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Abstract

The Cauchy problem for a multidimensional linear transport equa-

tion with discontinuous coefficient is investigated. Provided the coef-

ficient satisfies a one-sided Lipschitz condition, existence, uniqueness

and weak stability of solutions are obtained for either the conservative

backward problem or the advective forward problem by duality. Spe-

cific uniqueness criteria are introduced for the backward conservation

equation since weak solutions are not unique. A main point is the intro-

duction of a generalized flow in the sense of partial differential equations,

which is proved to have unique jacobian determinant, even though it is

itself nonunique.
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1 Introduction

We consider the transport equation

∂tu+ a · ∇u = 0 in (0, T ) × R
N , (1.1)

with initial data
u(0, x) = u0(x), (1.2)

where a = (ai(t, x))i=1,...,N ∈ L∞((0, T ) × R
N) can have discontinuities. The

transport equation (1.1) naturally arises with discontinuous coefficient a in
several applications, together with the conservation equation

∂tµ+ div(aµ) = 0 in (0, T ) × R
N . (1.3)

It is well known that both problems are closely related to the notion of char-
acteristics, or flow. The flow X(s, t, x), 0 ≤ s, t ≤ T , x ∈ R

N , is classically
defined by the ODE

∂sX = a(s,X(s, t, x)), X(t, t, x) = x. (1.4)

Indeed, when a is smooth enough, the flow is uniquely determined by (1.4),
and the solutions u to (1.1) and µ to (1.3) are given respectively by the clas-
sical formulæ u(t, x) = u0(X(0, t, x)), µ(t, x) = det(∂xX(0, t, x))µ0(X(0, t, x)).
The whole theory of characteristics fails if a is not smooth: the flow is no
longer uniquely defined, and the notion of solution to (1.1) or (1.3) has to be
reinvestigated.

In the specific case of two-dimensional hamiltonian transport equations,
(1.1) has been solved with continuous (non differentiable) coefficients by Bouchut
and Desvillettes [7], and more recently with Lp

loc coefficients by Hauray [18].
The general well-posedness theory and the connection between the ODE (1.4)
and the PDE (1.1) was investigated by DiPerna and Lions [13] within the
framework of renormalized solutions, under the assumption that a(t, .) lies in
W 1,1

loc (RN) and its distributional divergence belongs to L∞
loc. The renormalized

approach was extended by Bouchut [6] to the Vlasov equation with BV co-
efficients, and very recently, Ambrosio [3] gave the full generalization in the
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same context, when a(t, .) ∈ BVloc and div a(t, .) is merely L1
loc. However, the

condition on a which arises very often in applications, the so-called one-sided
Lipschitz condition (OSLC)

∃α ∈ L1
+(0, T ) s.t. 〈a(t, y) − a(t, x), y − x〉 ≤ α(t)|y − x|2 (1.5)

for almost every (t, x, y) ∈ (0, T ) × R
N × R

N , implies only an upper bound
on div a, thus div a is not absolutely continuous with respect to the Lebesgue
measure. It turns out that in this situation the behaviour of the discontinuities
is completely different, and the renormalized approach is not adapted.

For discontinuous a, Filippov’s theory [14] gives a generalized definition of
a solution X to the ODE (1.4) for a merely bounded coefficient a. Uniqueness,
as well as some stability results, are ensured under the OSLC condition (1.5).
Notice that, in contrast with the classical theory of ODEs, uniqueness only
holds for the forward problem, i.e. for s > t. This theory is used to solve
differential equations and inclusions, see [15, 4], and also to define generalized
characteristics in the context of nonlinear conservation laws, as initiated by
Dafermos [12].

The interest of (1.5) lies in the fact that it allows to prove rigorous results in
the situation where div a is a negative measure. This corresponds intuitively to
a compressive situation, which arises in many applications in nonlinear hyper-
bolic equations. The conservation equation (1.3) appears indeed in the study
of several degenerate hyperbolic conservation laws where solutions are mea-
sures in space, see e.g. Keyfitz and Kranzer [21], LeFloch [22] or Zheng and
Majda [32], and the system of pressureless gases, see [10] and the references
quoted therein. It is also naturally involved in the context of linearization of
conservation laws, see [9] in the one-dimensional setting, [16, 17] for an appli-
cation in fluid mechanics, [20] in the context of an inverse problem. Several
results are to be quoted here, Poupaud and Rascle [27] use the Filippov flow to
study the multidimensional equation, Popov and Petrovna [25, 26] give several
examples of flows and existence results, both in the one and multidimensional
cases.

The idea we use here to solve the Cauchy problem (1.1)-(1.2) is based on a
previous work of Bouchut and James [8], and makes use of the so-called duality
solutions. The main idea consists in solving the dual (or adjoint) equation to
(1.1)-(1.2), which turns out to be a conservative backward problem

∂tπ + div(aπ) = 0 in (0, T ) × R
N , (1.6)

with final data
π(T, x) = πT (x). (1.7)

Indeed a formal computation leads to

∂t(uπ) + div(auπ) = 0, (1.8)

and hence to
d

dt

∫
u(t, x)π(t, x) dx = 0. (1.9)

It is quite classical now that existence for (1.6)-(1.7) leads to uniqueness for
the corresponding direct problem, and this has been successfully used in the
nonlinear context, since Oleinik [24], Conway [11], Hoff [19]. However, the
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lack of uniqueness, and therefore of stability, for weak solutions to (1.6)-(1.7)
usually forbids the use of (1.9) as a convenient definition for solutions to the
direct problem.

The corner stone in [8] was the introduction of the reversible solutions to the
backward problem (1.6), thus defining a class for which existence, uniqueness
and weak stability hold. The theory of duality solutions follows then, leading
to existence, uniqueness, weak stability for both the transport equation (1.1)
and the conservation one (1.3), for one space dimension.

In this paper we generalize this approach to multidimension. However, since
we are only able to establish weakly stable uniqueness criterion for the conser-
vative backward problem (1.6)-(1.7), and not for the nonconservative one, we
are therefore only able to deal with the forward advective, or nonconservative
transport equation. The weak stability of the conservation equation (1.3) is
presently out of reach in multidimension. In particular, generalized flows in
the sense of PDE, which we call transport flows, are not unique. However,
since their jacobian determinant is unique, they allow us to define a notion of
reversible solutions to (1.6). The various characterizations we had at hand in
[8] (positivity, renormalization) do not hold here, except if π can be expressed
as a linear combination of jacobians of locally Lipschitz functions. However it
turns out that this is enough to define duality solutions to the direct equation
(1.1), and obtain convenient stability results.

The paper is organized as follows. In Section 2, we collect and prove several
useful results on coefficients satisfying the OSLC condition (1.5). Section 3 is
the core of the paper, it contains the definition of transport flows and reversible
solutions. Next, duality solutions are defined in Section 4, where existence and
uniqueness are proved. Stability results are gathered in Section 5. Section 6
emphasizes the fact that transport flows are not necessarily unique, and we
prove several technical results about jacobian determinants in the Appendix.

2 Properties of coefficients satisfying the OSLC

condition

This section is devoted to remarkable properties of coefficients satisfying the
OSLC condition that are used in the paper. Sharper properties can be found
in [2].

Lemma 2.1 If a sequence an is bounded in L∞((0, T )×R
N) and satisfies the

OSLC condition with some αn(t) uniformly bounded in L1(0, T ), then, up to a
subsequence, an converges in L∞ − w∗ to a ∈ L∞((0, T ) × R

N) satisfying the

OSLC condition with some α(t) such that
∫ T

0
α(t)dt ≤ lim inf

∫ T

0
αn(t)dt.

