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Abstract

We present a theoretical and experimental study of the peak effect in the surface pinning of

vortices. It is associated with a sharp transition in the vortex slippage length which we relate to

a crossover from a weakly disordered crystal to a surface glass state. Experiments are performed

on ion-beam etched Nb crystals. The slippage length is deduced from 1kHz-1MHz linear AC

penetration depth measurements.
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A peak in the critical current vs magnetic field plot, the peak-effect (PE), is observed in

superconductors close to the transition line where the critical current vanishes. From the

very first studies [1, 2, 3, 4] it was supposed that PE originates from softening of the vortex

lattice (VL) by disorder near the transition. This results in a more effective vortex pinning,

which corresponds to a higher critical current. The phenomenon is directly connected with

a fundamental problem of the condensed matter physics: the competition between elasticity

and disorder. Numerous scenarios of PE have been discussed, but all of them dealt with

the competition between vortex elasticity and bulk pinning. Here we present an essentially

different scenario of PE: it is surface pinning of vortices which interplays with bulk vortex

elasticity.

A controlled surface roughness ζ(r) is obtained by etching the Nb sample surfaces with

500eV-Ar+ ions (Fig.1). The sputtering of Nb atoms by low energy ions is a stochastic

process. It gives rise to a white corrugation spectrum Sζ(k) =
∫

dr e−ikr〈ζ(r+R)ζ(R)〉R ≃
a3∆z/π for |k| < 1/a, where a = 0.26 nm is the Nb lattice parameter and ∆z the average

etching depth. In our experiment ∆z ∼ 10µm for a 90 min exposure to a 1.5 mA/cm2 Ar+

flux so that Sζ ∼ 50 nm4 and the total roughness ζ∗ =
√

〈ζ(r)2〉 < (a∆z)1/2 = 50 nm.

Atomic force microscopy (AFM) in Fig.2 confirms the above estimates with Sζ(k) ≃ 40 nm4

for k . 40µm−1. Unfortunately, the finite AFM-tip radius masks the large k spectrum, so

that we can only bracket the upper cut-off kc of Sζ(k) in the range 10−2 < kca < 1. This

entails a large uncertainty in ζ∗ = 0.5–50 nm. Importantly, AFM data indicate the presence

of roughness at small scale, with wave numbers k ∼ a−1
0 ≃ (50nm)−1 where a0 =

√

πB/ϕ0

is the VL reciprocal unit and ϕ0 = h/2e is the flux quantum.

The peak effect is generally observed in the critical current data Ic(B) or Ic(T ). Since

Ic & 20 A are quite large in our Nb samples, we prefer to rely on the AC linear surface

impedance Z(ω) = −iωµ0λAC which is a more accurate probe of the vortex state, especially

in the vicinity of a transition. According to [5, 6], the AC penetration depth λAC in thick

samples is given by

1

λAC
=

1

LS
+

(

1

λ2
C

+ iωµ0σf

)1/2

; LS =
lSB

µ0ε
. (1)

Here σf is the flux-flow resistivity, εϕ0 is the vortex-line tension, and λC the Campbell depth

for bulk pinning [7]. Expression (1) deviates from the Coffey-Clem theory [8] by the addition

of a surface pinning term 1/Ls. The surface pinning length LS ∼ 0.1–100 µm can indeed
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simulate a Campbell length at low frequency but gives a very different behaviour at finite

frequency [5, 6]. The above expression was derived within the frame of the two-mode electro-

dynamics [5, 9], which incorporates the surface pinning by introducing a phenomenological

boundary condition,

εϕ0

(

u

lS
+

∂u

∂z

)

= 0 , (2)

imposed on the VL displacement u(z) at the surface of the sample, which occupies the

semi-space z < 0. Here lS is a slippage length and the displacement u is averaged over the

position vectors r in the xy plane. Equation (2) represents the balance between the pinning

force −εϕ0u/lS and the line tension force εϕ0∂u/∂z.

If vortices do not interact, the slippage length lS does not depend on vortex density and is

on the order of a curvature radius of the surface profile (individual pinning). But in general lS

may depend on vortex density, i.e. on magnetic field (see Fig.4). If vortices strongly interact

the theory of collective pinning [4] assumes that within the so-called Larkin-Ovchinnikov

domain of size Lc the vortices move mostly coherently without essential deformation of the

vortex lattice. But then because of the random directions of pinning forces on every vortex,

the total force on vortices in the domain is proportional to
√

Nc and not to Nc = L2
c/a

2
0,

the number of vortices in the domain. Correspondingly the pinning force per vortex must

be smaller by the factor
√

Nc = Lc/a0, i.e. 1/lS = 1/l0
√

Nc = a0/l0Lc. Lc is usually derived

from the balance between the elastic and pinning energy. Pinning is collective as long as

Nc ≫ 1. The condition Nc ∼ 1 (or lS ∼ l0) determines the crossover from the collective

to the individual pinning. Later in the paper we shall derive lS without these heuristic

arguments.

