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Abstract

We give optimal convergence rates in the central limit theorem for
a large class of martingale difference sequences with bounded third
moments. The rates depend on the behaviour of the conditional vari-
ances and for stationary sequences the rate n

−1/2 log n is reached. We
give interesting examples of martingales with unbounded increments
which belong to the considered class.
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1 Introduction and notations

The optimal rate of convergence in the central limit theorem for independent
random variables (Xi)i∈Z is well known to be of order n−1/2 as soon as theXi’s
are centered and have uniformly bounded third moments (cf. Berry [1] and
Esseen [8]). For dependent random variables the rate of convergence was also
most fully investigated but in many results the rate is not better than n−1/4.
For example, Philipp [18] obtains a rate of n−1/4(logn)3 for uniformly mixing
sequences, Landers and Rogge [14] obtain a rate of n−1/4(logn)1/4 for a class
of Markov chains and Sunklodas [20] obtains a rate of n−1/4 logn for strong
mixing sequences. However, Rio [19] has shown that the rate n−1/2 is reached
for uniformly mixing sequences of bounded random variables as soon as the
sequence (φp)p>0 of uniform mixing coefficients satisfies

∑
p>0 pφp <∞. Jan

[12] established also a n−1/2 rate of convergence in the central limit theorem
for bounded processes taking values in R

d under some mixing conditions and
recently, using a modification of the proof in Rio [19], Le Borgne and Pène
[15] obtained the rate n−1/2 for stationary processes satisfying a strong decor-
relation hypothesis. For bounded martingale difference sequences, Ibragimov
[11] has obtained the rate of n−1/4 for some stopping partial sums and Ouchti
[17] has extended Ibragimov’s result to a class of martingales which is related
to the one we are going to consider in this paper. Several results in the rate
of convergence for the martingale central limit theorem have been obtained
for the whole partial sums, one can refer to Hall and Heyde [10] (section
3.6.), Chow and Teicher [5] (Theorem 9.3.2), Kato [13], Bolthausen [2] and
others. In fact, Kato [13] obtains for uniformly bounded variables the rate
n−1/2(log n)3 under the strong assumption that the conditional variances are
almost surely constant. In this paper, we are most interested in results by
Bolthausen [2] who obtained the better (in fact optimal) rate n−1/2 log n un-
der somewhat weakened conditions. In this paper, we shall not pursue to
improve the rate n−1/2 logn but rather introduce a large class of martingales
which leads to it. Finally, note that El Machkouri and Volný [7] have shown
that the rate of convergence in the central limit theorem can be arbitrary
slow for stationary sequences of bounded (strong mixing) martingale differ-
ence random variables.
Let n ≥ 1 be a fixed integer. We consider a finite sequence X = (X1, ..., Xn)
of martingale difference random variables ( i.e. Xk is Fk-measurable and
E(Xk|Fk−1) = 0 a.s. where (Fk)0≤k≤n is an increasing filtration and F0

is the trivial σ-algebra). In the sequel, we are going to use the following
notations

σ2
k(X) = E(X2

k |Fk−1), τ 2
k (X) = E(X2

k), 1 ≤ k ≤ n,
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v2
n(X) =

n∑

k=1

τ 2
k (X) and V 2

n (X) =
1

v2
n(X)

n∑

k=1

σ2
k(X).

We denote also Sn(X) = X1 + X2 + ... + Xn. The central limit theorem
established by Brown [4] and Dvoretzky [6] states that under some Lindeberg
type condition

∆n(X) = sup
t∈R

∣∣µ (Sn(X)/vn(X) ≤ t) − Φ(t)
∣∣ −−−→

n→+∞
0.

For more about central limit theorems for martingale difference sequences
one can refer to Hall and Heyde [10]. The rate of convergence of ∆n(X) to
zero was most fully investigated. Here, we focus on the following result by
Bolthausen [2].

Theorem (Bolthausen, 82) Let γ > 0 be fixed. There exists a constant
L(γ) > 0 depending only on γ such that for all finite martingale difference
sequence X = (X1, ..., Xn) satisfying V 2

n (X) = 1 a.s. and ‖Xi‖∞ ≤ γ then

∆n(X) ≤ L(γ)

(
n logn

v3
n

)
.