Proof. We can pass to the limit in (1.5) in the sense of distributions in
(0, T ) × R

N × R
N . Then the right-hand side involves some α̂(t) ∈ M+(0, T )

such that αn ⇀ α̂. We deduce that the required OSLC inequality holds with
α the absolutely continuous part of α̂. �

The OSLC condition implies that div a is bounded from above,

div a ≤ Nα(t). (2.1)

This is actually a consequence of the following stronger result.
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Lemma 2.2 (i) The OSLC condition (1.5) is equivalent to

∇a + ∇at

2
≤ α(t) Id (2.2)

for a.e. t, in the sense of matrix distributions in R
N , which means that

∀h ∈ R
N ∇a · h · h ≤ α(t)|h|2 (2.3)

in the sense of distributions in R
N .

(ii) A coefficient a ∈ L∞ satisfying the OSLC condition verifies that for a.e.
t, ∇a + ∇at is locally a matrix valued bounded measure in x. Moreover, for
any bounded convex open subset C of R

N ,

∀h ∈ R
N

∫

C

|∇a · h · h| ≤ 2
(
α(t)|C| + ‖a‖∞diam(C)N−1

)
|h|2. (2.4)

Proof. We can consider a fixed time t. For (i), assume first that a is smooth
in x. Then the OSLC condition (1.5) is equivalent to

〈a(x+ εh) − a(x), εh〉 ≤ α|εh|2 (2.5)

for any x, h ∈ R
N and ε > 0. Now, since

〈a(x+ εh) − a(x), εh〉 =

∫ 1

0

〈∇a(x+ θεh) εh, εh〉 dθ, (2.6)

if ∇a(x) · h · h ≤ α|h|2 for all x, h, we get obviously (2.5). Conversely, if (2.5)
holds, then ∫ 1

0

〈∇a(x+ θεh)h, h〉 dθ ≤ α|h|2, (2.7)

and by letting ε → 0 we recover ∇a(x) · h · h ≤ α|h|2.
For the general case a ∈ L∞, consider the convolution of a by a smoothing
sequence ρε(x), aε = ρε ∗ a, so that aε → a in L1

loc(R
N). If a satisfies (1.5),

then since

〈aε(y)−aε(x), y−x〉 =

∫
〈a(y− z)−a(x− z), y − z− (x− z)〉ρε(z) dz, (2.8)

aε also satisfies (1.5) for all ε > 0, with the same α. Thus by the above proof,
aε satisfies ∇aε ·h·h ≤ α|h|2, and by letting ε→ 0, this gives (2.3). Conversely,
if (2.3) holds, then ∇aε · h · h = ρε ∗ (∇a · h · h) ≤ α|h|2 thus by the proof
above, aε satisfies (1.5). By letting ε → 0, we finally get that a itself satisfies
(1.5), and this concludes the proof of (i).

For (ii), we have by (2.3) that α|h|2 − ∇a · h · h ≥ 0, thus it is locally a
measure. We conclude that ∇a · h · h is locally a measure for any h, and by
finite linear combinations that ∇a + ∇at is locally a measure. It remains to
prove (2.4). Writing ∇a · h · h = α|h|2 −

(
α|h|2 −∇a · h · h

)
, we get

|∇a · h · h| ≤ α|h|2 +
(
α|h|2 −∇a · h · h

)
. (2.9)

5



The indicator function of C can be approximated by a function ϕ(x), ϕ ∈
C∞

c (C), 0 ≤ ϕ ≤ 1. Then

∫ (
α|h|2 −∇a · h · h

)
ϕ

= α|h|2
∫
ϕ+

∫
a(x) · h ∇ϕ(x) · h

≤ α|h|2|C| + ‖a‖∞|h|
∫

|∇ϕ(x) · h|.

(2.10)

But the convexity of C enables to find ϕ such that for any direction h,
∫
|∇ϕ ·

h| ≤ 2|h|diam(C)N−1, and this concludes (ii). �

Remark 2.1 By Lemma 3.4 in [6], (2.4) is equivalent to the fact that for any
ω ⊂⊂ C and any h ∈ R

N such that ω +B(0, |h|) ⊂ C,

∫

ω

∣∣∣〈a(t, x+ h)− a(t, x), h〉
∣∣∣ dx ≤ 2

(
α(t)|C|+ ‖a‖∞diam(C)N−1

)
|h|2. (2.11)

Remark 2.2 A coefficient a ∈ L∞ satisfying the OSLC condition verifies the
local inequalities

0 ≤ α(t) − ∂iai ≤ Nα(t) − div a, i = 1, . . . , N,∣∣∣∣
∂jai + ∂iaj

2

∣∣∣∣ ≤ Nα(t) − div a, i, j = 1, . . . , N, i 6= j,
(2.12)

in the sense of measures. This is because by (2.2), the symmetric matrix
valued measure B = α(t) Id−(∇a + ∇at)/2 is nonnegative, and thus satisfies
0 ≤ Bii ≤ trB, |Bij | ≤ trB (for the latter inequality, apply the Cauchy-
Schwarz inequality to a regularization Bε of B, |Bε

ij| ≤
√
Bε

iiB
ε
jj). Another

useful inequality is obtained by writing that B ≤ (trB) Id. Replacing B by
its value gives α Id−(∇a + ∇at)/2 ≤ (Nα− div a) Id, or

(div a) Id−∇a + ∇at

2
≤ (N − 1)α(t) Id . (2.13)

Notice in particular that the inequalities (2.12) imply that

div a ∈ L1((0, T ), Lp
loc(R

N)) for some 1 ≤ p ≤ ∞
=⇒ ∇a + ∇at ∈ L1((0, T ), Lp

loc(R
N)).

(2.14)

In the case 1 < p < ∞, we have even ∇a ∈ L1((0, T ), Lp
loc(R

N)), by elliptic
regularity since ∆ai =

∑
j ∂j(∂jai + ∂iaj) − ∂i div a.
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We end up this section by pointing out in a simplified context the fact
that the OSLC condition (1.5) is in some sense orthogonal to the condition of
absolute continuity of the divergence of a that is involved in the renormalized
theory, and in particular in the work of Ambrosio [3].

Consider a coefficient a ∈ L∞ such that for almost every t > 0, a(t, .) ∈
BVloc(R

N), and the total variation is integrable with respect to time (indeed
according to [2], the OSLC condition implies this regularity). Then, fixing the
time, the matrix-valued measure ∇a can be decomposed as ∇a = ∇aa +∇sa,
where ∇aa is absolutely continuous and ∇sa is singular, with respect to the
Lebesgue measure. Denoting by |λ| the total variation of a (matrix-valued)
measure λ, one has the polar decomposition λ = M |λ|, with |M(x)| = 1 for
|λ|-a.e. x ∈ R

N . We apply this to the derivative ∇a of a, and make use of
Alberti’s rank one theorem, which asserts that the corresponding M is rank-
one, so that

∇a = η(x) ⊗ ξ(x)|∇a|, (2.15)

where ξ and η are unit vectors in R
N . The distributional divergence of a is

therefore given by div a = 〈ξ, η〉|∇a|, so that div a is absolutely continuous
with respect to the Lebesgue measure if and only if ξ and η are orthogonal
|∇sa|-a.e. As it is recalled by Ambrosio in [3], these results hold true in a very
general context, but we wish to consider merely the case where the jump set of
the function a is (locally) a hypersurface in R

N . Then the vector ξ turns out
to be the normal to the hypersurface, while η is the direction of the jump of
a. Thus the usual assumption of absolute continuity of the divergence implies
that the jump of a is tangent to the hypersurface.