Figure 3 shows the PE in the inverse surface-pinning length. The sample, with dimensions

25×10.1×0.87 mm3, was annealed in ultra-high vacuum which gives a low residual resistivity

ρn =11 nΩcm (resistivity ratio ∼ 1300) and an upper critical field Bc2 =0.29 T at 4.2K [10].

Data points are obtained by fitting the penetration-depth spectra (inset of the figure) with

Eq.(1). Metastability in the vortex density (±0.005 T) and/or arrangement is removed by

feeding a large transient current I >> Ic in the sample prior to measurement. The abrupt

onset of the AC-flux penetration along the samples edges which are parallel to the field

precludes quantitative analysis for B & 0.95Bc2; this difficulty is overcome by working in

oblique field (diamonds in Fig.3). Already present in the pristine sample, the PE is strongly

enhanced in ion-etched samples (circles in Fig.3). By contrast chemically-etched samples
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show little PE but a large increase of pinning at lower fields. We think that this difference

is due to the lack of small-scale corrugation in the wet-etching techniques.

We quantitatively separate the bulk and surface pinning contributions, λC and LS, by

fitting the full 1kHz–1MHz spectrum λAC(f) with Eq.(1). Remarkably we always find that

λC is much larger than the sample thickness (∼ 1 mm), whereas LS ∼ 5–100µm, meaning

that bulk pinning is negligible. This observation, which is true for λAC(f) spectra taken on

both sides of the peak, confirms that surface pinning is most relevant in our experiment. The

oblique-field (45 degree) data are larger by a factor ∼2; this is due to surface-reinforcement

of superconductivity in tilted fields. Otherwise, data are similar at lower temperatures with

however larger Bpk =0.95Bc2 (1.8K) and a less pronounced peak resembling sometimes to a

shoulder.

Using the Abrikosov expression [11], µ0ε ≃ (Bc2−B)/2.32κ2 with κ = λ/ξ = 1.3 (ξ is

the coherence length and λ is the London penetration depth), we deduce from Eq.(1) the

lS(B)-data in Fig.4. The high-field plateaus lS(B) above Bpk are suggestive of individual

pinning, when lS ∼ l0 does not depend on B. Note that value of the contact angle for VL

at the surface, a0/l0≃0.1 estimated from l0≃0.5 µm (normal field) and a0 = 50 nm, fits in

the window 0.01 < ζ∗/a0 < 1 prescribed by corrugation geometry. By contrast, the strong

suppression of 1/lS below Bpk (factor ∼10 in oblique field) reflects the collective regime of

surface pinning, which was known earlier in rotating 3He [12]. The transition is sharp unlike

the continuous ones reported in Refs.[13, 14]. Thus the experiment provides an evidence

that PE is accompanied by the crossover from collective to individual surface pinning. In

the following, we give the theory for the slippage length lS(B) in the collective regime and

explain its vanishing at the PE transition.

The first step of our analysis addresses the response of the semi-infinite VL to a Fourier

component f(r) = f(k)eikr of the surface force on vortices. The force produces vortex

displacements in the sample bulk (z < 0) in the form u(r, z) =
∑

kz

U(k, kz)e
ikr+ikzz. We

look for the elastic constant C(k) = f(k)/u(k), connecting the Fourier components of the

surface force f(k) to the surface displacement u(k) =
∑

kz

U(k, kz). The force is assumed to

be transverse [f(k), U(k, kz) ⊥ k], since VL compressibility is quite low and the response to

the longitudinal force is weak. The possible values of out-of-plane wave-vector component
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kz must be found from the equation of the elasticity theory:

[

C66k
2 + C44(k, kz)k

2
z

]

U(k, kz) = 0 , (3)

where C66 is the shear modulus and

C44(k, kz) =
B2

µ0

1

1 + λ2(k2 + k2
z)

+ εB (4)

is the tilt-modulus, which takes into account nonlocal effects due to long-range vortex-vortex

interaction. The general solution of Eq.(3) is a superposition of two evanescent modes in

the bulk, u(r, z) = eikr [U(k, p1)e
p1z + U(k, p2)e

p2z] with p1 ≈ k
√

C66/εB ≪ 1/λ and p2 ≈
1/λ

√

B/µ0ε ≫ 1/λ. In order to determine the two amplitudes U(k, p1) and U(k, p2), we

need a second boundary conditions. It is imposed on the magnetic field, which is determined

from the London equation, h(k, kz) = ikzBU(k, kz) [1 + λ2(k2 + k2
z)]

−1
, and should vanish

at the sample border (transverse waves). Eventually this yields for C66 ≪ εB ≪ B2/µ0:

C(k) ≈ kϕ0

√

C66

µ0

(1 + λ2k2µ0ε/B)

1 + λ2k2
. (5)

At large λk Eq.(5) gives C(k) = kϕ0

√

εC66/B.

