an energy release rate (note the factor 2 with similar ex-
pressions 7, due to different definitions of the elastic constant). As such, it
emphasizes the meaning of φ1(tr) as an effective (creep) compliance.

3.1.2 Stress Intensity Factor or Adhesion?

The question may arise as to which is the fundamental quantity that best char-
acterizes the adhesion: the adhesive process (w and σ0 in the present example)
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or the stress intensity factor Kσ? From the previous discussion, it appears that
the adhesive process is more fundamental than the stress intensity factor. The
contact radius velocity dependance of the latter (or of the interaction zone size
(cf. Fig. 7)) compounds in a single parameter what needs to be known from the
adhesive process and the viscoelastic response in order to calculate the impact
of the viscoelastic crack on the behavior of the adhesive contact – and only
that –. Thus, one can work out the behavior of a viscoelastic adhesive contact
with the knowledge of the viscoelastic response and the contact radius velocity
dependance of the stress intensity factor. This will require the adhesive contact
equations (7) or (9) only. However, if the adhesive process needs to be charac-
terized, then, one has to go through the viscoelastic crack problem and extract
the characteristic adhesive parameters from the measured stress intensity factor,
using independent knowledge of the viscoelastic functions and self-consistency
equations like (21) or (23).

3.1.3 Adhesive Viscoelastic Contact

Once the crack behavior is established, one can write down relations between the
macroscopic and local variables. In our method, the key element, for inclusion of
the crack response, is the value of the g function at (a(t), t). In this respect, it is
clear from (12) that g(a) combines both types of variables: local (the interaction
zone extension ε) and macroscopic (the contact radius a).

For the inward run, the coupling equation (7) actually deals with a ’strain
intensity factor’ θ(a(t), t), as expected 7. For the outward run, the coupling
equation (9) states – to put it in fracture mechanics terms – that the stress
intensity factor (or more precisely g(a(t), t)) due to the adhesive interaction
stresses equals the time convolution of the penetration with the relaxation func-
tion, which is therefore the stress intensity factor due to the contact stresses.
Alternatively, (9) states – and it is then the expression of the stress continuity
assumption – that the stress generated at (a(t), t) inside the contact zone, by
contact between surface and indenter is equal to the stress generated at (a(t), t)
outside the contact zone by the adhesive process. This is the reason why the
penetration does not depend upon the history of the system before ta

−

(t) since
the final stress state at r depends only upon the period of time when there was

contact at r. As a further result, the force is independent of the history of the
system after ta

−

(t), because this history (a flat punch displacement, as far as
the r < a(t) region is concerned) is summed up in g(a(t), t) − ḡ(a(t), t) by (9).

3.2 Stress Relaxation

Stress relaxation within the contact zone emerges as the prominent concept in
viscoelastic adhesion. It is the key to the apparent fracture energy explored
in previous reports 7,20. In particular, closer inspection shows that (13) and
(12) in Greenwood et al. 19 are limit cases for (19) and (20). Let us now dis-
cuss this stress relaxation in more details. It naturally induces global force
relaxation: this is evidenced in (20) by the decrease of the first – typically com-
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pressive – term. This term decays approximately as ψ(t). As a result, the force
drops sharply when the motion of the indenter is reversed and retraction be-
gins (Fig. 6). However, if the stresses inside the contact zone have relaxed, the
contact line cannot recede immediately after reversal of the direction of motion.
Indeed, backward motion of the contact line requires the build-up of sufficient
tensile stresses within the contact zone, ahead of the crack tip. In the case of
viscoelastic bodies, this is achieved only if the pull out motion is sufficiently fast
compared with the stress relaxation, as expressed by (9). The result is a time lag
between the backward motion of the indenter, as specified by the penetration,
and the backward motion of the contact line; a time lag between strain (which
controls the penetration) and stress (the crack tip interaction) characteristic of
viscoelastic behavior.

As a result, if the relaxation is fast, the compressive stresses relax in propor-
tion to ψ(∞) while close to rupture, the contact radius velocity is large, so that
the tensile stresses are characterized by an effective modulus ψ(tr)

−1 ' ψ(0)−1.
Then the effective adhesion energy is enhanced 7,10,19 by ψ(0)/ψ(∞) ' 1/k
which in our example amounts to the factor of ten mentioned above. Note
that for low penetration, the adherence force is weaker than expected from this
simple argument. This is because the maximum contact radius is smaller than
the equilibrium contact radius for the relaxed modulus, resulting in a reduced
adherence force.