We are going to show that the method used by Bolthausen [2] in the proof of
the theorem above can be extended to a large class of unbounded martingale
difference sequences. Note that Bolthausen has already given extensions
to unbounded martingale difference sequences which conditional variances
become asymptotically nonrandom (cf. [2], Theorems 3 and 4) but his as-
sumptions cannot be compared directly with ours (cf. condition (1) below).
So the results are complementary.

2 Main Results

We introduce the following class of martingale difference sequences: a se-
quence X = (X1, ..., Xn) belongs to the class Mn(γ) if X is a martingale
difference sequence with respect to some increasing filtration (Fk)0≤k≤n such
that for any 1 ≤ k ≤ n,

E(|Xk|3|Fk−1) ≤ γk E(X2
k |Fk−1) a.s. (1)

where γ = (γk)k is a sequence of real numbers.

Our first result is the following.
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Theorem 1 Let γ be a sequence of real numbers. There exists a constant
L(γ) > 0 (not depending on n) such that for all finite martingale differ-
ence sequence X = (X1, ..., Xn) which belongs to the class Mn(γ) and which
satisfies V 2

n (X) = 1 a.s. then

∆n(X) ≤ L(γ)

(
un logn

vn

)

where un = ∨n
k=1γk.

Remark 1 Note that if the martingale difference sequence X is stationary
then we obtain the rate n−1/2 log n which is optimal (cf. Bolthausen [2]).

As in Bolthausen [2], we derive the following result when the restrictive
condition V 2

n (X) = 1 a.s. is relaxed.

Theorem 2 Let γ be a sequence of real numbers. There exists a constant
L(γ) > 0 (not depending on n) such that for all finite martingale difference
sequence X = (X1, ..., Xn) which belongs to the class Mn(γ) then

∆n(X) ≤ L(γ)

(
un log n

vn

+ ‖V 2
n (X) − 1‖1/2

∞ ∧ ‖V 2
n (X) − 1‖1/3

1

)

where un is defined in Theorem 1.

Examples. Let X = (X1, .., Xn) be a sequence of martingale difference
random variables such that sup1≤i≤n ‖Xi‖∞ ≤ M < ∞ and consider an ar-
bitrary sequence of independent random variables (ε1, ..., εn) with zero mean
and finite third moments which are also independent of X. One can notice
that the sequence Y = (Y1, ..., Yn) defined by Yk = Xk +εk (resp. Yk = Xkεk)
belongs to the class Mn(γ) where

γk = 4

(
M ∨ E|εk|3

E|εk|2
) (

resp.γk = M × E|εk|3
E|εk|2

)

Moreover if V 2
n (X) = 1 a.s. (resp. V 2

n (X) = 1 a.s. and (εk)k is stationary)
then V 2

n (Y ) = 1 a.s.

In the sequel, we are going to use the following lemma by Bolthausen [2].

Lemma 1 (Bolthausen, 82) Let k ≥ 0 and f : R → R be a function which
has k derivatives f (1), ..., f (k) which together with f belong to L1(µ). Assume
that f (k) is of bounded variation ‖f (k)‖V , if X is a random variable and if
α1 6= 0 and α2 are two real numbers then

|Ef (k)(α1X+α2)| ≤ ‖f (k)‖V sup
t∈R

|µ(X ≤ t)−Φ(t)|+|α1|−(k+1)‖f‖1 sup
x

|φ(k)(x)|

where φ(x) = (2π)−1/2 exp(−x2/2).
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For any random variable Z we denote δ(Z) = supt∈R |µ(Z ≤ t) − Φ(t)|. We
need also the following extension of Lemma 1 in Bolthausen [2] which is of
particular interest.