The second step consists in calculating the deformations produced by surface pinning

from the corrugation profile ζ(r). The random force on the vortices is f(ri) = −εϕ0∇ζ(ri),

where ri is the 2D position vector of the ith vortex. The Fourier component of the force

is f(k) =−εB
∑

Q

i
[

Q − k̂(k̂ · Q)
]

∫

dr e−i(k+Q)rζ(r), where the factor in brackets separates

the transverse component of the force and the summation over the reciprocal VL vector Q

appears because the force is applied in discrete sites of the VL. Collecting contributions from

all Fourier components u(k) = f(k)/C(k) we obtain the mean-square-root shear deformation

at the surface

〈

(∇u)2
〉

=

〈

(

∂ux

∂y
+

∂uy

∂x

)2
〉

=
ε2ϕ2

0

4π2

∫

k2 dk

C(k)2

∑

Q

(

Q2 − (k · Q)2

k2

)

Sζ(k + Q) . (6)

Here the integration over k is fulfilled over the VL Brillouin zone. In the following we

shall approximate the surface corrugation spectrum by Sζ(k) = 2πζ∗2r2
de

−krd, where the

corrugation correlation radius rd is determined by the spectrum cut-off kc, if kcξ < 1: rd ∼
k−1

c . But since the vortex cannot probe corrugation on scales less than its “size” ξ, rd ∼ ξ if
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kcξ > 1. Approximating the sum over Q by an integral, we obtain for k ∼ 1/a0 ≪ Q ∼ 1/rd:

〈(∇u)2〉 =
ε2ϕ2

0a
2
0

8π

2/a0
∫

0

k3 dk

C(k)2

∫

∞

0

Sζ(Q)Q3 dQ ≈ εB

C66

3r2
d

l20
. (7)

Here we used the expression C(k) ≈ kϕ0(C66ε/B)1/2 for large k, which is a good approxima-

tion when λ ≫ a0. Note that since C(k) ∝ k at small k the integral for the mean-square-root

displacement 〈u2〉 is divergent. This means that even a weak disorder destroys the long range

order near the surface as was revealed in Ref. [15]. However our analysis shows that destruc-

tion of long-range order near the surface is not essential for the peak effect, which is governed

by the mean-square-root deformation, but not by the mean-square-root displacement.

In the third step we derive the boundary condition Eq.(2) by taking into account VL

elasticity (collective pinning). In the AC experiment the electromagnetic fields produce

additional quasistatic uniform displacements u superimposed on the static random displace-

ments induced by pinning. Because of surface disorder the uniform displacement produces a

random force on vortices, which can be obtained from expansion of the random pinning force

f(ri) = −εϕ0∇ζ(ri + u) with respect to u: δfm(ri) = −εϕ0un∂
2ζ(ri)/∂xm∂xn. However,

the uniform displacement does not produce an average force: 〈δf(ri)〉 = 0. The fluctuating

force produces fluctuating displacements δu(ri), which can be found in the Fourier presen-

tation where δu(k) = δf(k)/C(k). In contrast to the uniform displacement, the fluctuating

displacements δu(ri) do produce an average pinning force which should be balanced by the

uniform line-tension force:

∂um

∂z
+

〈

∂2ζ(ri)

∂xm∂xn
δun(ri)

〉

= 0 . (8)

Since δu is proportional to u, we arrive at the boundary condition Eq. (2) imposed on the

averaged, i.e., uniform displacement with slippage length given by

1

lS
≃ εϕ0

4π2

∑

Q

∫

dk |k + Q|2
[

Q2 − (k · Q)2

k2

]

× Sζ(k + Q)

C(k)
. (9)

The same approximations as in calculating 〈(∇u)2〉 yield

1

lS
≃ εϕ0a

2
0

8π

∫ 2/a0

0

kdk

C(k)

∫

∞

0

Sζ(Q)Q5 dQ ≈
√

εB

C66

5!a0

2l20
. (10)

Comparing with the expression lS = l0Lc/a0 we see that the size of the Larkin-Ovchinnikov

domain is Lc ∼ l0a0

√

C66/εϕ0. In deriving Eq. (10) we have used the perturbation theory,

which is valid until Lc ≫ a0, or lS ≫ l0.
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For low magnetic fields B ≪ Bc2 one has ε ∼ (ϕ0/µ0λ
2) ln(Bc2/B), C66 ∼ ϕ0B/µ0λ