If now a satisfies the OSLC condition (instead of having absolutely continu-
ous divergence), then the conclusion is radically different, as the following com-
putation shows. Consider a point x in the hypersurface and a neighborhood
ω ∋ x. The hypersurface divides ω in two subsets ω− and ω+, and we take the
normal ξ(x) pointing to ω+. We assume that the limits a+(x) = limy∈ω+

a(y)
and a−(x) = limy∈ω−

a(y) exist. We rewrite the OSLC condition (1.5) by let-
ting x go to the hypersurface in ω−, and by writing y = x + ǫh, for any unit
vector h and ǫ > 0. After division by ǫ, we get

〈a(x+ ǫh) − a−(x), h〉 ≤ αǫ. (2.16)

Now, if 〈ξ, h〉 > 0, x + ǫh ∈ ω+ for ǫ small enough, thus letting ǫ go to zero,
we obtain

〈a+(x) − a−(x), h〉 ≡ 〈[a], h〉 ≤ 0 for any h such that |h| = 1, 〈ξ, h〉 > 0.
(2.17)

This inequality holds true for any unit vector h such that 〈ξ, h〉 = 0 as well, so
that [a] has to be colinear with the normal ξ. Finally, using (2.17) again we
obtain

[a] = −λξ for some λ ≥ 0. (2.18)

This is radically different from the case above of absolute continuity of the
divergence, where [a] · ξ = 0.

3 Backward problem, reversible solutions

In this section we intend to study weak solutions π ∈ C([0, T ], L∞
loc(R

N)w∗)
to the conservative transport equation (1.6), together with solutions p ∈

7



Liploc([0,T] × R
N) to the nonconservative transport equation

∂tp+ a · ∇p = 0 a.e. in (0, T ) × R
N . (3.1)

We prove very general properties of these solutions, and indeed all that is done
in this section is true for a coefficient a ∈ L∞ such that there exists a Lipschitz
transport flow (see Definition 3.5). Only the existence result Proposition 3.6
makes use of the OSLC condition.

We denote by WT the vector space of all π ∈ C([0, T ], L∞
loc(R

N)w∗) solving
(1.6) in the weak sense. Recall that there is no uniqueness for the Cauchy
problem in WT , so that we introduce various restrictive definitions of conve-
nient solutions. Thus we define several subspaces of WT , and the main goal
of this section is to establish inclusions between these subspaces. As we shall
see, the definitions do not coincide in the general case.

The first two notions of solution, and the most natural ones, are defined
through sign or cancellation properties. We need to introduce the space ET of
exceptional solutions to the nonconservative equation,

ET = {p ∈ Liploc([0,T] × R
N) solving (3.1) such that p(T, .) = 0}, (3.2)

and the corresponding open support

V T
e =

⋃

pe∈ET

{(t, x) ∈ (0, T ) × R
N such that pe(t, x) 6= 0}. (3.3)

Our first notion of “good” solution to the conservative equation (1.6) is defined
via the cancellation in V T

e ,

VT = {π ∈ WT such that π = 0 a.e. in V T
e }. (3.4)

Nonnegative solutions will also play a natural part here, thus we define

PT = {π ∈ WT ; π ≥ 0}. (3.5)

Before giving other definitions, we prove the following preliminary result.

Proposition 3.1 We have Vect(PT ) ⊂ VT , that is any linear combination of
nonnegative solutions to (1.6) satisfies the cancellation property (3.4).

The proof relies on the following lemma, which defines some kind of weak
product.

Lemma 3.2 Let π ∈ WT and p ∈ Liploc([0,T] × R
N) solve (3.1). Then p π ∈

WT .

Proof. Let πε and (aπ)ε denote the approximations of π and aπ by convolution
by a smoothing kernel in (t, x). Since ∂tπε + div(aπ)ε = 0 and using the
equation satisfied by p we have

∂t(pπε) + div (p(aπ)ε) = πε∂tp+ (aπ)ε · ∇p
= ((aπ)ε − aπε) · ∇p, (3.6)
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thus letting ε→ 0 we get

∂t(pπ) + div (a pπ) = 0 in (0, T ) × R
N . (3.7)

Since pπ ∈ C([0, T ], L∞
loc(R

N)w∗), we have the result. �

Proof of Proposition 3.1 Let π ∈ WT such that π ≥ 0. We actually
prove that for any any pe ∈ ET , we have pe π = 0 almost everywhere in
(0, T ) × R

N . This obviously implies the result. Since |pe| also belongs to ET

when pe ∈ ET , we can assume without loss of generality that pe ≥ 0. Since
peπ ∈ C([0, T ], L∞

loc(R
N)w∗), peπ ≥ 0, and (peπ)(T, .) = 0, we conclude with

Lemma 3.2 and by integration on cones that peπ ≡ 0. The conclusion that
π ∈ VT follows obviously by the definition of VT , since each set in the right-
hand side of (3.3) is open. �

We give now two new definitions of weak solutions to (1.6). The first one
takes advantage of an additional conservation law satisfied by the jacobian
matrix of a set of N solutions to the transport problem (3.1). Actually such
a property is quite classical in the context of elastodynamics: the jacobian
and cofactor matrices of a velocity field satisfy conservation equations, see for
instance Quin [28], or Wagner [31] for a survey in the context of conservation
laws.

Theorem and definition 3.3 (Jacobian solutions) Let pi ∈ Liploc([0,T]×
R

N), 1 ≤ i ≤ N , solve

∂tpi + a · ∇pi = 0 a.e. in (0, T ) × R
N . (3.8)

Then the jacobian determinant

π = J(p1, . . . , pN) ≡ det(∇p1, . . . ,∇pN) ∈ C([0, T ], L∞
loc(R

N)w∗) (3.9)

is a weak solution to (1.6). We shall call such a solution π to (1.6) a jacobian

solution, and denote by J T ⊂ WT the set of these solutions.

Proof. Let us apply Lemma A.3 in the Appendix, in the variables (t, x) ∈
(0, T ) × R

N ⊂ R
N+1, to the hamiltonians Hi = pi, i = 1, . . . , N . We get that

divt,x V = 0, where V = (V0, V1, . . . , VN) has to be computed by (A.4). We
have V0 = det(∂pi/∂xj), 1 ≤ i, j ≤ N , i.e. V0 = π. Then, for 1 ≤ k ≤ N ,
denoting p = (p1, . . . , pN),

Vk = (−1)k det

(
∂tp,

∂p

∂x1

, . . . ,
∂̂p

∂xk

, . . . ,
∂p

∂xN

)

= (−1)k det

(
−

N∑

j=1

aj
∂p

∂xj
,
∂p

∂x1
, . . . ,

∂̂p

∂xk
, . . . ,

∂p

∂xN

)

= −ak(−1)k det

(
∂p

∂xk

,
∂p

∂x1

, . . . ,
∂̂p

∂xk

, . . . ,
∂p

∂xN

)

= ak π,

(3.10)
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which gives (1.6). The time continuity of π comes from the weak continuity of
the jacobian, see Lemma A.4. Indeed, if tn → t, then p(tn, .) → p(t, .) locally
uniformly with uniform bound in Liploc thus J(p(tn, .)) ⇀ J(p(t, .)). �

We have some kind of uniqueness for Jacobian solutions, in the following
sense.

Lemma 3.4 Let pi, qi ∈ Liploc([0,T] × R
N), for i = 1, . . . , N , solve (3.8),

with pi(T, .) = qi(T, .). Recall that this implies by Theorem 3.3 that J(p),
J(q) ∈ WT . Assume moreover that J(p), J(q) ∈ VT (by Proposition 3.1 this
is the case in particular if J(p) ≥ 0 and J(q) ≥ 0). Then J(p) = J(q) almost
everywhere.