Lemma 2 Let X and Y be two real random variables. If there exist real
numbers k > 0 and r ≥ 1 such that Y belongs to Lkr(µ) then there exist
positive constants c1 and c2 such that

δ(X + Y ) ≤ 2δ(X) + c1 ‖E
(
|Y |k|X

)
‖

1
k+1
r ∧ ‖E

(
Y 2|X

)
‖1/2
∞ (2)

and

δ(X) ≤ 2δ(X + Y ) + c2 ‖E
(
|Y |k|X

)
‖

1
k+1
r ∧ ‖E

(
Y 2|X

)
‖1/2
∞ . (3)

The proofs of various central limit theorems for stationary sequences of ran-
dom variables are based on approximating the partial sums of the process
by martingales (see Gordin [9], Volný [21]). More precisely, if (f ◦ T k)k is a
p-integrable stationary process where T : Ω → Ω is a bijective, bimeasurable
and measure-preserving transformation (in fact, each stationary process has
such representation) then there exists necessary and sufficient conditions (cf.
Volný [21]) for f to be equal to m+g−g◦T where (m◦T k)k is a p-integrable
stationary martingale difference sequence and g is a p-integrable function. In
fact, such a decomposition can hold also with m and g in some Orlicz space
(see [22]). The term g − g ◦ T is called a coboundary.
The following theorem gives the rate of convergence in the central limit the-
orem for stationary processes obtained from a martingale difference sequence
which is perturbed by a coboundary.

Theorem 3 Let p > 0 be fixed and let (f ◦ T k)k be a stationary process. If
there exist m and g in Lp(µ) such that (m ◦ T k)k is a martingale difference
sequence and f = m + g − g ◦ T then there exists a positive constant c such
that

∆n(f) ≤ 2∆n(m) +
2c‖g‖p/(p+1)

p

np/2(p+1)
.

If p = ∞ then

∆n(f) ≤ 2∆n(m) +
2c‖g‖∞
n1/2

.

Recently, Bosq [3] has shown that the condition
∑

j≥0 j|αj| <∞ is sufficient

to obtain the optimal rate n−1/2 for the linear process Xk =
∑

j≥0 αk−jεj

when (εj)j is a i.i.d. sequence with finite third moment (Bosq established
this result in the more general setting of Hilbert spaces). We are going to
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give a convergence rate result for linear processes when the (εj)j are not
independent. By

Xk =
∑

j∈Z

αk−jεj, k ≥ 1, (4)

we denote a stationary linear process, (εj)j is a stationary martingale differ-
ence sequence and (αj)j are real numbers with

∑
j∈Z

α2
j <∞.

Corollary 1 Let γ be a sequence of real numbers. Consider the linear process
(Xk)k defined by (4) where (εj)j is a stationary martingale difference sequence
such that E|ε0|p < ∞ for some p ≥ 3. Assume that ε = (ε1, ..., εn) belongs
to the class Mn(γ) and V 2

n (ε) = 1 a.s. If

∞∑

k=1

{∣∣∣∣
∑

j≥k

αj

∣∣∣∣
p

+

∣∣∣∣
∑

j≤k

αj

∣∣∣∣
p
}
<∞ (5)

then there exists a constant L(γ) > 0 (not depending on n) such that

∆n(X) ≤ L(γ)

(
1

np/2(p+1)

)
.

If moreover ε0 is a.s. bounded then

∆n(X) ≤ L(γ)

(
log n√
n

)
.

Remark 2 One can see that the condition
∑

j∈Z
|j|.|αj| < ∞ is more re-

strictive than (5).

Remark 3 Using Theorem 2, one can obtain a convergence rate result for
the linear process (Xk)k when the condition V 2

n (ε) = 1 a.s. is relaxed.

3 Proofs

Proof of Theorem 1. Consider u = (un)n defined by un = ∨n
k=1γk. Clearly

the class Mn(γ) is contained in the class Mn(u). For any (u, v) ∈ R
N∗

+ ×R
∗
+,

we consider the subclass

Ln(u, v) =
{
X ∈ Mn(u) | V 2

n (X) = 1, vn(X) = v a.s.
}

and we denote

βn(u, v) = sup {∆n(X) |X ∈ Ln(u, v)} .
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In the sequel, we assume that X = (X1, ..., Xn) belongs to Ln(u, v), hence
X

′

= (X1, ..., Xn−2, Xn−1 +Xn) belongs to Ln−1(4u, v) and consequently,

βn(u, v) ≤ βn−1(4u, v).

