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An introduction to arithmetic groups

Christophe Soulé

CNRS and IHES, 35 Route de Chartres, 91440 Bures sur Yvette, France.
soule@ihes.fr

Arithmetic groups are groups of matrices with integral coefficients. They first
appeared in the work of Gauss, Minkowski and others on the arithmetic theory
of quadratic forms. Their reduction theory consists in showing that, after a
linear change of variables with integral coefficients, any quadratic form can
be forced to satisfy an appropriate set of inequalities.

Around 1940, Siegel developed a general theory of arithmetic subgroups
of classical groups, and the corresponding reduction theory. Later on, once
Chevalley, Borel, Tits and others had developed the general theory of algebraic
groups, one could speak of the arithmetic subgroups of any linear algebraic
group over Q. Borel et al. extended the work of Siegel to arbitrary arithmetic
groups.

These groups play a fundamental role in number theory, and especially
in the study of automorphic forms, which can be viewed as complex valued
functions on a symmetric domain which are invariant under the action of
an arithmetic group. In the last ten years, it appeared that some arithmetic
groups are the symmetry groups of several string theories. This is probably
why this survey fits into these proceedings.

In a first chapter we shall describe the classical reduction theory of
quadratic forms. After describing the action of SL2(Z) on the Poincaré upper
half-plane (Theorem 1) we explain how Siegel defined a fundamental domain
for the action of GLN (Z) on real quadratic forms in N variables (Theorem 2).
We then proceed with the general definition of linear algebraic groups over Q
and their arithmetic subgroups (§ 3). An important example is a construction
of Chevalley which defines an arithmetic group G(Z) when given any root sys-
tem Φ together with a lattice between the root lattice and the weight lattice of
Φ (3.3). In 3.4 (and in the Appendix) we explain how the group E7(Z) of [10]
is an example of this construction. We then describe the general construction
of Siegel sets and the reduction theory of arithmetic groups (Theorem 4). In
particular, it follows that any arithmetic subgroup of a semi-simple algebraic
group over Q has finite covolume in its real points.
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The second chapter deals with several algebraic properties of arithmetic
groups. As a consequence of reduction theory, we show that these groups
are finitely generated. In fact they admit a finite presentation (Theorem 6).
We give some explicit presentations of SLN (Z), N ≥ 2, and of the Cheval-
ley groups G(Z) (5.6–5.8). We then show that, up to conjugation, arithmetic
groups contain only finitely many finite subgroups (Theorem 7). Furthermore,
they always contain a torsion free subgroup of finite index (Theorem 8). Fol-
lowing Minkowski, one can compute the least common multiple of the order
of the finite subgroups of GLN (Z) (6.3). Coming back to N = 2, we prove
that any torsion free subgroup of SL2(Z) is a free group (Theorem 10). We
conclude this section with the open problem, raised by Nahm, of finding the
minimal index of torsion free subgroups of SLN (Z), N ≥ 3.

One of the main properties of arithmetic groups is their “rigidity” inside
the corresponding algebraic and Lie groups, at least when their rank is bigger
than one. A lot of work has been accomplished on this theme. We start Chap-
ter 3 with the congruence subgroup property, which states that any subgroup
of finite index in Γ contains the group of elements congruent to the identity
modulo some integer. This property holds for arithmetic subgroups of simple
simply connected Chevalley groups of rank bigger than one (Theorem 13),
but it is wrong for SL2 (Corollary 18). When studying that problem, Bass,
Milnor and Serre discovered that, under suitable hypotheses, any linear rep-
resentation of Γ over Q coincides with an algebraic representation on some
subgroup of finite index (Proposition 14). This important rigidity property has
many consequences, including the fact that the abelianization of Γ is finite
(Corollary 17).

Another approach to rigidity is Kazhdan’s property (T), as explained in
Theorems 19 and 20. Finally, we state the famous result of Margulis (Selberg’s
conjecture) that any discrete subgroup of finite covolume in a simple, non-
compact, connected Lie group of rank bigger than one is “arithmetic” in a
suitable sense (Theorem 21). This follows from a “superrigidity” theorem for
representations of arithmetic groups (Theorem 22). Finally, we give another
result of Margulis (Theorem 23), which states that arithmetic groups have
rather few normal subgroups.

There are many results on arithmetic groups which are not covered by
these notes. These include the different methods to compactify the quo-
tient of a symmetric domain by the action of an arithmetic group (Baily-
Borel-Satake, Borel-Serre. . .), the cohomology of arithmetic groups (Borel,
Serre, Franke,. . .), and the ergodicity of their action on Lie groups (Margulis,
Ratner,. . .).

I thank P. Cartier, B. Julia, W. Nahm, N. Nekrasov and J-P. Serre for
helpful discussions.



An introduction to arithmetic groups 3

I. Reduction theory

1 The reduction theory of quadratic forms

1.1

Groups of matrices with integral coefficients first appeared, in the work of
Gauss, Hermite, Minkowski and others, as the symmetry groups for a specific
diophantine problem: which integers can be represented by a given quadratic
form?

Recall that any positive integer is the sum of four squares. More generally,
consider a quadratic form in N variables

ϕ(x) =
∑

1≤i,j≤N

aij xi xj (1)

where aij = aji. We assume that ϕ is positive definite: for any vector x =
(xi) ∈ RN , ϕ(x) ≥ 0 and ϕ(x) = 0 iff x = 0. When all coefficients aij are
integers, we say that a given integer k ∈ N is represented by ϕ if there exists
x ∈ ZN such that ϕ(x) = k.

Let now γ ∈ GLN (Z) be an N by N square matrix with integral coef-
ficients, the inverse of which has integral coefficients as well, i.e. such that
det(γ) = ±1. Let tγ be the transpose of the matrix γ. When we change the
coordinates of x by tγ, we get a new quadratic form γ · ϕ:

(γ · ϕ)(x) = ϕ (tγ(x)) , (2)

for all x ∈ RN . Since γ1(γ2(ϕ)) = (γ1 γ2)(ϕ), formula (2) defines an action of
GLN (Z) on positive definite quadratic forms. It follows from (2) that k is rep-
resented by ϕ iff k is represented by γ ·ϕ for all γ ∈ GLN (Z). Therefore, when
studying the integral values of ϕ we may replace ϕ by any form equivalent to
it.