Proof. On the one hand, ui ≡ pi − qi is a locally Lipschitz solution to the
transport equation (3.1), and ui(T, .) = 0, i.e. ui ∈ ET . On the other hand,
if we define v = J(p) or v = J(q), we have v ∈ VT , and by definition, we get
v = 0 a.e. in {ui 6= 0}. Now, on the set where p 6= q, this gives v = 0 a.e.,
thus J(p) = J(q) = 0. On the set where p = q, we have ∇p = ∇q a.e. (see for
example [6], Theorem 2.1), so that J(p) = J(q) as well. �

The second and last notion of solution we give is the most convenient one
from the viewpoint of uniqueness and stability results. However, it does not
enjoy really handable characterizations. It is defined through a specific notion
of flow, which we introduce now.

Definition 3.5 (Transport flow) We say that a vector XT ∈ Lip([0,T] ×
R

N) is a transport flow if

∂tX
T + a · ∇XT = 0 in (0, T ) × R

N , XT (T, x) = x, (3.11)

and J(XT ) ≥ 0.

Remark 3.1 The definition requires that XT is globally Lipschitz continuous.
This condition ensures that |XT (t, x) − x| ≤ ‖∂tX

T‖L∞(T − t), and therefore
that XT (t, .) tends to infinity at infinity. This estimate can be interpreted as
a kind of finite speed of propagation property.

We first provide a sufficient condition for the existence of a transport flow.

Proposition 3.6 For any coefficient a ∈ L∞((0, T )×R
N) satisfying the OSLC

condition, there exists a transport flow XT .

Proof. Consider a sequence of coefficients an ∈ C1, an bounded in L∞, sat-
isfying the OSLC condition for some αn bounded in L1, such that an → a in
L1

loc. Then we have a transport flow associated to an, XT
n (t, x) = Xn(T, t, x)

where Xn is the classical flow,

∂sXn(s, t, x) = an(s,Xn(s, t, x)), Xn(t, t, x) = x. (3.12)

According to the OSLC condition, we have

∂s|Xn(s, t, y) −Xn(s, t, x)|2/2
= 〈an(s,Xn(s, t, y)) − an(s,Xn(s, t, x)), Xn(s, t, y)−Xn(s, t, x)〉
≤ αn(s)|Xn(s, t, y) −Xn(s, t, x)|2,

(3.13)
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thus for 0 ≤ t ≤ s ≤ T ,

|Xn(s, t, y) −Xn(s, t, x)| ≤ |y − x|e
∫ s

t
αn(τ)dτ , (3.14)

which yields a uniform Lipschitz estimate in x for Xn,

Lip(Xn(s, t, .)) ≤ e
∫ s

t
αn(τ)dτ . (3.15)

But (3.12) yields a Lipschitz estimate in s, while the transport equation
∂tXn + an · ∇Xn = 0 yields a Lipschitz estimate in t. Therefore, up to a
subsequence, Xn → X locally uniformly. We have that X(s, t, x) is Lipschitz
continuous in the domain 0 ≤ t ≤ s ≤ T , x ∈ R

N , ∂tX + a · ∇X = 0 and
X(t, t, x) = x. By weak continuity of the jacobian J(Xn) ⇀ J(X) in L∞−w∗,
thus J(X) ≥ 0. We conclude that XT (t, x) = X(T, t, x) is a transport flow. �

We emphasize that, in general, there is no uniqueness in the notion of
transport flow, an explicit counterexample is provided in Section 6 below.
However, we have the following uniqueness result for the Jacobian.

Proposition 3.7 All possible transport flows XT have the same Jacobian de-
terminant J(XT ).

Proof. If XT is a transport flow, then J(XT ) ≥ 0, thus by Theorem 3.3 and
Proposition 3.1, J(XT ) ∈ VT . Therefore Lemma 3.4 ensures that J(XT ) is
uniquely determined. More precisely, XT is uniquely defined outside V T

e , thus
J(XT ) also. Now, according to Proposition 3.1, we have J(XT ) = 0 in V T

e , so
that indeed J(XT ) is uniquely determined everywhere. �

We are now in position to define the final notion of ”good” solutions to
(1.6).

Definition 3.8 (Reversible solutions) We say that π ∈ WT is a reversible
solution to (1.6), and we shall denote π ∈ RT , if for some transport flow XT

one has
π(t, x) = π(T,XT (t, x))J(XT )(t, x) (3.16)

for all 0 ≤ t ≤ T and a.e. x ∈ R
N .

We notice that this formula is meaningful. Indeed, according to Lemma A.2,
at a fixed time t, and for any Borel set Z ⊂ R

N such that |Z| = 0, we have
that J(XT ) = 0 a.e. where XT ∈ Z. This proves, together with Remark 3.1,
that the right-hand side of (3.16) is well-defined as an element of L∞

loc(R
N) for

each t. Also, according to Proposition 3.7, if (3.16) holds for some transport
flow XT , then it holds for all transport flows. Therefore, RT is a vector space.

Theorem 3.9 (Conservative backward Cauchy problem) For any πT ∈
L∞

loc(R
N), there exists a unique reversible solution π ∈ RT to (1.6) such that

π(T, .) = πT .

11



Proof. Uniqueness is obvious from the definition. We claim that a reversible
solution with final data πT ∈ L∞

loc(R
N) can be obtained by the formula

π = πT (XT )J(XT ), (3.17)

where XT is any transport flow. Indeed, for the same reason as above, π(t, .)
is well-defined as an element of L∞

loc(R
N) for each t. This definition does not

depend on the choice of XT , and obviously π(T, .) = πT . It only remains to
prove that π is time continuous and satisfies (1.6) in the weak sense.

Assume first that πT is locally Lipschitz continuous. Then p ≡ πT (XT ) ∈
Liploc([0,T] × R

N) solves ∂tp + a · ∇p = 0, and by Lemma 3.2 we get that
π = p J(XT ) ∈ WT .

In the general case πT ∈ L∞
loc, we can approximate πT by πT

n ∈ C1 such
that πT

n is bounded in L∞
loc and πT

n → πT a.e. Let Z ⊂ R
N be the set

where πT
n (x) does not converge to πT (x), with |Z| = 0. Then for a fixed

t, πn(t, x) ≡ πT
n (XT (t, x))J(XT )(t, x) → πT (XT (t, x))J(XT )(t, x) = π(t, x)

a.e., because J(XT )(t, x) = 0 a.e. where XT (t, x) ∈ Z. Then, the equa-
tion ∂tπn + div(aπn) = 0 ensures uniform time continuity, thus πn → π in
C([0, T ], L∞

loc(R
N)w∗) and π is a weak solution to (1.6). �

We look now for intrinsic conditions characterizing the reversible solutions,
that do not involve any transport flow. It follows from formula (3.17) and from
Proposition 3.1 that

RT ⊂ Vect(PT ) ⊂ VT . (3.18)

In the one space dimension case, these inclusions are equalities, see [8]. Re-
versibility can also be characterized in terms of renormalization, namely π is
reversible if and only of |π| is a weak solution, and total variation properties.
In the present multidimensional context, we are not able to prove the same
results, except for the subclass of linear combinations of jacobian solutions.
This is the aim of the following three propositions. Note that this is a difficult
problem to decompose a bounded function as a linear combination of jacobian
determinants of lipschitz functions, see [23].