Let Z1, Z2, ..., Zn be independent identically distributed standard normal
variables independent of the σ-algebra Fn (which contains the σ-algebra
generated by X1, ..., Xn) and ξ be an extra centered normal variable with
variance θ2 > 1 ∨ 2u2

n which is independent of anything else. Noting that∑n
i=1 σi(X)Zi/v is a standard normal random variable and according to In-

equality (3) in Lemma 2,

∆n(X) ≤ 2 sup
t∈R

∣∣Γn(t)
∣∣+ 3θ

v
. (6)

where

Γn(t) , µ ((Sn(X) + ξ) /v ≤ t) − µ

((
n∑

i=1

σi(X)Zi + ξ

)
/v ≤ t

)
.

For any integer 1 ≤ k ≤ n, we consider the following random variables

Yk ,
1

v

k−1∑

i=1

Xi, Wk ,
1

v

(
n∑

i=k+1

σi(X)Zi + ξ

)
,

Hk ,
1

v2

(
n∑

i=k+1

σ2
i (X) + θ2

)
and Tk(t) ,

t− Yk

Hk
, t ∈ R

with the usual convention
∑n

i=n+1 σ
2
i (X) =

∑n
i=n+1 σi(X)Zi = 0 a.s. More-

over, one can notice that conditionned on Gk = σ(X1, ..., Xn, Zk), the ran-
dom variable Wk is centered normal with variance H2

k . According to the well
known Lindeberg’s decomposition (cf. [16]), we have

Γn(t) =
n∑

k=1

µ

(
Yk +Wk +

Xk

v
≤ t

)
− µ

(
Yk +Wk +

σk(X)Zk

v
≤ t

)

=
n∑

k=1

µ

(
Wk

Hk

≤ Tk(t) −
Xk

vHk

)
− µ

(
Wk

Hk

≤ Tk(t) −
σk(X)Zk

vHk

)

=

n∑

k=1

E

(
E

(
11Wk

Hk
≤Tk(t)−

Xk
vHk

|Gk

))
−E

(
E

(
11Wk

Hk
≤Tk(t)−

σk(X)Zk
vHk

|Gk

))

=

n∑

k=1

E

(
Φ

(
Tk(t) −

Xk

vHk

))
− E

(
Φ

(
Tk(t) −

σk(X)Zk

vHk

))
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Now, for any integer 1 ≤ k ≤ n and any random variable ζk, there exists a
random variable |εk| < 1 a.s. such that

Φ (Tk(t) − ζk) = Φ (Tk(t))−ζkΦ
′

(Tk(t))+
ζ2
k

2
Φ

′′

(Tk(t))−
ζ3
k

6
Φ

′′′

(Tk(t) − εkζk) a.s.

So, we derive

Γn(t) =
n∑

k=1

E

{(
− Xk

vHk

+
σk(X)Zk

vHk

)
Φ

′

(Tk(t)) +

(
X2

k

2v2H2
k

− σ2
k(X)Z2

k

2v2H2
k

)
Φ

′′

(Tk(t))

−
(

X3
k

6v3H3
k

)
Φ

′′′

(
Tk(t) −

εkXk

vHk

)
+

(
σ3

k(X)Z3
k

6v3H3
k

)
Φ

′′′

(
Tk(t) −

ε
′

kσk(X)Zk

vHk

)}
.

Since V 2
n (X) = 1 a.s. we derive that Hk and Tk(t) are Fk−1-measurable,

hence

Γn(t) =

n∑

k=1

1

6v3
E

{
−X

3
k

H3
k

Φ
′′′

(
Tk(t) −

εkXk

vHk

)
+
σ3

k(X)Z3
k

H3
k

Φ
′′′

(
Tk(t) −

ε
′

kσk(X)Zk

vHk

)}

and consequently
∣∣Γn(t)

∣∣ ≤ 1

6v3
(S1 + S2) (7)

where

S1 =
n∑

k=1

E

{ |Xk|3
H3

k

∣∣∣∣Φ
′′′

(
Tk(t) −

εkXk

vHk

) ∣∣∣∣
}

and

S2 =
n∑

k=1

E

{
σ3

k(X)|Zk|3
H3

k

∣∣∣∣Φ
′′′

(
Tk(t) −

ε
′

kσk(X)Zk

vHk

) ∣∣∣∣
}
.