The reduction theory of quadratic forms consists in studying the orbits of
GLN (Z) on quadratic forms, and finding a good set of representatives for this
action. Let X be the set of positive definite quadratic forms

ϕ(x) =
∑

1≤i,j≤N

aij xi xj ,

where aij = aji are real numbers. We look for a “small” subset D ⊂ X such
that any point of X is the translate of a point in D by an element of Γ ; in
other words:

Γ ·D = X .
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1.2

Consider first the case N = 2. Any positive definite binary form ϕ can be
written uniquely

ϕ(x, y) = a(zx + y)(z̄x + y) (3)

where a > 0 and z is a complex number with positive imaginary part. The
action of positive scalars on X commutes with GLN (Z) (for any N ≥ 2)
and (3) tells us that, when N = 2, the quotient X/R∗

+ is isomorphic to the
Poincaré upper half plane

H = {z ∈ C| Im(z) > 0} .

The action of γ =

(

a b
c d

)

∈ SL2(Z) is given by

γ(z) =
az + b

cz + d
. (4)

Theorem 1. Let D be the set of z ∈ H such that |z| ≥ 1 and |Re(z)| ≤ 1/2
(Figure 1). Then

H = Γ ·D .

Remark. If z lies in the interior of D and γ(z) = z, then γ = ± Id. Fur-
thermore, if |z| > 1 and γ(z) = z, then Re(z) = ± 1/2 and γ(z) = z + 1 or
z − 1.

Proof (see [24], VII, 1.2). Fix z ∈ H. We have

Im(γ(z)) =
Im(z)

|cz + d|2 ,

and, given A > 0, there exist only finitely many (c, d) ∈ Z2 such that |cz+d|2 ≤
A. Therefore we can choose γ such that Im(γ(z)) is maximal. Let T =

(

1 1
0 1

)

.

Since T (z) = z + 1 we can choose n ∈ Z such that

|Re (T n γ(z))| ≤ 1/2 .

We claim that z′ = T n γ(z) lies in D, i.e. |z′| ≥ 1. Indeed, if S =

(

0 −1
1 0

)

, we

get S(z′) = −1/z′, hence

Im(S(z′)) =
Im(z′)

|z′|2 .

Since the imaginary part of z′ is maximal, this implies |z′| ≥ 1.
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Figure 1

2 Siegel sets

More generally, when N ≥ 2, any positive definite real quadratic form ϕ in N
variables can be written uniquely in the following way:

ϕ(x) = t1(x1 + u12 x2 + u13 x3 + · · ·+ u1N xN )2 (5)

+ t2(x2 + u23 x3 + · · ·+ u2N xN )2

+ · · ·
+ tN x2

N ,

where t1, . . . , tN are positive real numbers and uij ∈ R.

Theorem 2 ([3], Th. 1.4). After replacing ϕ by γ · ϕ for some γ ∈ GLN (Z),
we can assume that

|uij | ≤ 1/2 when 1 ≤ i < j < N

and

ti ≤
4

3
ti+1 when 1 ≤ i ≤ N − 1 .

The subset S of X defined by the inequalities of Theorem 2 is called a
Siegel set (see (9) below for a general definition). When N = 2, S is the
shaded region in Figure 2 below, and Theorem 2 follows from Theorem 1.
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Figure 2

3 Arithmetic groups

3.1

Let N ≥ 1 be an integer and G a subgroup of GLN (C). The group G is called
linear algebraic over Q if there exist polynomials P1, . . . , Pk with coefficients
in Q in the variables xij , 1 ≤ i, j ≤ N and u such that G is the set of elements
g = (gij) ∈ GLN (C) such that

P1(gij , det(g)−1) = P2(gij , det(g)−1) = · · · = Pk(gij , det(g)−1) = 0 .

The group G(Q) = G ∩GLN (Q) is called the group of rational points of G.
Given Γ1 and Γ2 two subgroups of G, we say that Γ1 and Γ2 are com-

mensurable when their intersection Γ1 ∩ Γ2 has finite index in both Γ1 and
Γ2.

Definition. Given N ≥ 1 and G ⊂ GLN (C) a linear algebraic group over Q,
an arithmetic subgroup of G is a subgroup Γ of G(Q) which is commensurable
with G ∩GLN (Z).

3.2

A morphism f : G→ G′ of linear algebraic groups over Q is a group morphism
defined by polynomials with coefficients in Q (note that f needs not extend
to a morphism between the ambient linear groups).

Proposition 3 ([3] Cor. 7.13, (3)). If Γ ⊂ G(Q) is an arithmetic subgroup of
G and f : G → G′ a morphism of linear algebraic groups over Q, the image
f(Γ ) is contained in some arithmetic group Γ ′ ⊂ G′(Q).

Remarks. 1) If G ⊂ GLN (C) is a linear algebraic group over Q, we may
consider its ring of rational functions
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A = Q [xij , u]/〈P1, . . . , Pk〉 .

This Q-algebra is finitely generated over Q and carries a Hopf structure
coming from the group structure of G. Therefore GQ = Spec(A) is an
affine group scheme over Q [W]. The group G is the set of complex points
G = Hom(Spec(C), GQ) and G(Q) is the set of rational points of GQ. Note
that the definition of GQ does not refer anymore (up to isomorphism) to a
particular linear embedding.

2) When f : G → G′ is an isomorphism, it follows from Proposition 3 that
f(Γ ) is arithmetic. This proves that the class of arithmetic subgroups of G is
intrinsic, i.e. it depends only on GQ and not on the choice of the embedding
G ⊂ GLN (C).

3) Another consequence of Proposition 3 is that, for any lattice Λ ⊂ QN (i.e.
a free Z-module of rank N), the group Γ of elements γ ∈ G(Q) such that
γ(Λ) = Λ is arithmetic.

3.3

The following general construction of arithmetic groups is due to Chevalley.

3.3.1

Let E be a finite dimensional real euclidean vector space, and Φ ⊂ E a
root system ([11], 9.2). Let L0 ⊂ E be the lattice spanned by Φ (the lattice of
roots) and L1 the lattice of weights, i.e. those λ ∈ E such that 〈λ, α〉 ∈ Z for
all α ∈ Φ. The lattice L0 is contained in L1. Choose a lattice L such that

L0 ⊂ L ⊂ L1 .

Given Φ and L, Chevalley defines as follows a linear algebraic group G over
Q ([7], [26], [11] Chapter VII). Let L be a complex Lie algebra and H ⊂ L a
Cartan subalgebra such that Φ is the set of roots of L with respect to H. If
ℓ = dimCH and if ∆ = {α1, . . . , αℓ} is a basis of Φ, we can choose a Chevalley
basis of L, i.e. a basis {Xα, α ∈ Φ ; Hi, 1 ≤ i ≤ ℓ} such that Hi ∈ H and

[Hi, Hj] = 0

[Hi, Xα] = 〈α, αi〉Xα

[Xα, X−α] ∈
ℓ

⊕

i=1

Z Hi

[Xα, Xβ] =

{

Nαβ Xα+β when α + β ∈ Φ
0 otherwise, α + β 6= 0 .