Proposition 3.10 Let π ∈ WT , such that π(T, .) can be written as a linear
combination of jacobians of locally Lipschitz functions. Then π is reversible if
and only if

π ∈ Vect(J T ) ∩ VT . (3.19)

Proof. By assumption, we can write π(T, .) =
∑K

k=1 λkJ(pT
k ), where pT

k ∈
(Liploc(R

N))N. First, if π is reversible, then (3.18) gives π ∈ VT , and denoting
by XT a transport flow,

π(t, .) = π(T,XT (t, .))J(XT (t, .))

=
K∑

k=1

λk J(pT
k )(XT (t, .))J(XT (t, .))

=

K∑

k=1

λk J
(
pT

k (XT (t, .))
)
.

(3.20)
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Since pk ≡ pT
k (XT ) is a locally Lipschitz solution to the nonconservative equa-

tion, we deduce that π ∈ Vect(J T ) ∩ VT .
Conversely, let us assume that π ∈ Vect(J T ) ∩ VT . We have

π =
K∑

k=1

λk J(pk), (3.21)

where pk ∈ (Liploc([0,T] × R
N))N solves ∂tpk + a · ∇pk = 0. Consider the

unique reversible solution πrev
k to (1.6) with final data J(pk(T, .)). In other

words, πrev
k = J(pk(T, .))(X

T )J(XT ) = J(qk), with qk = pk(T,X
T ). Define

πrev =
∑

k λkπ
rev
k . Then, since pk − qk ∈ ET , for (t, x) /∈ V T

e we have pk(t, x) =
qk(t, x) thus ∇pk = ∇qk a.e. in (V T

e )c and J(pk) = J(qk) a.e. in (V T
e )c for all

k. We conclude that π(t, x) = πrev(t, x) a.e. in (V T
e )c. But since π, πrev ∈ VT ,

π = 0 = πrev a.e. in V T
e , thus finally π = πrev a.e. in (0, T ) × R

N . �

Proposition 3.11 Let π ∈ Vect(J T ). Then π ∈ RT if and only if |π| ∈ WT .

Proof. We first notice from (3.17) that if π ∈ RT , then |π| ∈ RT ⊂ WT .
Conversely, if |π| ∈ WT , then by Proposition 3.1, |π| ∈ VT . By definition of
VT , we deduce that π ∈ VT , and by Proposition 3.10, π ∈ RT . �

Remark 3.2 Any π ∈ WT satisfies π ∈ C([0, T ], L1
loc(R

N)), and in particular
|π| ∈ C([0, T ], L∞

loc(R
N)w∗). This is the consequence of Lemma 2.2 and of

Theorem 3.3 in [6].

Proposition 3.12 For any π ∈ WT , the application

t 7→ ‖π(t, ·)‖L1(RN ) ∈ [0,∞] (3.22)

is nonincreasing in [0, T ]. Moreover,
(i) If π is reversible then this function is constant.
(ii) If π ∈ Vect(J T ) and if the above function is constant and finite, then π is
reversible.

Proof. According to Lemma 3.2, for any p ∈ Liploc([0,T]× R
N) solving (3.1),

we have p π ∈ WT . Take any transport flow XT , and choose p(t, x) =
ϕ(XT (t, x)), with ϕ ∈ C1

c (R
N ). Taking into account Remark 3.1 and inte-

grating the equation satisfied by p π, we get for any 0 ≤ t ≤ T

∫

RN

ϕ(x)π(T, x) dx =

∫

RN

ϕ(XT (t, x))π(t, x) dx. (3.23)

This means that π(T, .)dx is the image of π(t, .)dx by the function x 7→
XT (t, x). In particular, (3.23) is valid also for all ϕ measurable and bounded
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with compact support. Then, taking ϕ = ψ sgn(π(T, .)), we get for any ψ
measurable bounded with compact support and nonnegative

∫

RN

ψ(x)|π(T, x)| dx ≤
∫

RN

ψ(XT (t, x))|π(t, x)| dx. (3.24)

Letting ψ → 1 we conclude that
∫

RN

|π(T, x)| dx ≤
∫

RN

|π(t, x)| dx. (3.25)

Since the restriction on a subinterval of any weak solution π to (1.6) is again
a weak solution, we can replace T in (3.25) by any value s ≥ t, which proves
the first assertion.

In order to prove (i), we first recall that if π ∈ RT , then |π| ∈ RT . Thus
in the case where π(T, .) ∈ L∞

c (RN), we obviously get that
∫
|π(t, x)|dx is

constant by integrating the equation satisfied by |π|. In the general case
π(T, .) ∈ L∞

loc, we can define πT
n (x) = π(T, x)1I|x|≤n. Denoting by πn the re-

versible solution with final data πT
n , we have that πn(t, .) → π(t, .) a.e. for each

t, and we conclude by monotone convergence.
Let us finally prove (ii). Consider the reversible solution πrev with final

data π(T, .). Since π ∈ Vect(J T ), we have by the same argument as in the
proof of Proposition 3.10 that π = πrev a.e. in (V T

e )c. Thus for almost every
t,

∫

RN

|π(t, x)| dx =

∫

(t,x)/∈V T
e

|πrev(t, x)| dx+

∫

(t,x)∈V T
e

|π(t, x)| dx. (3.26)

But since πrev = 0 a.e. in V T
e , and by (i), we have

∫

(t,x)/∈V T
e

|πrev(t, x)| dx =

∫

RN

|πrev(t, x)| dx =

∫

RN

|π(T, x)| dx. (3.27)

Therefore, writing that
∫
|π(t, x)|dx is constant and finite, we obtain that∫

(t,x)∈V T
e
|π(t, x)| dx = 0 for a.e. t, which gives that π = 0 a.e. in V T

e . We

conclude that π = πrev a.e. in (0, T ) × R
N . �

4 Forward problem, duality solutions

We consider now the forward nonconservative transport problem (1.1)-(1.2).
We can only hope to have solutions of bounded variation in x, thus we define
the space

SBV = C([0, T ], L1
loc(R

N)) ∩ B([0, T ], BVloc(R
N)), (4.1)

where B stands for the space of bounded functions. This regularity is however
not enough to ensure a unique a priori determination of the product a ×
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∇u. We therefore have to define solutions in a weak sense, via the backward
conservative problem studied in the previous section. Reversible solutions on
a subinterval [0, τ ] are involved, which is meaningful, T has to be replaced by
τ in Definitions 3.8 and 3.5.

Definition 4.1 (Duality solutions) We say that u ∈ SBV is a duality so-
lution to (1.1) if for any 0 < τ ≤ T and for any reversible solution π to
∂tπ + div(aπ) = 0 in (0, τ) × R

N with compact support in x, one has that

t 7−→
∫

RN

u(t, x) π(t, x) dx is constant in [0, τ ]. (4.2)

This definition is motivated by the following lemma.

Lemma 4.2 Let p ∈ Liploc([0,T]×R
N) solve ∂tp+a ·∇p = 0 a.e. in (0, T )×

R
N . Then p is a duality solution.

Proof. By Lemma 3.2, for any reversible solution π in (0, T ) × R
N , we have

∂t(pπ) + div(apπ) = 0. If π has compact support, we deduce by integration
in x that

∫
p(t, x)π(t, x) dx = cst in [0, T ]. Since p is also a solution on a

subinterval [0, τ ], this yields the result. �

We are now in position to prove the main result of this section, namely
existence and uniqueness in the duality sense for the transport equation (1.1).

Theorem 4.3 (Nonconservative forward Cauchy problem) For any u0 ∈
BVloc(R

N), there exists a unique duality solution u ∈ SBV to (1.1) such that
u(0, .) = u0.

