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On Periodic 3D Navier-Stokes Equations when the initial

velocity is in L2 and the initial vorticity is in L1

R. Lewandowski∗

January 6, 2004

Abstract

This paper is devoted to the 3D Navier-Stokes equations in a periodic case. As-
suming that the initial data u0 is in L2

x while the initial vorticity ω0 = ∇ × u0 is
in L1

x, we prove the existence of a distributional solution (u, p) to the Navier-Stokes
equations such that u ∈ L2

t (H
1
x) ∩ L∞t (L2

x) ∩ Lp
t (W 2,p

x ) ∀p < 5/4, and ω = ∇ × u ∈
L∞t (L1

x)∩Lp
t (W 1,p

x ) ∀p < 5/4, p ∈ L5/4
t (W 1,5/4

x ). The main remark of the paper is that
the equation for the vorticity can be considered as a parabolic equation with a right
hand side in L1

t,x. Thus one can use tools of the renormalization theory. Studying
approximations deduced from a Large Eddy Simulations model, we focus our attention
in passing to the limit in the equation for the vorticity. Finally, we look for sufficient
conditions yielding uniqueness of the limit.

1 Introduction and main results

We consider the Navier-Stokes equations, posed in a Q-periodic case in IR3 (Q = [0, 2π]3),
∂tu + (u∇)u− ν∆u +∇p = 0,
∇ · u = 0,
ut=0 = u0,

(1.1)

subject to the constrain that the unknown field (u, p) has zero mean on Q.

Let
V =

{
v ∈ L2

x, ∇ · v = 0
}
,(1.2)

where L2
x is the space of all the Q-periodic functions (vector fields or tensors) with restric-

tion to Q in L2(Q) (with their components restricted to Q in L2(Q)) and such that their
mean value on Q are equal to zero, that is∫

Q
v = 0.

In the context of regularity, we treat functions, vector fields and any tensor with the
same formalism for the sake of simplicity. Generally speaking, if E(X) is a generic space
function on X, Ex denotes all the Q-periodic functions (vector fields or tensors) with their
restriction on Q in E(Q) and with zero mean value on Q.

∗IRMAR, Campus Beaulieu, Université de Rennes I, 35000 Rennes, France, Roger.Lewandowski@univ-
rennes1.fr, http://name.math.univ-rennes1.fr/roger.lewandowski/
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Throughout the paper, we assume that

u0 ∈ V.(1.3)

We know since the work of J. Leray [15] that equation (1.1) has a distributional solution u ∈
L2

t (H
1
x) ∩ L∞t (L2

x), time continuous in L2
x for its weak topology. J. Leray was considering

approximations given by (1.4),
∂tw + ((w ? ρδ)∇)w− ν∆w +∇q = 0,
∇ ·w = 0,
wt=0 = u0 ? ρδ,

(1.4)

where ρδ is a molifier. The solution that he constructed was obtained as limit of subse-
quences of solution of (1.4). J. Leray called such a solution to the Navier-Stokes equations
a “turbulent solution”. We shall call them “Leray’s solution”. We do not know if there is
a unique Leray’s solution.

We consider in this paper the following approximations to the Navier-Stokes equations:
∂tw +∇ · (A−1

δ (ww))− ν∆w +∇q = 0,
∇ ·w = 0,
wt=0 = A−1

δ u0,

(1.5)

where Aδφ := −δ2∆φ + φ, (ww)ij = wiwj for w = (w1, w2, w3); A−1
δ is called the LES

filter.

Approximations (1.5) have been introduced in [13] in the context of Large Eddy Simula-
tions modelling for turbulent flows (LES). For a general overview of LES, the reader is
refered to the book of P. Sagaut [23] or the review of W. Layton [11]. The goal is to filter
small eddies of size less δ in a turbulent flow. In [13], we were looking for a simple tractable
model yielding smooth approximations and which ovoids eddy viscosities. In [12] we have
shown that (1.5) has a unique solution with a reasonnable regularity (see Theorem 2.1
below).