Here Nαβ ∈ Z and N−α,−β = −Nαβ . Consider a faithful (i.e. injective) repre-
sentation
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ρ : L → End(V )

of L on a finite dimensional complex vector space V such that L is the set
of weights of ρ ([11], Ex. 21.5). For any root α ∈ Φ, the endomorphism
ρ(Xα)n = 0 when n is big enough so it makes sense to define G as the group
of endomorphisms of V generated by the exponentials

exp(t ρ(Xα)) =
∑

n≥0

tn
ρ(Xα)n

n!

for all t ∈ C and α ∈ Φ.
One can choose a basis of V such that its Z-span M is stable by the

action of every endomorphism ρ(Xα)n

n! , n ≥ 1, α ∈ Φ (such a lattice is called
admissible). If the embedding G ⊂ GLr(C) is defined by such a basis (r =
dimC V ), G is the set of zeroes of polynomials with Q-coefficients ([26], § 5,
Th. 6). It can be shown [7] [26] that, up to canonical isomorphism, the linear
algebraic group G over Q depends only on Φ and L.

When L = L0, the group G is called adjoint, and when L = L1 it is called
simply connected (or “universal”).

3.3.2

Let Φ, L, ρ and M be as above. The group G(Z) = {g ∈ G such that
g(M) = M} is an arithmetic subgroup of G. Up to canonical isomorphism
(defined by means of polynomials with integral coefficients, respecting the
inclusion G(Z) ⊂ G(Q)) it depends only on Φ and L. In fact, Chevalley proves
in [7] that (Φ, L) defines an affine group scheme GZ over Z, and

G(Z) = Hom(Spec(Z), GZ)

is its set of integral points.

3.4

The group of integral points of the simply connected Chevalley group scheme
of type An (resp. Bn) is the group SLn(Z) of integral matrices with determi-
nant one (resp. the group Sp2n(Z) of symplectic matrices in SL2n(Z)).

Another example is the simply connected Chevalley group scheme G of
type E7 over Z and its set G(Z) of integral points. Consider the split Lie
group E7(+7) of type E7 and its fundamental representation E7(+7) ⊂ Sp56(R)
of dimension 56, as described in [8], Appendix B. Let E7(Z) = E7(+7)∩Sp56(Z)
as in [10]. We shall prove in the Appendix that

E7(Z) = G(Z) . (6)
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3.5

Assume F is a number field (a finite extension of Q). We can define linear
algebraic groups G over F in the same way as when F = Q, by choosing a
complex embedding of F or more intrinsically as in 3.2 Remark 1). Matrices
in G with coefficients in the integers of F are arithmetic groups.

However, these definitions do not enlarge the class of arithmetic groups.
Indeed G(F ) can be viewed as the group of rational points H(Q) = G(F ),
where H = ResF/Q G is the restriction of scalars of G from F to Q ([3] 7.16,
[21] Chapter 3, § 6.1).

For example, let d > 0 be a positive integer which is not a square. Consider
the subgroup H of GL2(C) made of matrices g = (gij) such that g11 = g22,
g21 = dg12 and det(g) = 1. In other words each g ∈ H can be written

g = x · 1 + y · σ

where σ =

(

0 1
d 0

)

. Note that σ2 = d · 1. The group H is the restriction of

scalars ResF/Q GL1 where F = Q (
√

d). Note that H(R) is isomorphic to R∗

(map x · 1 + y · σ to x + y
√

d) but H is not isomorphic to GL1 over Q. We
have H(Q) = F ∗, and the group of units O∗

F is an arithmetic subgroup of H .

4 The reduction theory of arithmetic groups

4.1

Theorem 1 can be extended to all arithmetic subgroups of reductive groups.
We first need some definitions. A linear algebraic group U is called unipotent
(resp. solvable) when there exists a finite filtration · · · ⊂ Ui ⊂ Ui+1 ⊂ · · · ⊂ U
of U by (Zariski) closed normal subgroups such that each quotient Ui+1/Ui is
isomorphic (over Q) to the additive group (resp. is abelian). If G is any linear
algebraic group over Q, the unipotent radical Ru(G) (resp. the radical R(G))
is the maximal closed connected unipotent (resp. solvable) normal subgroup
of G. Of course Ru(G) is contained in R(G). The group G is called reductive
(resp. semi-simple) when Ru(G) = {1} (resp. R(G) = {1}).

Let G be a reductive linear algebraic group over Q, let G0 be the connected
component of the unit element 1 ∈ G, and let P be a minimal parabolic
subgroup of G0 over Q, i.e. a minimal closed connected subgroup P ⊂ G0 such
that the variety G/P 0 is projective. According to [3], Th. 11.4, i), one can
write P as a product of subgroups

P = M · S · U , (7)

where U = Ru(P ) and S is a maximal split Q-torus of P (i.e. S is isomorphic
over Q to a power of the multiplicative group). Let X(Z(S)) be the set of
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characters χ : Z(S) → GL1 over Q of the centralizer Z(S) of S in G0. Then
M is defined as the connected component of 1 in the intersection ∩ ker(χ) of
the kernels of all the characters χ ∈ X(Z(S)).

Furthermore, if G(R) = G∩GLN (R) is the group of real points of G and K
a maximal compact subgroup of this Lie group G(R), we may write, according
to [3] 11.19,

G(R) = P (R) ·K = M0 ·N ·A ·K (8)

where M0 (resp. A) is the (usual) connected component of 1 in M(R) (resp.
S(R)), and N = U(R). The decomposition (8) generalizes the Iwasawa de-
composition.

4.2

For example, when G = GLN (C), we can choose for K the group ON (R) of
orthogonal matrices, for P lower triangular matrices, for S diagonal ones, for
N lower unipotent matrices and M = {1}. Define a map from GLN (R) to the
space X of real positive definite quadratic forms by the formula

ϕ(x) = ‖tg(x)‖2 .

Using this map, we see that (8) follows from (7) in this case.

4.3

We come back to the notations of § 4.1. Let X(S) = HomS(S, GL1) be the
set of characters of S over Q, and let Φ ⊂ X(S) be the set of roots of G. The
group U defines an ordering of Φ ([3], 11.6 (3)) and we let ∆ ⊂ Φ be the set
of positive simple roots. For any real number t > 0 let

At = {a ∈ A|α(a) ≤ t for all α ∈ ∆} .

If ω is any compact neighbourhood of 1 in M0 ·N we define

St,ω = ω · At ·K , (9)

a subset of G(R) by (8). This set St,ω is called a Siegel set.