Consider the stopping times ν(j)j=0,..,n defined by ν(0) = 0, ν(n) = n and
for any 1 ≤ j < n

ν(j) = inf

{
k ≥ 1 |

k∑

i=1

σ2
i (X) ≥ jv2

n
a.s.

}
.

Noting that {1, ..., n} = ∪n
j=1{ν(j − 1) + 1, ..., ν(j)} a.s. we derive

S1 =

n∑

j=1

E

{ ν(j)∑

k=ν(j−1)+1

|Xk|3
H3

k

∣∣∣∣Φ
′′′

(
Tk(t) −

εkXk

vHk

) ∣∣∣∣
}
,
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moreover, for any ν(j − 1) < k ≤ ν(j) we have

H2
k ≥ 1

v2




n∑

i=ν(j)+1

σ2
i (X) + θ2




=
1

v2




n∑

i=1

σ2
i (X) −

ν(j)−1∑

i=1

σ2
i (X) − σ2

ν(j)(X) + θ2




≥ 1

v2

(
v2 − jv2

n
− u2

n + θ2

)

, m2
j a.s.

Similarly,

H2
k ≤ 1

v2




n∑

i=ν(j−1)+1

σ2
i (X) + θ2




=
1

v2




n∑

i=1

σ2
i (X) −

ν(j−1)∑

i=1

σ2
i (X) + θ2




≤ 1

v2

(
v2 − (j − 1)v2

n
+ θ2

)

, M2
j a.s.

Now, for any ν(j − 1) < k ≤ ν(j) put

Rk ,
1

v

k−1∑

i=ν(j−1)+1

Xi, Ak ,

{ |Rk|
mj

≤ |t− Yν(j−1)+1|
2Mj

}

and for any positive integer q consider the real function ψq defined for any

real x by ψq(x) , sup{|Φ′′′

(y)| ; y ≥ |x|
2
− q}. In the other hand, on the set

Ak ∩ {|Xk| ≤ q} we have

∣∣Tk(t) −
εkXk

vHk

∣∣ =
∣∣t− Yν(j−1)+1

Hk
− Rk

Hk
− εkXk

vHk

∣∣

≥ |t− Yν(j−1)+1|
Hk

− |Rk|
Hk

− |Xk|
vHk

≥ |t− Yν(j−1)+1|
Mj

− |Rk|
mj

− q

θ

≥ |t− Yν(j−1)+1|
2Mj

− q a.s. (since θ ≥ 1).

9



Thus
∣∣∣∣Φ

′′′

(
Tk(t) −

εkXk

vHk

) ∣∣∣∣ 11Ak∩|Xk|≤q ≤ ψq

(
t− Yν(j−1)+1

Mj

)
11Ak∩|Xk|≤q.

So, for any 1 ≤ j ≤ n we have

E

{ ν(j)∑

k=ν(j−1)+1

|Xk|3
H3

k

∣∣∣∣Φ
′′′

(
Tk(t) −

εkXk

vHk

) ∣∣∣∣ 11Ak∩{|Xk|≤q}

}

≤ E

{ ν(j)∑

k=ν(j−1)+1

|Xk|3
H3

k

∣∣∣∣ψq

(
t− Yν(j−1)+1

Mj

) ∣∣∣∣
}

= E

{
E

{ ν(j)∑

k=ν(j−1)+1

|Xk|3
H3

k

|Fν(j−1)

}∣∣∣∣ψq

(
t− Yν(j−1)+1

Mj

) ∣∣∣∣
}

= E

{
E

{ ν(j)∑

k=ν(j−1)+1

E

( |Xk|3
H3

k

|Fk−1

)
|Fν(j−1)

}∣∣∣∣ψq

(
t− Yν(j−1)+1

Mj

) ∣∣∣∣
}

≤ un

m3
j

E

{
E

{ ν(j)∑

k=ν(j−1)+1

σ2
k(X)|Fν(j−1)

}∣∣∣∣ψq

(
t− Yν(j−1)+1

Mj

) ∣∣∣∣
}
.