The introduction of (1.5) has been motivated by the fact that LES models with eddy
viscosities give rise to very weak solutions which cannot be proved having any regularity
properties (see in [14]). Moreover, model (1.5) presents the advantage that it allows to
create programs with very simple numerical algorithms. Numerical simulations are in
progress.

The main motivation of this paper is the mathematical study of the behavior of sequences
of approximations constructed by (1.5) to validate the numerical schemes using them for
simulate turbulent flows. We have shown in [13] that up to a subsequence, approximations
due to (1.5) converge when δ goes to zero toward a distributional solution to the Navier-
Stokes equations. We call such a solution a LES solution. We do not know if this LES
solution is unique. We look for more convergence properties of the LES sequences in what
follows.

We first prove that the classical energy inequality is satisfied by each LES solution (see
(1.17) below), a result not yet proved in the previous papers. Next, we consider the case
where the initial vorticity ω0 = ∇ × u0 is in L1

x. In the 3D case under our scope, the
equation for the vorticity is{

∂tω + (u∇)ω − ν∆ω = (ω∇)u,
ωt=0 = ω0 = ∇× u0.

(1.6)
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The reader can found a derivation of this equation in the book of G. -K. Batchelor [3],
equation 5.2.2 page 267.

Energy inequality tells that u ∈ L2
t (H

1
x). Therefore the source term (ω∇)u is naturally

in L1
t,x. Thus, (1.6) can be treated as a parabolic equation with a second hand side in

L1
t,x. This allow an approach using some elements of the renormalization theory, never

used before in the context of the Navier-Stokes equations as far as we know.

The notion of renormalized solution is originally due to P. -L. Lions and R. -J. Di Perna
for Kinetic models (see for instance [8] and more references inside). This notion has been
improved by F. Murat [22] in the case of elliptic equations and by D. Blanchard and F.
Murat in the parabolic case [4].

The main difficulty consists in proving estimates by a rigorous analysis. Yet these estimates
are quickly deduced from formal considerations. Starting from a LES solution (u, p), we
work with the approximations deduced from our LES filter A−1

δ . One notes wn the LES
approximations for the velocity (i.e the unique solution to (1.5) for δn where δn goes to
zero) and ωn = ∇×wn, solution of{

∂tωn +A−1
δn

((wn∇)ωn)− ν∆ωn = A−1
δn

(((∇×wn)∇)wn),
(ωn)t=0 = A−1

δn
(ω0) = ∇× (A−1

δn
u0).

(1.7)

We show in the paper that the sequence (ωn)n∈IN converges in suitable spaces up to a
subsequence to ω = ∇× u, distributional solution to (1.8),{

∂tω + (u∇)ω − ν∆ω = ((∇× u)u,
ωt=0 = ω0 = ∇× u0 ∈ L1

x.
(1.8)

Hence ω is also solution to (1.6). The following regularity holds for ω:

ω ∈ L∞t (L1
x),(1.9)

∀ k ∈ IR+, Tk(ω) ∈ L2
t (H

1
x),(1.10)

ω ∈
⋂

p<5/4

Lp
t (W

1,p),(1.11)

where Tk denotes the truncation function at height k (see (5.12) below) and if ω =
(ω1, ω2, ω3), Tk(ω) is the vector field (Tk(ω1), Tk(ω2), Tk(ω3)).

We know that a L∞t (L1
x) bound for the vorticity has been first obtained by P. Constantin

[7] and generalized By P. -L. Lions [20]. Estimate (1.9) can be also obtained when ω0 is
a bounded measure with the same techniques that we use. Regularity (1.10) and (1.11)
seem to be a new contribution as far as we know. Notice that we have choosen to restrict
ourselve to the case where ω0 is in L1

x unless the case where ω0 is a bounded measure only
for the sake of simplify the presentation.