Theorem 4. Let G be a reductive linear algebraic group over Q and Γ an
arithmetic subgroup of G.

i) ([3], Th. 1.3.1) One can choose t > 0 and ω as above, and a finite subset
C in G(Q) such that

G(R) = Γ · C ·St,ω .

ii) ([3], Th. 15.4) For any choice of t and ω, and any g ∈ G(Q), the set of
elements γ ∈ Γ such that g ·St,ω meets γ ·St, ω is finite.
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iii) ([3], Lemma 12.5) The Haar measure of any Siegel set is finite iff the set
of rational characters X(G0) is trivial.

Corollary 5. With the same hypotheses:

i) The quotient Γ\G(R) is compact iff G is anisotropic over Q (i.e. S = U =
{1}).

ii) The (invariant) volume of Γ\G(R) is finite iff G0 has no nontrivial cha-
racter over Q ( e.g. if G is semi-simple).
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II. Some algebraic properties
of arithmetic groups

5 Presentations

5.1

Let S be a set. The free group F (S) over S is defined by the following universal
property: S is contained in F (S) and, given any group G and any map of sets
ϕ : S → G, there exists a unique group morphism ϕ̃ : F (S) → G which
coincides with ϕ on S, i.e. such that the diagram

F (S)
ϕ̃−→ G

տ րϕ

S

commutes.
Clearly F (S) is unique up to unique isomorphism. A construction of F (S)

is given in [14] I, § 8, Prop. 7.

5.2

Given a group G, a presentation of G is a pair (S, R) where S ⊂ G is a subset
of G and R ⊂ F (S) is a subset of the free group over S such that

i) S spans G, i.e. the canonical map F (S)→ G is surjective;
ii) the kernel of the map F (S) → G is the smallest normal subgroup 〈R〉 of

F (S) containing R.

It follows from i) and ii) that G is isomorphic to F (S)/〈R〉. We say that
G is generated by S, with relations r = 1 for all r ∈ R.

When S and R are finite, (S, R) is a finite presentation of G.

5.3

For example, when S = {x, y} consists of two elements and R = {x2, y2, (xy)3}
the group G = F (S)/〈R〉 is the group S3 of permutations of three elements.
This can be seen by mapping x (resp. y) to the permutation (123) → (213)
(resp. (123)→ (132)).
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5.4

Here are two finite presentations of SL2(Z):

a) SL2(Z) is generated by x =

(

1 1
0 1

)

and y =

(

1 0
1 1

)

with relations

(x−1 y x−1)4 = 1 and x y−1 x = y−1 x y−1 .

b) SL2(Z) is generated by W =

(

0 −1
1 0

)

and A =

(

1 −1
1 0

)

with relations

W 2 = A3 and W 4 = 1.

5.5

In general we have the following

Theorem 6 ([4], [23]). Let Γ be an arithmetic subgroup of a linear algebraic
group G over Q. Then Γ is finitely presented.

In other words, Γ admits a finite presentation. Let us indicate why Γ
is finitely generated. Let K be a maximal compact subgroup of G(R) and
X = G(R)/K. We claim that we can find a closed subset D ⊂ X such that

a) Γ ·D = X ;
b) the subset S ⊂ Γ of those γ such that γ ·D ∩D 6= ∅ is finite.

Indeed, when G is reductive we can take for D the union
⋃

g∈C

g · St,ω of

finitely many translates of a (well chosen) Siegel set; see Theorem 4, i) and
ii). When G is arbitrary, it is a semi-direct product

G = Ru(G) ·H, (10)

where H is reductive over Q ([3] 7.15) and Ru(G) is the unipotent radical of
G. The quotient (Ru(G) ∩ Γ )\Ru(G) is compact so we can choose a compact
subset Ω ⊂ Ru(G) such that Ru(G) = (Ru(G) ∩ Γ ) · Ω. Let D′ ⊂ H(R)/K
be such that a) and b) are true for D′ and Γ ∩H (note that K ∩ Ru(G) is
trivial). Then one can check that D = Ω ·D′ and Γ satisfy a) and b).

From this we derive that S spans Γ . Indeed, it follows from (8) and (10)
that X is homeomorphic to a euclidean space and, in particular, it is path
connected. Given γ ∈ Γ , choose a continuous path c : [0, 1] → X such that
x = c(0) lies in D and c(1) = γ · x. Since c([0, 1]) is compact, there exists a
finite sequence γ1, . . . , γk in Γ such that γ1 = 1, γi · D ∩ γi+1 · D 6= ∅ when
i < k, and γk = γ. Define si = γ−1

i γi+1, i < k. Since si · D ∩ D 6= ∅, these
elements lie in S. On the other hand,

γ = s1 . . . sk−1 ,

therefore S spans Γ .
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5.6

Theorem 6 gives us general information, but it is still of interest to have
explicit presentations of arithmetic groups. For instance, consider the case of
SLN (Z), N ≥ 3. For any pair of indices (i, j), 1 ≤ i 6= j ≤ N , denote by
xij ∈ SLN (Z) the matrix which is equal to one on the diagonal and at the
entry (i, j), and zero otherwise:

xij =























1 0 j
1 0 |

1 1 −i

0
. . . 0

0 1
0 1

1























.

These matrices xij , 1 ≤ i 6= j ≤ N , generate SLN (Z), and the following
relations give a presentation:

[xij , xkℓ] = 1 if j 6= k and i 6= ℓ ;

[xij , xjk] = xik if i, j, k are distinct ;

(x12 x−1
21 x12)

4 = 1 .

As usual, [g, h] is the commutator ghg−1h−1. This fact is due to Magnus and
Nielsen (see [20] Cor. 10.3).

Remark. There are known bounds for the number of elementary matrices
xa

ij , a ∈ Z, needed to write any element of SLN (Z) [6]. For instance, any
element of SL3(Z) is the product of at most 60 elementary matrices.

5.7

The group SLN (Z) can be generated by two elements only, for instance x21

and the matrix (gij) where

gij =







1 if 1 ≤ i ≤ N − 1 and j = i + 1
(−1)N if (i, j) = (N, 1)
0 otherwise

([9], p.83). For a (long) list of defining relations between these two matrices,
see [9], p.85.
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5.8

Let Φ be a root system and L a lattice such that L0 ⊂ L ⊂ L1 as in 3.3.1. Let
G(Z) be the associated arithmetic group (3.3.2).

Choose a faithful representation ρ : L → End(V ) with weight lattice L as
in 3.3.1. The group G(Z) is then generated by the endomorphisms

xα = exp(ρ(Xα)) ∈ End(V )

([26], Th. 18, Cor. 3, Example).
Assume furthermore that Φ is irreducible, Φ 6= A1, and L = L1 (so that

the Chevalley group G is simple, simply connected and different from SL2).
The following relations define G(Z) (and generalize 5.6) ([2], Satz 3.1):

[xα, xβ ] =
∏

i,j

x
N(α,β;i,j)
iα+jβ when α + β 6= 0 ;

(x−1
α x−α x−1

α )4 = 1 for any simple root α.