Moreover, note that

ν(j)∑

k=ν(j−1)+1

σ2
k(X) =

ν(j)∑

k=1

σ2
k(X) −

ν(j−1)∑

k=1

σ2
k(X)

≤ (j + 1)v2

n
− (j − 1)v2

n
=

2v2

n
a.s.

Using Lemma 1, noting that ‖ψq‖∞ ≤ 1 and keeping in mind the notation
δ(Z) , supt∈R

|µ(Z ≤ t)−Φ(t)| there exists a positive constant c3 such that

E

{
ψq

(
t− Yν(j−1)+1

Mj

)}
≤ δ(Yν(j−1)+1) + c3Mj .

Now, using Lemma 2 and the inequality

E








n∑

k=ν(j−1)+1

Xk




2 ∣∣∣∣Fν(j−1)



 ≤ v2

(
1 − j − 1

n

)
a.s.
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we obtain

δ(Yν(j−1)+1) ≤ 2 δ(Sn(X)/v) + c1

∥∥∥∥E
{

1

v2




n∑

k=ν(j−1)+1

Xk




2 ∣∣∣∣Yν(j−1)+1

}∥∥∥∥
1/2

∞

= 2 ∆n(X) + c1

∥∥∥∥E
{

1

v2




n∑

k=ν(j−1)+1

Xk




2 ∣∣∣∣Yν(j−1)+1

}∥∥∥∥
1/2

∞

≤ 2 βn−1(4u, v) + c1

(
1 − j − 1

n

)1/2

and so

E

{
ψq

(
t− Yν(j−1)+1

Mj

)}
≤ 2 βn−1(4u, v) + c1

(
1 − j − 1

n

)1/2

+ c3Mj .

Using this estimate and the dominated convergence theorem, we derive for
any integer 1 ≤ j ≤ n,

(⋆) = E

{ ν(j)∑

k=ν(j−1)+1

|Xk|3
H3

k

∣∣∣∣Φ
′′′

(
Tk(t) −

εkXk

vHk

) ∣∣∣∣ 11Ak

}

≤ c4un

m3
j

× v2

n
×
(
βn−1(4u, v) +

(
1 − j − 1

n

)1/2

+Mj

)
.

In the other hand, for any integer ν(j − 1) < k ≤ ν(j)

Ac
k ⊂ Bj ,

{
max

ν(j−1)<i≤ν(j)

|Ri|
mj

>
|t− Yν(j−1)+1|

2Mj

}
.

Since the set Ak is Fk ∨ Fν(j−1), we have

(⋆⋆) = E

{ ν(j)∑

k=ν(j−1)+1

|Xk|3
H3

k

∣∣∣∣Φ
′′′

(
Tk(t) −

εkXk

vHk

) ∣∣∣∣ 11Ac
k

}

≤ ‖Φ′′′‖∞E






ν(j)∑

k=ν(j−1)+1

|Xk|3
H3

k

11Ac
k






≤ unE






ν(j)∑

k=ν(j−1)+1

σ2
k(X)

H3
k

11Ac
k






≤ unE





ν(j)∑

k=ν(j−1)+1

σ2
k(X)

H3
k

11Bj



 .
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Since
ν(j)∑

k=ν(j−1)+1

σ2
k(X) ≤ 2v2

n
a.s. (8)

we derive

(⋆⋆) ≤ 2un

m3
j

× v2

n
× µ(Bj)

≤ 2un

m3
j

× v2

n
× µ

(
max

ν(j−1)<i≤ν(j)
|Ri| >

mj|t− Yν(j−1)+1|
2Mj

)

≤ 2un

m3
j

× v2

n
×E

(
min

{
1,

4M2
j

m2
j |t− Yν(j−1)+1|2

E

(
max

ν(j−1)<i≤ν(j)
|Ri|2|Fν(j−1)

)})

≤ 2un

m3
j

× v2

n
×E

(
min

{
1,

8M2
j

m2
j |t− Yν(j−1)+1|2

E
(
|Rν(j)|2|Fν(j−1)

)})

≤ 2un

m3
j

× v2

n
×E

(
min

{
1,

16M2
j

nm2
j |t− Yν(j−1)+1|2

})
(using (8))

≤ 2un

m3
j

× v2

n
×
(
βn−1(4u, v) +

(
1 − j − 1

n

)1/2

+Mj

)
(using Lemma 1).