3.3 Comparison with the LHB model

As previously mentionned, in contrast to the LHB 8 equations, the present model
is continuous at tmax. In addition, the interactions are explicitly included in
a form reminiscent of the Schapery crack models. Let us now compare our
expression for the stress intensity factor with LHB’s. Following these authors,
let us introduce

δ1(t) = δ(ta
−

(a(t))). (29)

They consider the quantity

δ(t) − δ1(t)

=

∫ t

0

dτφ(t− τ)
∂

∂τ

∫ τ

0

dτ ′ψ(τ − τ ′)
∂

∂τ ′
(δ(τ) − δ1(τ

′)) (30)

= −
∫ t

tmax

dτφ(t− τ)
∂

∂τ
[

g(a(τ), τ) − ḡ(a(τ), τ) +

∫ τ

ta
−

(a(τ))

dτ ′ψ(τ − τ ′)
∂

∂τ ′
δ1(τ

′)

]

(31)

where the last expression results from the fact that δ(t)− δ1(t) = 0 for t < tmax

and from (9). As a result, for the outward phase, from (34) and (35) in LHB,
introducing the so-called reference stress intensity factor, we identify

KI(t) − ψ(t− ta
−

(a(t)))φ(0)KI(ta
−

(a(t))) (32)
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with
(2)ψ(0)
√

πa(t)

∫ t

tmax

dτφ(t− τ)
∂

∂τ

(

g(a(τ), τ) − ḡ(a(τ), τ)
)

(33)

where the factor of 2 is from (34) in LHB, and does not appear in (35) in LHB.
This quantity KI is quite different from the stress intensity factor as derived
from the present theory by (4): typically, the second term in (32) and the ḡ
term in (33) will decay rapidly. Then,

KI(t) =
(2)ψ(0)
√

πa(t)

∫ t

tmax

dτφ(t− τ)
∂

∂τ
g(a(τ), τ). (34)

It appears that the LHB stress intensity factor is a sort of mean value of the
actual local stress intensity factorKσ. As such, this quantity is far from intrinsic:
in particular, for the same contact radius velocity, its actual value will depend
upon the history of the system, instead of being purely local, as it should.

The fundamental reason is that LHB relied on the adhesionless case, where
the penetration for the outward leg is expressed as a function of the penetration
for the inward leg, δ1(t). By induction, in the adhesive case, they also considered
the quantity δ(t)− δ1(t). With the present model, we have shown that the right
quantity is actually δ(t) − δ0(a(t)), which is much simpler. Of course, in the
adhesionless case, δ1(t) = δ0(a(t))!

14



4 Conclusion

The present approach for the viscoelastic adhesive contact treats interaction
and contact consistently. Creep in the interaction zone is characterized by an
effective compliance which depends upon contact radius velocity. The interac-
tion is then coupled to the penetration or the force through g(a), which depends
both upon local crack tip variables (the stress intensity factor Kσ) and macro-
scopic variables (the contact radius a). In this model, the full contact curve is
described continuously, even at the inward to outward transition. The model
can be applied to various adhesive processes as long as a constitutive relation
between adhesive stresses and other variables in the model is provided. It allows
either experimental data analysis or adhesive contact predictions. The results
emphasize the role of stress relaxation within the contact zone. In particular,
stress relaxation gives rise to: 1) a time lag between retraction of the indenter
and contraction of the contact zone (”stick” effect); 2) an enhancement of the
adherence force.
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A Surface Distributions

Under the assumption of axial symmetry, we resort to two auxiliary functions
g and θ, which are the following transforms of respectively the surface stress σ
and surface displacement uz distributions:

g(s) = −
∫ +∞

s

rσ(r)√
r2 − s2

dr, (35)

θ(s) ≡ d

ds

∫ s

0

ruz(r)√
s2 − r2

dr. (36)

In particular, inside the contact zone (r < a), the surface displacement is
known through the contact condition

uz(r) = δ − f(r)

where δ is the penetration and f the shape of the indentor.
Then, inside the contact zone