Here i and j run over positive integers and the integers N(α, β; i, j) are
almost all zero (N(α, β; 1, 1) = Nαβ are the constants defining the Chevalley
basis in 3.3.1).

6 Finite subgroups

6.1

Theorem 7 ([4] [23]). Let Γ be an arithmetic subgroup of a linear algebraic
group G over Q. Up to conjugation, Γ contains only finitely many finite sub-
groups.

Proof. Let X = G(R)/K and D ⊂ X be as in the proof of Theorem 6. Any
finite subgroup F ⊂ Γ is contained in a maximal compact subgroup K ′ of
G(R). Since K ′ = g K g−1 is conjugate to K, the point x = g K in X is fixed
by all γ ∈ F .

Let y ∈ D and γ′ ∈ Γ be such that x = γ′(y). Then, for all γ ∈ F , we have

γ′−1
γ γ′(y) = y .

In particular γ′−1
γ γ′(D) meets D and γ′−1

γ γ′ lies in the finite set S (The-
orem 6, b)). This proves our assertion.
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6.2

Theorem 8. If Γ is an arithmetic subgroup of G, there exists a subgroup of
finite index Γ ′ ⊂ Γ which is torsion free.

Proof. By definition (3.1), Γ is commensurable with G ∩ GLN (Z) for some
embedding of G in GLN (C). So it is enough to prove Theorem 8 for GLN (Z).

It follows from the following lemma.

Lemma 9. Let p ≥ 3 be a prime integer and Γ the set of elements γ ∈ GLN (Z)
which are congruent to the identity modulo p. Then Γ is a torsion free subgroup
of GLN (Z).

Proof. Clearly Γ is a subgroup of GLN (Z). If it was not torsion free, it would
contain an element of prime order, say ℓ > 1, so there would exist a square
matrix m ∈MN (Z) not divisible by p and some integer α ≥ 1 such that

(1 + pα m)ℓ = 1 . (11)

From the binomial formula, we deduce from (11) that

ℓ pα m = −
ℓ

∑

i=2

(

ℓ
i

)

pαi mi . (12)

When ℓ 6= p, the exact power of p dividing ℓ pα m is pα. But the right hand
side of (12) is divisible by p2α, so we get a contradiction.

When ℓ = p, pα+1 is the exact power of p dividing the left hand side of

(12). When 2 ≤ i < p, p divides

(

p
i

)

, therefore p2α+1 divides

(

p
i

)

pαi. Finally,

since p ≥ 3, pαp is also divisible by p2α+1. Therefore p2α+1 divides the right
hand side of (12) and we get again a contradiction.

6.3

From Lemma 9, Minkowski got some information on the order of the finite
subgroups of GLN (Z) ([19] 212-218, [5] § 7, Exercises 5-8). Indeed, when
p ≥ 3, any finite subgroup F ⊂ GLN (Z) maps injectively into the quotient
group GLN (Z/p), the order of which is

a(N, p) = (pN − 1)(pN − p) · · · (pN − pN−1) .

If ℓ is an odd prime, and if the reduction of p modulo ℓ2 is a generator of
(Z/ℓ2 Z)∗, the power of ℓ dividing a(N, p) is exactly ℓr(ℓ,N) with

r(ℓ, N) =

[

N

ℓ− 1

]

+

[

N

ℓ(ℓ− 1)

]

+

[

N

ℓ2(ℓ− 1)

]

+ · · · ,
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where [x] denotes the integral part of the real number x. Conversely, it can
be shown (loc. cit.) that GLN (Z) contains a finite subgroup of order ℓr(ℓ,N).

The same results are true when ℓ = 2 and

r(2, N) = N +

[

N

2

]

+

[

N

4

]

+ · · · .

If we denote by m(N) the product over all primes ℓ of ℓr(ℓ,N), we conclude that
m(N) is the least common multiple of the cardinality of the finite subgroups
of GLN (Z). For instance

m(2) = 24 , m(3) = 48 , m(4) = 5760, . . .

6.4

Let us come back to SL2(Z).

Theorem 10. Let Γ ⊂ SL2(Z) be any torsion free subgroup. Then Γ is a free
group.

Proof. Let H be the Poincaré upper half-plane. Recall from Theorem 1 that
SL2(Z) acts upon H with fundamental domain the set D of those z ∈ G such
that |z| ≥ 1 and |Re(z)| ≤ 1/2.

The stabilizer in SL2(Z) of any z ∈ H is finite. IndeedH = SL2(R)/SO2(R)
hence the stabilizer of z is the intersection of the discrete group SL2(Z) with a
conjugate of the compact group SO2(R). Since Γ is torsion free, it acts freely
on H (it has no fixed point).

Let D0 ⊂ D be the set of points z ∈ H such that |z| = 1 and |Re(z)| ≤ 1/2,
and

Y = SL2(Z) ·D0

the union of the translates of D0 under SL2(Z):

Figure 3
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Proposition 11 ([24] ). The set Y is (the topological realization of) a tree.

Proof of Proposition 11. Clearly Y is a graph, and we want to show that Y
can be contracted (deformed) to a point. Consider the retraction of D onto
D0 which maps z ∈ D to the point z′ ∈ D0 with the same abcissa as z.
When z ∈ D −D0 and γ(z) ∈ D we know that γ(z) = z ± 1 (1.2, Remark).
Therefore this retraction commutes with the action of SL2(Z) on D, and it
can be extended to a retraction of H = SL2(Z) · D onto Y = SL2(Z) · D0.
Since H is contractible to a point, the same is true for Y . q.e.d.

To end the proof of Theorem 10 note that Γ acts freely on the tree Y , so
it can be identified with the fundamental group of the quotient:

Γ = π1(Γ\Y ) .

This quotient Γ\Y is a connected graph and we have:

Proposition 12. Let X be a connected graph. Then π1(X ) is free.

Proof. Choose a maximal tree T ⊂ X . Clearly T contains all the vertices of
X . Therefore, after contracting T , X becomes a “bouquet” of circles B. We
get

π1(X ) = π1(B) = F (S) ,

where S is the set of circles in B.

6.5

Let Γ ⊂ SL2(Z) be torsion free with finite index e = [SL2(Z) : Γ ]. It can be
shown that 12 divides e (see 6.6 below) and that the number of generators of
Γ is 1 + e

12 .
For instance, the subgroup of commutators

Γ = [SL2(Z), SL2(Z)]

has index 12 in SL2(Z). It is free on the two generators

[

2 1
1 1

]

and

[

1 1
1 2

]

.