Proof of uniqueness. Assume that there exists a duality solution u such
that u(0, .) = 0. Then, by definition, we have for any 0 ≤ t ≤ τ

∫

RN

u(t, x) π(t, x) dx =

∫

RN

u(0, x) π(0, x) dx = 0, (4.3)

for any π reversible solution in [0, τ ] with compact support. Choosing in par-
ticular t = τ , and since π(τ, .) is arbitrary in L∞

c , we obtain that u(τ, .) = 0.
This is true for any 0 < τ ≤ T , thus u ≡ 0. �

The existence proof makes use of the following a priori BV bound.

Lemma 4.4 Assume that a ∈ C1([0, T ] × R
N ) and that u ∈ C2([0, T ] × R

N)
solves (1.1) in the classical sense. Then for any 0 ≤ t ≤ T ,

∫

B(x0,R)

N∑

i=1

∣∣∣∣
∂u

∂xi
(t, x)

∣∣∣∣ dx ≤
√
Ne(N−1)

∫ t

0
α(s)ds

∫

B(x0,R+t‖a‖∞)

N∑

i=1

∣∣∣∣
∂u

∂xi
(0, x)

∣∣∣∣ dx.

(4.4)
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Proof. Differentiating (1.1) with respect to xj , we get

(∂t + a · ∇)(∂ju) + ∂ja · ∇u = 0. (4.5)

Then, defining ψ = (
∑

j(∂ju)
2)1/2, we obtain

ψ (∂t + a · ∇)ψ +
∑

i,j

∂jai ∂iu ∂ju = 0, (4.6)

or
ψ(∂tψ + div(aψ)) + ∇ut∇a∇u− ψ2 div a = 0. (4.7)

Noticing that ∇ut ∇u = ψ2 and

ψ2 div a −∇ut∇a∇u = ∇ut

(
(div a) Id−∇a + ∇at

2

)
∇u, (4.8)

the equation (4.7) gives with the inequality (2.13)

ψ(∂tψ + div(aψ)) ≤ (N − 1)α(t)ψ2, (4.9)

and therefore
∂tψ + div(aψ) ≤ (N − 1)α(t)ψ. (4.10)

Defining φ = ψe−(N−1)
∫ t

0
α, we deduce that

∂tφ+ div(aφ) ≤ 0, (4.11)

and integrating this over a cone yields
∫

B(x0,R)

φ(t, x) dx ≤
∫

B(x0,R+t‖a‖∞)

φ(0, x) dx. (4.12)

Translating this to ψ gives
∫

B(x0,R)

ψ(t, x) dx ≤ e(N−1)
∫ t

0
α

∫

B(x0,R+t‖a‖∞)

ψ(0, x) dx. (4.13)

But according to the Cauchy-Schwarz inequality ψ ≤
∑

|∂ju| ≤
√
Nψ, which

gives the estimate (4.4). �

Remark 4.1 In the case N = 1, Lemma 4.4 reduces to a TVD property.

Proof of existence in Theorem 4.3. Consider a sequence of coefficients
an ∈ C2, an bounded in L∞, satisfying the OSLC condition for some αn

bounded in L1, such that an → a in L1
loc. Then we have a classical flow

Xn(s, t, x) ∈ C2 associated to an, satisfying ∂sXn(s, t, x) = an(s,Xn(s, t, x)),
Xn(t, t, x) = x. Consider also a sequence of initial data u0

n ∈ C2, bounded in
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BVloc, such that u0
n → u0 in L1

loc. Then, let us define un(t, x) ∈ C2 to be the
classical solution to

∂tun + an · ∇un = 0 in (0, T ) × R
N , un(0, .) = u0

n. (4.14)

According to Lemma 4.4, un is uniformly bounded in B([0, T ], BVloc(R
N )). But

since un is given by un(t, x) = u0
n(Xn(0, t, x)), we have for any 0 < τ ≤ T ,

ϕ ∈ L∞
c (RN) and 0 ≤ t ≤ τ

∫

RN

un(t, x)ϕ(Xn(τ, t, x))J(Xn)(τ, t, x) dx

=

∫

RN

un(t, Xn(t, τ, x))ϕ(x) dx

=

∫

RN

u0
n(Xn(0, τ, x))ϕ(x) dx

=

∫

RN

u0
n(x)ϕ(Xn(τ, 0, x))J(Xn)(τ, 0, x) dx.

(4.15)

But as in the proof of Proposition 3.6, Xn is uniformly Lipschitz continuous
in the domain 0 ≤ t ≤ s ≤ T , x ∈ R

N , and up to a subsequence it converges
to X, such that Xτ ≡ X(τ, ., .) is a transport flow in [0, τ ]. Taking t = τ
in (4.15), we get that |

∫
un(τ, .)ϕ| ≤ C‖ϕ‖∞, the constant C depending on

the support of ϕ. Therefore un is bounded in C([0, T ], L1
loc(R

N)) also. But
by (4.14), un is equicontinuous in time, thus extracting a subsequence again,
un → u in C([0, T ], L1

loc(R
N)), with u ∈ SBV satisfying u(0, .) = u0. For any

ϕ ∈ Cc(R
N ) we can pass to the limit in (4.15), thus for 0 ≤ t ≤ τ

∫

RN

u(t, x)ϕ(X(τ, t, x))J(X)(τ, t, x) dx

=

∫

RN

u0(x)ϕ(X(τ, 0, x))J(X)(τ, 0, x) dx.
(4.16)

By approximation this is still valid for ϕ ∈ L∞
c . Noticing that π(t, x) ≡

ϕ(X(τ, t, x))J(X)(τ, t, x) is the reversible solution in [0, τ ] with final data ϕ,
we conclude that (4.2) holds, and u is a duality solution. �

5 Weak stability

To have weak stability results under sharp assumptions is a key point in de-
veloping an efficient well-posedness theory. We show here that our notions of
reversible and duality solutions are very well adapted to this achievement.

We shall consider in this section a sequence of coefficients an such that

an is uniformly bounded in L∞((0, T ) × R
N), (5.1)

and

an satisfies an OSLC condition for some αn bounded in L1(0, T ). (5.2)
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Then, after extraction of a subsequence,

an ⇀ a in L∞w∗, (5.3)

and according to Lemma 2.1, a also satisfies an OSLC condition. The main
two results of this section are the following.

Theorem 5.1 (reversible backward stability) Assume (5.1)-(5.3), and let
πT

n be a bounded sequence in L∞
loc(R

N) such that πT
n ⇀ πT locally in L∞w∗.

Then the reversible solution πn to

∂tπn + div(anπn) = 0 in (0, T ) × R
N , πn(T, .) = πT

n (5.4)

converges in C([0, T ], L∞
loc(R

N )w∗) to the reversible solution π to

∂tπ + div(aπ) = 0 in (0, T ) × R
N , π(T, .) = πT . (5.5)

Moreover, anπn ⇀ aπ.