θ(s) = δ − δ0(s) (37)

where

δ0(r) =
d

dr

∫ r

0

ds
sf(s)√
r2 − s2

· (38)

is the Hertz penetration for a contact radius s. Note that this function δ0 is
determined by the shape of the indenter only. It is equal to r2/R for a sphere
of radius R and to π

2 r/ tanβ for a cone of apical angle β. Finally, the force is

F = 4

∫ +∞

0

drg(r). (39)

B Self-consistency

It is required that the surface stress spatial distribution σ be a reasonably faith-
ful representation of the real attractive stress distribution. This is achieved by
the so called self-consistency equation. For simplicity, let us here assume that
the interaction derives from a potential V . Then the adhesion energy

w ≡ V (0) = −
∫ c

a

σ(r)
d

dr
h(r) (40)

where a is the contact radius, c the interaction zone radius and the gap h(r) is
defined by

h(r) = uz(r) − δ + f(r). (41)

In addition, let us assume that inside the interaction zone, the Hertz-like elastic
deformation is negligible compared to the deformation induced by the interac-
tions themselves. Then, the gap between the surfaces outside the contact zone
is

h(r) =
2

π

∫ r

a

θ(s) − θ(a)√
s2 − a2

ds (42)
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and thus an estimate of the thermodynamic adhesion energy can be calculated
through (40). Let us here make use of the so-called double Hertz crack model,
where the normalized stress distribution outside the contact zone is assumed to
be ellipsoidal 24:

σ(r) = −σ0

√

c2 − r2

c2 − a2
. (43)

Then, one can express the thermodynamic adhesion energy as:

w =
σ0√
c2 − a2

∫ c

a

dsθ′(s)(c− s). (44)

This equation ensures that our interaction stress distribution, though not exact,
suitably embodies the physics of the adhesive process. In previous works, we
have shown that the adhesive contact is relatively insensitive to the functional
form of the adhesive stress distribution 23: it is only the decay length of the
interaction which primarily matters.

It must also be emphasized that self-consistency equations for more complex
adhesive phenomena, including velocity dependent phenomena, should be rela-
tively easy to obtain. The simplest one would result from the assumptions that
σ0 is constant, but the effective adhesion energy w depends upon contact radius
velocity. The resulting self-consistency equation could be used in the present
theory at no extra calculation cost. While a contact radius velocity dependance
for w is quite usual, in adhesive models, a constant σ0 may seem more ques-
tionable. However, as shown in the example (par. 2.6), in the large σ0 limit,
the results are weakly dependent upon σ0. Therefore, the resulting model will
probably turn out to be useful.

C The Sphere - Normalization

We specialize our model to the case of the sphere. Thus, following Maugis 12,
we define

K =
8K
3

(45)

where K is defined in (2). In the viscoelastic case, the normalizing elastic con-
stant is the instantaneous modulus and K = 4ψ(0)/3. We introduce the nor-
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malized quantities

P =
F

πwR
, (46)

A =
a

(

πwR2

K

)1/3
, (47)

∆ =
δ

(

π2w2R
K2

)1/3
, (48)

λ =
2σ0

(

πwK2

R

)1/3
, (49)

G(S) =
π

3
λ
S2 − C2

√
C2 −A2

, (50)

ψ̃(t) = ψ(t)/ψ(0), (51)

φ̃(t) = φ(t)/φ(0). (52)

Then,

G(A) ' −π
3
λ
√

2Aε (53)

were ε = C − A. The time variables and functions are as defined in section 2.
The inward penetration is

∆ = ∆0 −
π

3
λ
√

2Aε
1

tr

∫ tr

0

dτφ̃(tr − τ) (54)

and the outward penetration is determined by

G(A(t), t) =

∫ t

ta
−

(A(t))

dτψ̃(t− τ)
∂

∂τ

(

∆(τ) − ∆0(A(t)
)

+ Ḡ(A(t), t) (55)

where

Ḡ(A(t), t) ' −π
3
λ
√

2Aε
1

tr

∫ ta
−

(A(t))

ti

dτψ̃(t− τ)
∂

∂τ

∫ τ

ti

dτ ′φ̃(τ − τ ′) (56)

with

tr = tr(ta
−

(A(t))), (57)

ti = ta
−

(A(t)) − tr. (58)