6.6

Let N ≥ 2 and let Γ ⊂ SLN (Z) be a torsion free normal subgroup of SLN (Z).
Any finite subgroup of SLN (Z) maps injectively into the quotient SLN(Z)/Γ .
Therefore the index [SLN (Z) : Γ ] is divisible by m(N)/2, where m(N) is as in
6.3. We have just seen that SL2(Z) contains a torsion free subgroup of index
m(2)/2 = 12. But, when N ≥ 3, I do not know what the minimal index of a
torsion free subgroup of SLN (Z) is (a question raised by W. Nahm).
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III. Rigidity

7 The congruence subgroup problem

7.1

Let G ⊂ GLN (C) be a linear algebraic group over Q and Γ ⊂ G(Q) an
arithmetic subgroup. For any a ≥ 1 we define a congruence subgroup Γ (a) of
Γ . It consists of those matrices in Γ ∩ GLN (Z) which are congruent to the
identity modulo a. This is a subgroup of finite index in Γ .

Definition. We say that G has property (CS) if any Γ ′ ⊂ Γ of finite index
contains a congruence subgroup Γ (a).

It can be shown that this property depends on G only and neither on the
choice of Γ nor on the embedding G ⊂ GLN (C).

Theorem 13.

i) ([1] [27] [18]) If Φ is an irreducible root lattice different from A1 and if
L = L1, the (simple and simply connected) Chevalley group G attached to
Φ and L (see 3.3.1) has property (CS).

ii) The group SL2 does not satisfy (CS) (see Corollary 18 below).

7.2

Let us define projective limits of groups. Consider a partially ordered set I
such that, for any i, j in I, there is some k ∈ I with k ≥ i and k ≥ j. Assume
given a family of groups Gi, i ∈ I, and morphisms ϕji : Gj → Gi, when
j ≥ i, such that ϕii = id and ϕki = ϕji ◦ ϕkj when k ≥ j ≥ i. By definition,
the projective limit lim←−

i

Gi is the group consisting of families (gi)i∈I such that

gi ∈ Gi and ϕji(gj) = gi if j ≥ i.

When Γ ⊂ G(Q) is an arithmetic group, we can consider two projective
limits. The first one is

Γ̂ = lim←−
N

Γ/N ,

where N runs over all normal subgroups of finite index in Γ . We can also
define

Γ̃ = lim←−
a

Γ/Γ (a) ,

where Γ (a), a ≥ 1, runs over all congruence subgroups of Γ . There is a
surjective map

Γ̂ → Γ̃

and we let C(Γ ) be the kernel of this map. The group C(Γ ) is trivial iff G
has property (CS).
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Note also that we have an inclusion

Γ̃ → G̃LN (Z) = GLN (Af ) ,

where Af = lim←−
a

Z/aZ is the ring of finite adeles. In [1] (16.1), Bass, Milnor

and Serre considered the following properties:

a) C(Γ ) is finite;
b) the image of Γ̂ → GLN (Af ) contains a congruence subgroup of GLN (Z).

They conjectured that a) and b) are true when G is simple and simply
connected over Q (and not necessarily split). Under these assumptions, the
assertion a) is known today in many cases: see [22] § 9.5, where G can also be
defined over some number field. And the assertion b) is true when G(R) is not
compact, by the strong approximation theorem ([1] loc. cit., [22] Th. 7.12).

7.3

The interest of a) and b) is the following “rigidity” result ([1] Theorem 16.2):

Proposition 14. Assume G is a semi-simple group which is simply connected
(i.e. G does not have any nontrivial central extension), let Γ ⊂ G(Q) be an
arithmetic subgroup satisfying a) and b) in 7.2, and let

ρ : Γ → GLN (Q)

be any representation. Then there exists an algebraic group morphism

ϕ : G→ GLN

and a subgroup of finite index Γ ′ ⊂ Γ such that the restrictions of ρ and ϕ to
Γ ′ coincide.

Remark. Stronger results were obtained later by Margulis [18]; see below
Theorem 22.

7.4

We derive from Proposition 14 several consequences.

Corollary 15. Let G and Γ be as in Proposition 14 and let

Γ → Aut(V )

be any representation of Γ on a finite dimensional Q-vector space. Then V
contains a lattice stable by Γ .

Proof. Let ϕ : G→ Aut(V ) and Γ ′ ⊂ Γ be chosen as in the proposition. Then
ϕ(Γ ′) is contained in an arithmetic subgroup of Aut(V ) (see Proposition 3),
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hence there is a lattice Λ′ in V stable by Γ ′ (or a finite index subgroup). Let
S ⊂ Γ be a set of representatives of Γ modulo Γ ′. The lattice

Λ =
∑

s∈S

s(Λ′)

in V is stable by Γ .

Corollary 16. Let G and Γ be as in Proposition 14 and let

0→ V ′ → V → V ′′ → 0

be an exact sequence of finite dimensional representations of Γ over Q. This
sequence splits.

Proof. Choose Γ ′ ⊂ Γ such that the restriction of the exact sequence to Γ ′

is induced by an exact sequence of algebraic representations of G. Since G
is semi-simple, hence reductive, this sequence of representations is split by a
section σ′ : V ′′ → V which commutes with the action of G and Γ ′. If S is a
set of representatives of Γ modulo Γ ′, the formula

σ(x) =
1

Card(S)

∑

s∈S

s σ′ s−1(x) ,

x ∈ V ′′, defines a Γ -equivariant splitting of the exact sequence.

Corollary 17. When G and Γ are as in Proposition 14, the abelian group
Γ/[Γ, Γ ] is finite.

Proof. The quotient Γ/[Γ, Γ ] of Γ by its commutator subgroup is abelian and
finitely generated. If it was infinite there would exist a nontrivial morphism

χ : Γ → Z .

Let V = Q2 be equipped with the Γ -action Γ → Aut(V ) which maps γ to
(

1 χ(γ)
0 1

)

. We get an exact sequence

0→ V ′ → V → V ′′ → 0

where Γ acts trivially on V ′ ≃ V ′′ ≃ Q. Since χ is nontrivial, this sequence is
not trivial, and this contradicts Corollary 16.

Corollary 18. The group SL2 does not satisfy (CS).

Proof. Let Γ ⊂ SL2(Z) be any arithmetic subgroup. We shall prove that C(Γ )
is infinite. If Γ ′ ⊂ Γ is a torsion free subgroup of finite index, the morphism

C(Γ ′)→ C(Γ )

has finite kernel and cokernel, therefore we can assume Γ ′ = Γ . But then, by
Theorem 10, Γ is free, therefore Γ/[Γ, Γ ] is a nontrivial free abelian group.
The group SL2 satisfies the strong approximation theorem, therefore b) in 7.2
is true. From Proposition 14 and Corollary 17, we conclude that a) is not true,
i.e. C(Γ ) is infinite.
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8 Kazhdan’s property (T)

Let G be a topological group and π a unitary representation of G in a Hilbert
space H. We say that π contains almost invariant vectors when, for every
ε > 0 and every compact subset K ⊂ G, there is a vector v ∈ H, v 6= 0, such
that

‖π(g) v − v‖ < ε

for all g ∈ K.
The group G has property (T) when any unitary representation π which

contains almost invariant vectors has an invariant vector (a w 6= 0 such that
π(g)w = w for all g ∈ G).