Theorem 5.2 (forward duality stability) Assume (5.1)-(5.3), and let u0
n

be a bounded sequence in BVloc(R
N) such that u0

n → u0 in L1
loc. Then the

duality solution un to

∂tun + an · ∇un = 0 in (0, T ) × R
N , un(0, .) = u0

n (5.6)

converges in C([0, T ], L1
loc(R

N )) to the duality solution u to

∂tu+ a · ∇u = 0 in (0, T ) × R
N , u(0, .) = u0. (5.7)

Proof of Theorem 5.1. The sequence πn is bounded in L∞
loc(R

N), uniformly
in t and n. Since (5.4) gives compactness in time, we have after extraction of
a subsequence that πn converges to some π in C([0, T ], L∞

loc(R
N)w∗). We have

that
πn(t, x) = πT

n (XT
n (t, x))J(XT

n )(t, x), (5.8)

where XT
n is a transport flow associated to an. According to (3.15), we can

choose XT
n uniformly bounded in Lip([0,T] × R

N), and thus we can extract a
subsequence converging locally uniformly to some XT ∈ Lip([0,T]×R

N). Tak-
ing into account Lemma 2.2, we have that div an is bounded in Mloc((0, T )×
R

N). Thus for i = 1, . . . , N ,

an · ∇(XT
n )i = div(an(XT

n )i) − div(an)(XT
n )i

−→ div(a (XT )i) − div(a)(XT )i = a · ∇(XT )i,
(5.9)

and we deduce that XT is a transport flow associated to a. According to
Remark 3.1 and the uniform bounds, when localizing in x in (5.8), only values
of πT

n on a bounded set are involved. Therefore, we can apply Lemma A.4 to
pass to the limit in (5.8) at a fixed time t, and we conclude that π(t, x) =
πT (XT (t, x))J(XT )(t, x), i.e. that π is the reversible solution to (5.5). The
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uniqueness of the limit ensures that in fact it is not necessary to extract any
subsequence.

Let us finally prove the convergence of anπn. According to (5.8) and to
(3.10), we have

(an)kπn = πT
n (XT

n )(−1)k det

(
∂tX

T
n ,
∂XT

n

∂x1
, . . . ,

∂̂XT
n

∂xk
, . . . ,

∂XT
n

∂xN

)
. (5.10)

Applying Lemma A.4 in the variables (t, x), we conclude that we can pass to
the limit weakly in the right-hand side, which gives that anπn ⇀ aπ. �

Remark 5.1 Another way of proving the convergence of anπn is by using Lemma
2.2. From the identity ∆ai =

∑
j ∂j(∂jai + ∂iaj) − ∂i div a and the fact that

∇an +∇at
n is bounded in Mloc((0, T )×R

N ), we deduce that an is compact in
x, i.e. that ‖an(t, x+ h)− an(t, x)‖L1((0,T )×BR) → 0 as h tends to 0, uniformly
in n. Since πn → π in C([0, T ], L∞

loc(R
N)w∗), this is enough to conclude that

anπn ⇀ aπ.

Remark 5.2 According to Lemma 2.2 and to Theorem 3.3 in [6], πn and π lie
in C([0, T ], L1

loc(R
N)). It is an open problem to prove that if πT

n → πT in L1
loc,

then πn → π in C([0, T ], L1
loc(R

N)).

Proof of Theorem 5.2. The sequence un is bounded in SBV , and equicon-
tinuous in time (even if (5.6) does not hold in the classical sense, the a priori
estimate on ∂tun in L∞

t (Mloc(R
N)) is valid). Therefore, after extraction of a

subsequence, un converges in C([0, T ], L1
loc(R

N)) to some u ∈ SBV satisfying
u(0, .) = u0. Now, for any 0 < τ ≤ T and any πτ ∈ L∞

c (RN), we have that

t 7−→
∫

RN

un(t, x) πn(t, x) dx is constant in [0, τ ], (5.11)

where πn is the reversible solution to ∂tπn + div(anπn) = 0 in (0, τ) × R
N ,

πn(τ, .) = πτ . Applying Theorem 5.1 on (0, τ), we deduce that πn → π in
C([0, τ ], L∞

loc(R
N)w∗) where π is the reversible solution to ∂tπ + div(aπ) = 0

in (0, τ) × R
N , π(τ, .) = πτ . Passing to the limit in (5.11), we get that

t 7−→
∫

RN

u(t, x) π(t, x) dx is constant in [0, τ ], (5.12)

which means that u is the duality solution to (5.7). By uniqueness, we con-
clude that it is indeed not necessary to extract any subsequence. �

6 Nonuniqueness of transport flows

The aim of this section is to show that the uniqueness results established in
Section 3 are optimal, in the sense that first the transport flow is not unique,
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and second its jacobian is uniquely determined.

Our example is in two space dimensions, and is really the simplest nontrivial
coefficient we can think of,

a(t, x1, x2) = (− sgn x1, 0). (6.1)

It is bounded, and obviously satisfies the OSLC condition with α ≡ 0. Since
the second component of a vanishes identically, the second variable x2 only
stands as a parameter in (1.6) and (3.1). We deduce the general solution
p ∈ Liploc([0,T] × R

N) to (3.1) by just adding a parameter x2 to the general
solution of the one-dimensional problem obtained in [8],

p(t, x1, x2) = ϕ
((

|x1| − (T − t)
)
+

sgn x1, x2

)
+ h
((
T − t− |x1|

)
+
, x2

)
, (6.2)

with

ϕ ∈ Liploc(R × R), h ∈ Liploc([0,T] × R), h(0, x2) = 0. (6.3)

Similarly, the general solution π ∈ C([0, T ], L∞
loc(R

N)w∗) to (1.6) (i.e. π ∈
WT ), is given by

π(t, x1, x2) = 1I|x1|≥T−t ψ
((

|x1| − (T − t)
)
+

sgn x1, x2

)

+ 1I|x1|<T−t g
((
T − t− |x1|

)
+
, x2

)
sgn x1,

(6.4)

with
ψ ∈ L∞

loc(R × R), g ∈ L∞
loc([0, T ] × R). (6.5)

Now, we see from (6.2) that p ∈ ET if and only if ϕ ≡ 0, and therefore

V T
e = {(t, x1, x2) ∈ (0, T ) × R

2 such that |x1| < T − t}. (6.6)

Then, we see that π in (6.4) lies in VT if and only if g ≡ 0.

Let us now look for transport flows XT , as in Definition 3.5. Each compo-
nent of XT has to be of the form (6.2), with final data ϕi given respectively
by ϕ1(x1, x2) = x1 and ϕ2(x1, x2) = x2. The functions hi are arbitrary, thus

XT (t, x1, x2) =

(
(
|x1| − (T − t)

)
+

sgn x1 + h1

((
T − t− |x1|

)
+
, x2

)
,

x2 + h2

((
T − t− |x1|

)
+
, x2

))
,

(6.7)

and we need only to write that J(XT ) ≥ 0. According to the conditions
(6.3), in the set where |x1| ≥ T − t we have J(XT ) = 1, while J(XT ) =
−(sgn x1) (∂th1(1 + ∂2h2) − ∂2h1∂th2) (

(
T−t−|x1|

)
+
, x2) in the set |x1| < T−t.
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Since this last quantity is odd with respect to x1, its nonnegativity implies that
it vanishes identically, thus the condition J(XT ) ≥ 0 resumes to

∂th1 (1 + ∂2h2) − ∂2h1 ∂th2 ≡ 0. (6.8)

Once this is satisfied, we have

J(XT ) = 1I|x1|≥T−t, (6.9)

and as predicted by Lemma 3.4, this is independent of the choice of h1, h2.
According to Definition 3.8, π in (6.4) is reversible if and only if g ≡ 0. Thus
for our coefficient a, we have here equality in (3.18).

Finally, we can observe that the transport flow is not unique even if we
impose the semi-group property. Denoting by X(s, t, x) = Xs(t, x) for 0 ≤ t ≤
s ≤ T , this means that

X(s, t, X(t, τ, x)) = X(s, τ, x) for 0 ≤ τ ≤ t ≤ s ≤ T. (6.10)

Choosing h1 ≡ 0 and h2(t, x2) = λt in (6.7), the conditions (6.3) and (6.8) are
satisfied thus we get a transport flow Xλ for any λ ∈ R,

Xλ(s, t, x1, x2) =

(
(
|x1| − (s− t)

)
+

sgn x1, x2 + λ
(
s− t− |x1|

)
+

)
. (6.11)

Noticing that (τ1 − |x1|)+ + (τ2 − (|x1| − τ1)+)+ = (τ1 + τ2 − |x1|)+ for any
τ1, τ2 ≥ 0, one easily checks that (6.10) holds for any λ. However, it is well-
known that for a coefficient satisfying the OSLC condition, there is only one
flow X which solves ∂sX(s, t, x) = a(s,X(s, t, x)) in the sense of Filippov. It
is indeed obtained for the choice λ = 0.