Thus there exists a positive constant c5 such that

(⋆) + (⋆⋆) ≤ c5un

m3
j

× v2

n
×
(
βn−1(4u, v) +

(
1 − j − 1

n

)1/2

+Mj

)
.

Finally, we obtain the following estimate

S1 ,

n∑

k=1

E

{ |Xk|3
H3

k

∣∣∣∣Φ
′′′

(
Tk(t) −

εkθk

vHk

) ∣∣∣∣
}

≤ c5un × v2

n
×
(
βn−1(4u, v)

n∑

j=1

1

m3
j

+

n∑

j=1

1

m3
j

(
1 − j − 1

n

)1/2

+

n∑

j=1

Mj

m3
j

)

≤ c5un × v2

n
×
(
βn−1(4u, v)

nv√
θ2 − 2u2

n

+ n log n

)
.

Note that to obtain the above estimates of S1, we have only use the fact that
the martingale difference sequence X belongs to the class Ln(u, v). Since
the sequence σZ , (σ1(X)Z1, ..., σn(X)Zn) belongs to Ln(4u/

√
2π, v) (with

respect to the filtration F̃k , σ(X1, ..., Xk, Z1, ..., Zk)), we are able to reach

12



a similar estimate for S2:

S2 ≤ c6un × v2

n
×
(
βn−1(16u/

√
2π, v)

nv√
θ2 − 2u2

n

+ n log n

)

where c6 is a positive constant. Using (6) and (7), there exist a positive
constant c such that

βn(u, v) ≤ c un

(
βn−1(16u/

√
2π, v)√

θ2 − 2u2
n

+
logn

v

)
+

3θ

v
.

Putting

Dn , sup

{
vβn(u, v)

un log n
; u ∈ R

N
∗

+ , v > 0

}

and θ2 , (2 + 4c2)u2
n, we derive

Dn ≤ Dn−1

2
+ C

where C is a positive constant which does not depend on n. Finally, we
conclude that

lim sup
n→+∞

Dn ≤ 2C.

The proof of Theorem 1 is complete.

Proof of Theorem 2. Let X = (X1, ..., Xn) in Mn(u). Following an idea
by Bolthausen, we are going to define a new martingale difference sequence
X̂ which satisfies V 2

n (X̂) = 1 a.s. Denote d1 = ‖v2
nV

2
n (X) − v2

n‖1 and
d∞ = ‖v2

nV
2
n (X) − v2

n‖∞. The letter d will denote either d1 or d∞. Con-
sider the random variables Xn+1, ..., Xn+[2d/u2

n]+1 defined as follows: Let k =
[(v2

n + d− v2
nV

2
n )/u2

n], conditioned on Fn+j−1, we assume

Xn+j =





± un w.p. 1/2 for j ≤ k
± (v2

n + d− v2
nV

2
n − ku2

n)
1/2 w.p. 1/2 for j = k + 1

0 else

where [ . ] denotes the integer part function and w.p. is the abbreviation of
with probability. In the sequel, n̂, v̂2, V̂ 2 and Ŝ denote respectively n+[2d/u2

n],
v2

n̂(X̂), V 2
n̂ (X̂) and Sn̂(X̂). One can easily check that X̂ , (X1, ..., Xn̂+1)

belongs to Mn̂(u) and V̂ 2 = 1 a.s. We have

∆n(X) ≤ sup
t∈R

|µ(Sn/v̂ ≤ t) − Φ(t)| + sup
t∈R

|Φ
(
vnt

v̂

)
− Φ(t)|.

13



Noting that v̂2 − v2
n = d and using Lemma 2 with k = 2 and r = 1, if d , d1

there exist a positive constant c such that

∆n(X) ≤ 2 sup
t∈R

|µ(Ŝ/v̂ ≤ t) − Φ(t)| + cd
1/3
1

v̂2/3
+ c

(
v̂ − vn

v̂

)

≤ 2 sup
t∈R

|µ(Ŝ/v̂ ≤ t) − Φ(t)| + 2cd
1/3
1

v
2/3
n

.