Theorem 19 ([13]).

i) Assume that G is locally compact and that Γ ⊂ G is a closed subgroup
such that the invariant volume of Γ\G is finite. Then G has property (T)
iff Γ has property (T).

ii) Assume Γ is discrete and has property (T). Then Γ is finitely generated
and Γ/[Γ, Γ ] is finite.

Theorem 20 ([21] Theorem 3.9, p.19). Let G be a simple connected Lie
group. Then G has property (T) iff it is not locally isomorphic to SO(n, 1)
or SU(n, 1), n ≥ 2.

(Recall that G is simple if it does not contain any proper nontrivial closed
normal connected subgroup).

We can combine Theorem 19 i), Corollary 5 ii) and Theorem 20 to show
that some arithmetic groups have property (T). For instance, SLN (Z) has
property (T) iff N ≥ 3. For an “effective” version of that result, see [12].

9 Arithmeticity

9.1

When G is semi-simple over Q, we know from Corollary 5 ii) that any arith-
metic subgroup Γ ⊂ G(Q) has finite covolume in G(R). A famous conjecture
of Selberg asked for a converse to this assertion. It was proved by Margulis
[16]. We state his theorem for simple Lie groups.

Theorem 21 ([16]). Let H be a connected simple non-compact Lie group of
rank bigger than one, and Γ ⊂ H a discrete subgroup of finite covolume. Then
Γ is “arithmetic”.

We need to explain what being “arithmetic” means: there exists a linear
algebraic group G over Q, an arithmetic subgroup Γ ′ of G, a compact Lie
group K and an isomorphism of Lie groups

G(R) ≃ H ×K

such that the first projection of Γ ′ into H has finite index in Γ .
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9.2

When H = PSL2(R) (a case of rank one), Theorem 21 is not true anymore.
Indeed, let M be a compact Riemann surface. Uniformization gives an embed-
ding of Γ = π1(M) into PSL2(R), and the quotient Γ\PSL2(R) is compact.
But, in general, Γ is not arithmetic.

9.3

The proof of Theorem 21 uses the following “superrigidity” theorem, and its
non-archimedean analogs (see [17], [21] Theorem 6.2.1 or [29] for a general
statement):

Theorem 22. Let Γ ⊂ H be as in Theorem 21. Assume that G is a semi-
simple algebraic group over R and f : Γ → G(R) is a group morphism such
that f(Γ ) is Zariski dense. Then f is the restriction to Γ of a morphism of
Lie groups H → G(R).

9.4

Let us conclude this survey with another result of Margulis [15], concerning
all normal subgroups of a given arithmetic group:

Theorem 23. Assume G is a linear algebraic group over R such that G(R) is
connected, simple, not compact and of real rank bigger than one. If Γ ⊂ G(R)
is discrete with finite covolume, any normal subgroup N ⊂ Γ has finite index
in Γ or it is contained in the center of Γ .
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Appendix

Following E. Cartan, Cremmer and Julia give in [8] the following descrip-
tion of the simple complex Lie algebra of type E7 and its fundamental repre-
sentation of dimension 56.

Let W = C8, with basis ei, 1 ≤ i ≤ 8, and W ∗ its complex dual, with dual
basis e∗i , 1 ≤ i ≤ 8. For any positive integer k, we let Λk W be the k-th exterior
power of W , i.e. the linear subspace of W⊗k consisting of fully antisymmetric
tensors. A basis of Λk W consists of the vectors

ei1 ∧ . . . ∧ eik
=

∑

σ∈Sk

ε(σ) eiσ(1)
⊗ . . .⊗ eiσ(k)

,

with 1 ≤ i1 < i2 < . . . < ik ≤ 8, where Sk is the permutation group on k
letters and ε(σ) is the signature of σ. The exterior product

Λk W ⊗ Λℓ W → Λk+ℓ W

sends (v1 ∧ . . .∧ vk)⊗ (w1 ∧ . . .∧wℓ) to v1 ∧ . . .∧ vk ∧w1 ∧ . . .∧wℓ. The basis
e1 ∧ . . . ∧ e8 gives an identification Λ8 W = C and, together with the exterior
product, an isomorphism

(Λk W )∗ = Λ8−k W

for all k ≤ 8.
On the other hand, we get a pairing

Λk W ⊗ Λk(W ∗)→ C

by sending (v1 ∧ . . . ∧ vk) ⊗ (λ1 ∧ . . . ∧ λk) to the determinant of the k by k
matrix (λj(vi))1≤i,j≤k. This pairing identifies Λk(W ∗) with (Λk W )∗.

Let now V = Λ2(W ∗) ⊕ Λ2(W ), a complex vector space of dimension 56.
The complex Lie algebra Λ = sl8(C) acts upon W , hence on V .

Let Σ = Λ4 W , so that dimC(Σ) = 70. From the previous discussion, we
get natural pairings

Λ4 W ⊗ Λ2(W ∗)
∼−→ (Λ4 W )∗ ⊗ Λ2(W ∗)→ Λ6(W ∗) = Λ2(W )

and
Λ4 W ⊗ Λ2 W → Λ6 W = (Λ2 W )∗ = Λ2(W ∗) .

Let
Σ ⊗ V → V

be the action of Σ on V obtained by taking the direct sum of these maps and
multiplying the result by 2.

The action of
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G = Λ⊕Σ

on V defines an embedding

G ⊂ End(V ) ,

which is the one given by formulae (B1) in [8] (the factor 2 above comes from
the permutation of k and ℓ in the expression

∑

ijkℓ xkℓ of loc.cit.). The vector
space G is stable under the Lie bracket, which is given by formulae (B2) in [8],
and the action of G on V respects the canonical symplectic form on V coming
from the pairing

Λ2(W ∗)⊗ Λ2 W → C .

Therefore G is contained in sp56(C).
Let us now apply Chevalley’s construction to this representation of G on

V . A Cartan subalgebra of G is the diagonal subalgebra H ⊂ Λ. We let

εi : H → C , 1 ≤ i ≤ 8 ,

be the character sending a diagonal matrix to its i-th entry. Note that ε1 +
ε2 + . . . + ε8 = 0 on H. The action of H on G = Λ⊕Σ is the restriction of the
action of Λ = sl8(C). Therefore the roots of H are of two types.