2

and according to Eq. (10) lS ∝
√

B/ ln(Bc2/B). Then the surface pinning length Ls ∝
[B/ ln(Bc2/B)]3/2 grows with B in qualitative agreement with the experiment (Fig. 3). This

is the regime of collective pinning when lS > l0. At the same time since rd ≪ a0 the

vortex lattice shear deformation remains small according to Eq. (7). For fields close to Bc2,

ε ∼ (Bc2 − B)/µ0κ
2, C66 ∼ (Bc2 − B)2/κ2, and rd ∼ a0 ∼ ξ. Then Eqs. (7) and (10) yield

〈(∇u)2〉 ≈ (ξ2/l20)Bc2/(Bc2−B) and lS ≈ (l20/ξ)
√

(Bc2 − B)/Bc2. Thus lS decreases when B

approaches Bc2 and for Bc2−B < Bc2ξ
2/l20 becomes smaller than l0. This means that surface

pinning ceases to be collective and the crossover to individual pinning occurs. At the same

time, at Bc2 −B ∼ Bc2ξ
2/l20, the deformation 〈(∇u)2〉 becomes of order unity, which means

that the crystalline order at the surface is destructed even at short scales ∼ a0. We call this

state surface glass. Thus the crossover from collective to individual pinning is accompanied

by the crossover from a weakly disordered crystal to a glass state at the surface.

Still, this crossover cannot explain a fully developed PE. Despite lS ∝
√

Bc2 − B decreases

at B approaching to Bc2, according to Eq. (1), 1/LS continues to decrease proportionally

to
√

Bc2 − B, whereas in the experiment (Fig. 3) 1/LS(B) increases on the left of the peak.

Nevertheless, the growth of the deformation 〈(∇u)2〉, which accompanies the decrease of

lS eventually invalidates the linear elasticity theory used above. Qualitatively this can be

corrected by introducing the renormalized deformation-dependent shear modulus: C̃66 =

C66(1 − α 〈(∇u)2〉) ≈ C66(1 − B/Bpk). Here the field Bpk corresponds to the crystal-glass

transition, where C̃66 = 0, and α is an unknown numerical factor, which could be close to

0.1 as in the Lindemann criterion. Using renormalized modulus C̃66 in place of C66 in Eq.

(10) we obtain that lS [as well as LS, see Eq. (1)] decreases proportionally to 1/
√

Bpk − B

in qualitative agreement with experiment (Fig. 3). On the right of the peak pinning is

individual and lS ∼ l0 does not depend on B, while 1/LS ∝ (Bc2 − B) decreases with B.

The close relation between PE and vanishing of the shear modulus of VL was suggested

in the early studies of PE [3, 4]. The new feature of our scenario is that at B < Bpk the

shear modulus vanishes only at distances on the order of the deformation penetration depth

1/p ∝ 1/
√

C̃66 from the surface. Our scenario agrees with STM imaging of the vortex array

by Troyanovski et al. [16]. They revealed that PE is accompanied by the disorder onset

on the surface of a 2H-NbSe2 sample, but they related it with bulk pinning. In order to

discriminate two scenarios it would be useful to supplement the STM probing of the vortex
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array at the surface by probing vortex arrangements in the bulk.

In conclusion, we presented the experiment and the theory, which support a new scenario

for the peak effect based on competition between vortex-lattice shear rigidity and weak

surface disorder. The peak is accompanied by a crossover from collective to individual

vortex pinning and from a weakly disordered crystal to a glass state at the sample surface.

Beside its experimental relevance, this mechanism offers an interesting paradigm for elastic

systems at the upper critical dimension for disorder.
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Figure 1: Atomic-force microscopy (AFM) picture of the etched Nb surface.
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Figure 2: Spectrum of the surface corrugation. The dashed line is a guide. The cut-off at ∼ 40µm−1

is due to AFM tip diameter.
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Figure 3: Peak-effect in the elastic response L−1
S (B) of a surface-pinned vortex array at T=4.2K.

Diamonds and full circles correspond to the 45 degree and perpendicular field orientations. Empty

circles are the pristine sample measurement. Inset : the frequency dependence of the real and

imaginary parts (open and full circles respectively) of the penetration depth λAC(B, f) from which

LS is deduced. Solid lines are theoretical fit to Eq.(1) with λC = ∞, σ−1
f = 10nOhm.cm and

LS = 14.9µm.
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Figure 4: The slippage length lS(B) for a vortex array at a rough surface. It is deduced from the

LS data according to lS = LSµ0ε/B in Eq.(1). The effect of vortex interactions in the collective-

pinning regime below Bpk is visible as a suppression of 1/lS(B). Solid lines are power-law fits.
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