Similarly if d , d∞ then

∆n(X) ≤ 2 sup
t∈R

|µ(Ŝ/v̂ ≤ t) − Φ(t)| + cd
1/2
∞

v̂
+ c

(
v̂ − vn

v̂

)

≤ 2 sup
t∈R

|µ(Ŝ/v̂ ≤ t) − Φ(t)| + 2cd
1/2
∞

vn
.

Finally, applying Theorem 1 we derive

∆n(X) ≤ 2 sup
t∈R

|µ(Ŝ/v̂ ≤ t) − Φ(t)| + 2cmin

{
d

1/3
1

v
2/3
n

,
d

1/2
∞

vn

}

≤ 2L(u)

(
un̂ log n̂

v̂

)
+ 2cmin

{
d

1/3
1

v
2/3
n

,
d

1/2
∞

vn

}

≤ 2L(u)

(
un logn

v

)
+ 2cmin

{
d

1/3
1

v
2/3
n

,
d

1/2
∞

vn

}
if n is sufficiently large.

The proof of Theorem 2 is complete.

Proof of Lemma 2. Let k > 0 and r ≥ 1, denote β = ‖E
(
|Y |k|X

)
‖r and

consider q ∈ R ∪ {∞} such that 1/r + 1/q = 1. Let λ > 0 and t be two real
numbers we have

µ (X + Y ≤ t) ≥ µ(X ≤ t− λ, Y ≤ t−X)

= µ(X ≤ t− λ) − µ(X ≤ t− λ, Y ≥ |t−X|)
≥ µ(X ≤ t− λ) − E { 11X≤t−λ µ(|Y | > |t−X| |X)} .

Since

E { 11X≤t−λµ(|Y | > |t−X| |X)} ≤ E
{
|t−X|−kE(|Y |k|X) 11X≤t−λ

}

≤ β‖E{ 11X≤t−λ|t−X|−k}‖q

≤ βλ−k,
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we obtain
µ(X + Y ≤ t) ≥ µ(X ≤ t− λ) − βλ−k.

Consequently

µ(X + Y ≤ t) − Φ(t) ≥ µ(X ≤ t− λ) − Φ(t− λ) − λ√
2π

− βλ−k

and taking λ =
(
β
√

2π
)1/(k+1)

, there exists a positive constant c such that

δ(X + Y ) ≥ δ(X) − cβ1/(k+1). (9)

In the other hand

µ(X + Y ≤ t) ≤ µ(X ≤ t+ λ) + µ(X ≥ t+ λ, |Y | ≥ |t−X|)
= µ(X ≤ t+ λ) + E { 11X>t+λ µ(|Y | ≥ |t−X| |X)}

and

E { 11X>t+λ µ(|Y | ≤ |t−X| |X)} ≤ E
{

11X>t+λE(|Y |k |X) |t−X|−k
}

≤ β‖E( 11X>t+λ |t−X|−k)‖q

≤ βλ−k.

Consequently
µ(X + Y ≤ t) ≤ µ(X ≤ t+ λ) + βλ−k

and

µ(X + Y ≤ t) − Φ(t) ≤ µ(X ≤ t+ λ) − Φ(t+ λ) +
λ√
2π

+ βλ−k.

Taking λ = (β
√

2π)1/(k+1), there exists a positive constant c
′

such that

δ(X + Y ) ≤ δ(X) + c
′

β1/(k+1). (10)

Combining (9) and (10) with Lemma 1 in Bolthausen [2] complete the proof
of Lemma 2.

Proof of Theorem 3. It suffice to apply Inequality (2) of Lemma 2 with
k = p, r = 1 and Y , n−1/2 (g − g ◦ T n). The proof of Theorem 3 is com-
plete.

Proof of Corollary 1. Since (εj)j is stationary, there exists a measure pre-
serving transformation T such that εj = ε0 ◦ T j. By Theorem 2 in [21], the
condition (5) is necessary and sufficient to the existence of a function g in
Lp(µ) such that

X0 = m+ g − g ◦ T
where m , ε0

∑
k∈Z

ak. Since m satisfies the assumptions of Theorem 1, it
suffice to apply Theorem 3. The proof of Corollary 1 is complete.
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