The roots of “type Λ” are those given by the action of H on Λ. These are
α = εi − εj , for all i 6= j, 1 ≤ i, j ≤ 8. The corresponding eigenspace Gα is
spanned by Xα = Xij , the matrix having 1 as (i, j) entry, all others being
zero. There are 63 roots of type Λ.

The roots of “type Σ” are those given by the action of H on Σ = Λ4 W .
Given four indices 1 ≤ i1 < i2 < i3 < i4 ≤ 8 we get the root α = εi1 + εi2 +
εi3 + ei4 , with Gα spanned by

Xα =
1

2
ei1 ∧ ei2 ∧ ei3 ∧ ei4 .

There are 70 roots of type Σ. Let Φ be the set of all roots.
We claim that the vectors Xα and Hα = [Xα, X−α], α ∈ Φ, form a Cheval-

ley basis of G. According to [11], proof of Proposition 25.2, this will follow if
we prove that the Cartan involution σ satisfies

σ(Xα) = −X−α (13)

and that the Killing form K is such that

K(Xα, X−α) = 2/(α, α) , (14)

for every root α ∈ Φ.
The Cartan involution σ on G is the restriction of the Cartan involution

on End(V ), so it is the standard one on Λ = sl8(C) and we get

σ(Xij) = −Xji .
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On the other hand, the pairings of Z = Λ4 W with Λ2(W ∗) and Λ2 W are
dual to each other. Therefore, if x ∈ Z we have σ(x) = −x∗, where x∗ is the
image of x by the isomorphism

Λ4 W
∼−→ (Λ4 W )∗ = Λ4(W ∗)

followed by the identification of W and W ∗ coming from the chosen bases.
This sends e1 ∧ e2 ∧ e3 ∧ e4 to e∗5 ∧ e∗6 ∧ e∗7 ∧ e∗8, and then to e5 ∧ e6 ∧ e7 ∧ e8.
We conclude that

σ(e1 ∧ e2 ∧ e3 ∧ e4) = −e5 ∧ e6 ∧ e7 ∧ e8 .

The root corresponding to e5 ∧ e6 ∧ e7 ∧ e8 is

ε5 + ε6 + ε7 + ε8 = −(ε1 + ε2 + ε3 + ε4) .

This proves (13) for roots of type Σ.
Let us now check (14). According to the definitions in [11] 8.2 and 8.3, we

have
(α, α) = K(Tα, Tα)

where Tα ∈ H is defined by the equality

α(h) = K(Tα, H)

for all H ∈ H. When X, Y ∈ Λ are two 8× 8 matrices of trace zero, we have,
as indicated in [8] (B5),

K(X, Y ) = 12 tr(XY ) .

Let α = εi − εj be a root of type Λ and Hij the diagonal matrix such that
εi(Hij) = 1, εj(Hij) = −1 and εk(Hij) = 0 if k /∈ {i, j}. For any H ∈ H we
have

α(H) = tr (Hij H) ,

therefore
Tα = Hij/12

and

(α, α) =
1

144
K(Hij , Hij) =

24

144
=

1

6
.

Since K(Xα, X−α) = 12, the equality (14) holds true.
Assume now that α = ε1 + ε2 + ε3 + ε4, Xα = 1

2 e1 ∧ e2 ∧ e3 ∧ e4 and
X−α = 1

2 e5 ∧ e6 ∧ e7 ∧ e8. According to (B5) in [8] we have

K(Xα, X−α) =
2

24

1

4
(4!)(4!) = 12 .

Let H ′ be the diagonal matrix such that εi(H
′) = 1/2 when 1 ≤ i ≤ 4 and

εi(H
′) = −1/2 when 5 ≤ i ≤ 8. Given any H in H we have
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tr (H ′H) =
1

2
(ε1 + ε2 + ε3 + ε4 − ε5 − ε6 − ε7 − ε8)(H) = α(H) .

Therefore Tα = H ′/12 and

(α, α) =
1

144
K(H ′, H ′) =

12

144
× 8

4
=

1

6
.

Therefore (14) is true for α.
The Lie algebra G is simple of type E7. Indeed, a basis of its root system

Φ consist of α1 = ε1 − ε2, α2 = ε4 + ε5 + ε6 + ε7, α3 = ε2 − ε3, α4 = ε3 − ε4,
α5 = ε4 − ε5, α6 = ε5 − ε6 and α7 = ε6 − ε7. Its Dynkin diagram is the one
of E7 ([11], 11.4).

Let us now consider the representation ρ of G on V . Its weight vectors are
e∗i ∧ e∗j ∈ Λ2(W ∗) and ei ∧ ej ∈ Λ2 W , 1 ≤ i < j ≤ 8, with corresponding
weights −εi − εj and εi + εj . The root lattice L0 of E7 has index 2 in its
weight lattice L1 ([11], 13.1). Since the weights of ρ are not in L0 they must
span the lattice L1. Therefore, the Chevalley group G generated by the en-
domorphisms exp(tρ(Xα)), t ∈ C, α ∈ Φ, is the simply connected Chevalley
group of type E7. Its set of real points G(R) is the real Lie group spanned by
the endomorphisms exp(tρ(Xα)), t ∈ R, α ∈ Φ ([26], § 5, Th. 7, Cor. 3), i.e.
the split Lie group E7(+7).

Let M ⊂ V be the standard lattice, with basis e∗i ∧ e∗j and ei ∧ ej, 1 ≤ i <
j ≤ 8. The group E7(Z) = E7(+7) ∩ Sp56(Z) is the stabilizer of M in G. So,
according to [26], § 8, Th. 18, Cor. 3, to check that E7(Z) = G(Z), all we need
to prove is that the lattice M is admissible, i.e. stable by the endomorphisms
ρ(Xα)n/n! for all n ≥ 1 and α ∈ Φ.

When α = εi− εj is of type Λ, ρ(Xα) = Xij has square zero and stabilizes
the standard lattice M . Assume finally that α = ε1 +ε2 +ε3 +ε4, hence Xα =
1
2 e1∧e2∧e3∧e4. By definition of the action of Z on V = Λ2(W ∗)⊕Λ2 W , ρ(Xα)
sends ei ∧ ej to ± e∗k ∧ e∗ℓ when 5 ≤ i < j, k < ℓ and {i, j, k, ℓ} = {5, 6, 7, 8}.
When i < 5, ρ(Xα)(ei ∧ ej) = 0. Similarly, when i < j ≤ 4, ρ(Xα) sends
e∗i ∧ e∗j to ± ek ∧ eℓ with {i, j, k, ℓ} = {1, 2, 3, 4}, and ρ(Xα)(e∗i ∧ e∗j ) = 0 if
j > 4. From this it follows that the endomorphism ρ(Xα) has square zero and
stabilizes M . Therefore E7(Z) = G(Z).
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