In normalized form, and keeping the major terms, the force is

P =
3

2

{

∫ t

0

dτψ̃(t− τ)
d

dτ

(

Ma∆(τ) − Ma
3

3

)

− π

3
λ

√

ε

2

A3/2

3

}

(59)
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where Ma stands for min
(

A(t), A(τ)
)

. In normalized form, the self-consistency
equations are

1 =
π

3
λ2

(

dA

dt

)

1

tr

∫ tr

0

dτ(tr − τ)φ̃(tr − τ) (60)

=
π

6
λ2εφ̃1,a(tr) (61)

for positive dA/dt (inward leg) and

1 =
π

3
λ2

∣

∣

∣

∣

dA

dt

∣

∣

∣

∣

1

tr

∫ tr

0

dττ φ̃(tr − τ) (62)

=
π

6
λ2εφ̃1,r(tr) (63)

for negative dA/dt (outward leg), where the φ̃1 are defined as in section 2.4. For
small [resp. large] dwell time, the momenta both equal φ̃(0) [resp. φ̃(+∞)], from
which the elastic self-consistency equation (with the present normalization) is
recovered:

1 =
π

6
λ2εφ̃(l) (64)

where l = 0 or l = +∞.
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Captions

Fig. 1: schematics of the conceptual division of the adhesive contact into two
zones, showing the normal surface stress distribution σ(r) (dashed) and the gap
between surfaces h(r) (solid line): in the contact zone (r < a), compressive
and tensile stresses are found and the gap vanishes; in the interaction zone
(a < r < c), the stresses are tensile and the gap opens up. The Double-Hertz
model 24 assumes an ellipsoidal stress distribution in the interaction zone, as
shown here.

Fig. 2: schematics for the coupling equation (7) (increasing contact radius),
displaying the contact radius a as a function of time on an (r, t) plane. The
plane is split into two regions: for a(t) < r the surface stress transform g(r, t)
is known, for r < a(t) the surface displacement transform θ(r, t) is known. The
time convolution integral in (7) is depicted here by the wavy line.

Fig. 3: schematics for the coupling equation (9) (decreasing contact radius).
The main time integral in (9) is depicted here by the plain wavy line. The
dashed line is for the corrective term ḡ.

Fig. 4: exponential creep (25) and relaxation (26) functions used for all the
numerical calculations presented in this paper. The characteristic creep time is
the time unit, and the characteristic creep parameter is k = 0.09.

Fig. 5: imposed penetration (right-hand scale) and resulting contact radius,
with λ = 4, for full model 10 and present approximation. A region where the
contact radius is about constant is identified: this ”stick” effect is due to the
fast relaxation of the stresses inside the contact zone.

Fig. 6: force as function of penetration (same conditions as Fig. 5). Most
noteworthy is the ten-fold enhancement of the adherence force over the bare 1.5
expected for a purely elastic system: another effect of stress relaxation.

Fig. 7: dwell time (left-hand, log scale) and interaction zone size (right-
hand, linear) as a function of log of contact radius (or ”crack tip”) velocity,
for increasing (inward) and decreasing (outward) contact radius, as calculated
from the self-consistency equations (21) and (23), which describe the viscoelastic
crack tip effect (λ = 4).

Fig. 8: a lower penetration example: penetration history (top, right-hand
scale) and resulting contact radius a (top, left-hand), interaction zone size ε
(bottom, left-hand) and g(a(t), t) (bottom, right-hand) for λ = 4, as a function
of time. The cusp in the interaction zone size at t = 2.6 is due to imperfect
matching of the in- and outward solutions (cf. section 2.5.2). The stress intensity
factor Kσ is proportional to

√
ε, and has not been plotted here. However,

g(a(t), t), which is the link between local (”crack”) variables and macroscopic
(”contact”) variables, and is proportional to

√
aε, exhibits features from both a

and ε.
Fig. 9: force (left-hand scale) and contact radius (right-hand) as a function

of penetration (same as Fig. 8) and different values of λ. The ”stick” effect
(section 2.6) is enhanced for increasing λ, because the crack tip velocity then
decreases.
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