Appendix

This appendix is devoted to some useful results on jacobian determinants. The
first two lemmas are proved in [6], respectively Lemma 2.5 and Theorem 2.4.

Lemma A.1 (Divergence chain rule) Let g ∈ C1(Rd,Rd) such that

div g ∈ L∞, |g(y)| ≤ C(1 + |y|). (A.1)

Let Ω be an open subset of R
N , and u ∈ L1

loc(Ω,R
d), d ≤ N , such that

∂x1
u, · · · , ∂xN

u ∈ Ld
loc(Ω,R

d). Then for any injective σ : Nd → NN ,

d∑

k=1

∂

∂xσ(k)

[
I

([
∂ui

∂xσ(j)

]

1≤i,j≤d

)
g(u)

]

k

= (div g) ◦ u det

[
∂ui

∂xσ(j)

]

1≤i,j≤d

,

(A.2)
where I(A) denotes the pseudo inverse (i.e. transpose of the cofactor matrix)
of A ∈ Md(R), I(A) = (comA)t.
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Lemma A.2 Let Ω be an open subset of R
N and u ∈ L1

loc(Ω,R
d), d ≤ N ,

such that ∂x1
u, · · · , ∂xN

u ∈ Ld
loc(Ω,R

d). Then for any Borel set Z ⊂ R
d such

that |Z| = 0 and any injective σ : Nd → NN ,

∣∣∣∣∣

{
x ∈ Ω ; u(x) ∈ Z and det

(
∂ui

∂xσ(j)

)

1≤i,j≤d

6= 0

}∣∣∣∣∣ = 0. (A.3)

In other words, rank(Du(x)) < d almost everywhere on u−1(Z).

Lemma A.3 Let Ω be an open subset of R
N+1 with N ≥ 1, and H1, . . . , HN ∈

L1
loc(Ω) such that ∇Hi ∈ LN

loc(Ω). Define for k = 0, . . . , N

Vk = (−1)k det

(
∂Hi

∂xj

)

i=1,...,N, j=0,...,k−1,k+1,...,N

. (A.4)

Then V ∈ L1
loc(Ω) satisfies div V = 0 in the sense of distributions in Ω.

Proof. Let us assume that Hi ∈ C∞, the general case being easily deduced
by approximation. Consider an arbitrary function H0 ∈ C∞, and apply
Lemma A.1 with d = N + 1, g(y) = (1, 0, . . . , 0) ∈ R

N+1, u = (H0, . . . , HN),
and σ = Id. We get that div(I(∇u)g) = 0, which gives the result since
V = (−1)NI(∇u)g. �

We can notice in the previous lemma that Hi are like Hamiltonians for V since
V · ∇Hi = 0. This can be seen by the identity

V · ∇Hi = (−1)N [I(∇u)g] · ∇Hi

= (−1)N det (∇H1, . . . ,∇HN ,∇Hi) = 0.
(A.5)

Another proof of Lemma A.3 is to consider the N differential form ω =
dH1 ∧ · · · ∧ dHN . Then its external differential vanishes, dω = 0, because

d2 = 0. One can check that ω =
∑N

k=0(−1)k−1Vk dx0 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxN ,
giving div V = 0.

The next lemma is a generalization of the weak stability of the jacobian deter-
minant (see [29, 30] and [5]).

Lemma A.4 Let Ω be an open subset of R
N and 1 ≤ d ≤ N . Consider a se-

quence u(n) bounded in L1
loc(Ω,R

d) such that ∂xj
u(n) is bounded in Ld

loc(Ω,R
d)

for 1 ≤ j ≤ N , and assume that u(n) → u in L1
loc(Ω,R

d), with ∂xj
u ∈

Ld
loc(Ω,R

d). Consider also a sequence ψn bounded in L∞(Rd) such that ψn ⇀ ψ
in L∞w∗. Then for any σ : Nd → NN injective,

ψn(u(n)) det

[
∂u

(n)
i

∂xσ(j)

]

1≤i,j≤d

⇀ ψ(u) det

[
∂ui

∂xσ(j)

]

1≤i,j≤d

(A.6)

in the sense of distributions in Ω.
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Proof. According to Lemma A.2, both sides in (A.6) are well-defined as ele-
ments of L1

loc(Ω).
Let us consider first the case ψn = ψ = 1, i.e. the case of pure jacobians.

Then the result can be established by induction on d. When d = 1, this
is obvious by linearity. Assuming the result to be true at level d − 1, with
2 ≤ d ≤ N , we apply Lemma A.1 with g(y) = y/d, to u(n) and u. We deduce
that we only need to prove that

I (An)u(n) ⇀ I (A) u, (A.7)

where

An =

[
∂u

(n)
i

∂xσ(j)

]

1≤i,j≤d

, A =

[
∂ui

∂xσ(j)

]

1≤i,j≤d

. (A.8)

Since the coefficients of I(An) are sub-determinants of order d − 1 of An, the
recurrence assumption ensures that I(An) ⇀ I(A). Since I(An) is bounded in
Ld′

loc, this convergence holds in Ld′

loc−w∗. But according to Sobolev imbedding,
u(n) → u in Ld

loc, and this yields (A.7).
In the case ψ 6≡ 1, define

g(y) =
1

|Sd−1|

∫

Rd

(
y − z

|y − z|d +
z

|z|d − 1I|z|≥1

(
y

|z|d − d× (y · z) z

|z|d+2

))
ψ(z) dz.

(A.9)

Then g ∈ C0,β
loc (Rd,Rd) for any β < 1, div g = ψ, and

|g(y)| ≤ Cd(1 + |y| ln+ |y|)‖ψ‖∞. (A.10)

This last estimate can be obtained as follows. For R > 0, define MR to be the
supremum over |y| ≤ R of the L1 norm in z of the term between parentheses in
(A.9). Then one can check easily thatM2R ≤ 2MR+CdR, and this implies that
MR ≤ Cd(1 + R ln+R). This proves (A.10). Now, we claim that (A.2) holds
with this nonlinearity g. Indeed the right-hand side makes sense according to
Lemma A.2, and the left-hand side also by (A.10), since by Sobolev imbedding,
u ∈ Ld+ε

loc for some ε > 0. The validity of (A.2) for g defined by (A.9) and
ψ ∈ L∞(Rd) can be obtained by approximating ψ by some smooth functions
with compact support.
Finally, for our stability result when ψn ⇀ ψ in L∞w∗, according to the pre-
vious argument, we can apply (A.2) to u and g corresponding to ψ, and also
to u(n) and gn corresponding to ψn. Thus in order to get (A.6), it is enough
to prove that I(An)gn(u(n)) ⇀ I(A)g(u), with An and A defined by (A.8). By
the first step of pure jacobians, we have I(An) ⇀ I(A) in Ld′

loc −w∗. But since
ψn ⇀ ψ we have gn → g locally uniformly. Using (A.10) and the fact that
u(n) → u in Ld+ε

loc for some ε > 0, we get that gn(u
(n)) → g(u) in Ld

loc, and thus
I(An)gn(u(n)) ⇀ I(A)g(u). �
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dérivées partielles et applications, articles dédiés à J.-L. Lions, Gauthier-
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