The results of Blanchard-Murat [4] tell that equation (1.8) admits a unique renormalized
solution ω̃. We do not know if ω̃ = ω. This is due to the lack of strong compactness in L1

t,x

of the sequence (((∇×wn)∇wn))n∈IN which can presents oscillations. We suppose that the
notion of H-measures introduced by L. Tartar [25] can be adapted to study this question
but we did not have explored yet this direction. Nevertheless, the Kolmogorov’s laws say
that frequencies larger than O(R−3/4) in the flow are damped, where R is the Reynolds
number (see for in instance in the book of U. Frisch [9]). Therefore, such oscillations do
not arise physically.
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The equation for the pressure can also be considered as an equation with a second hand
side in L1

x. Indeed, thanks to the incompressibilty, it easy seen that the pressure p is
solution of

−∆p = −∇u : ∇ut ∈ L1
t,x.(1.12)

Formally speaking, tools linked to the renormalization should be usefull. For instance,
one can wait that Tk(p) ∈ L1

t (H
1
x) for each k > 0. Unfortunatly, because of degeneracy

in time of equation (1.12), very poor results are available. We are just able to prove
that for g in a suitable class of bounded functions, (g(qn))n∈IN is bounded in L2

t (H
1
x)

where (qn)n∈IN is the corresponding approximation for the pressure. This is mainly due
to the fact that the sequence (qn)n∈IN can developp very high oscillations at infinity and
compactness properties are cruelly missing. Such oscillations are numerically observed
in high resolution codes. Therefore we are constrain to use output filter to damp these
numerical oscillations (see in [10]). Anyone who have tried in his life to write a simulation
code for real turbulent flows knows that additional terms have to be had in the equations
to stabilize the pressure.

The consequences of our study can be summerized in the following statement.

Theorem 1.1 Let u0 ∈ V such that ∇ × u0 = ω0 ∈ L1
x. Then the 3D periodic Navier-

Stokes equations (1.1) has one distributional solution (u, p) with zero mean value, called
LES solution, and such that:

u ∈ L2
t (H

1
x) ∩ L∞t (L2

x),(1.13)
u ∈

⋂
p<5/4

Lp
t (W

2,p
x ),(1.14)

p ∈ L5/4
t (W 1,5/4

x ),(1.15)
∂tu ∈

⋂
p<5/4

Lp
t,x,(1.16)

and which satisfies the energy inequality for each t > 0

1
2

∫
Q
|u(t, x)|2dx+ ν

∫ t

0

∫
Q
|∇u(t′, x)|2dxdt′ ≤ 1

2

∫
Q
|u0(x)|2dx.(1.17)

The vorticity ω = ∇× u satisfies (1.9), (1.10) and (1.11).

The paper is organized as follows. We start by the recall of the main results of [12] and [13]
and make clear the notion of LES solution. Then we prove that any LES solution satisfy
the energy inequality (1.17). Next, we study the equation for the pressure, pointing out
the difficulties. Afterwards, we consider the equation for the vorticity. The hypothesis that
ω0 ∈ L1

x plays a role at this step. The consequences on the regularity of a LES solution
are investigated. We conclude the paper by further remarks on the problem of uniqueness
of the LES solution by proving the following statement.

Proposition 1.1 Let u0 ∈ V . Assume that any LES solution (u, p) to (1.1) satisfies the
following two hypothesis:

(H1) u ∈ L∞t (L3
x) and there exists a LES sequence of approximations (wn)n∈IN corre-

sponding to u such that (wn)n∈IN is bounded in L∞t (L3
x).

(H2) One have
lim

k→∞
||u− Tk(u)||L∞t (L3

x) = 0,(1.18)
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where Tk(u) = (Tk(u1), Tk(u2), Tk(u3)).

Then there is a unique LES solution (u, p) to the Navier-Stokes equations such that the
the following properties are satisfied.

• The following regularity holds.

Du
Dt

= ∂tu + (u∇)u ∈ L2
x(W ′),(1.19)

where W = {v ∈ H1
x; ∇ · v = 0}.

• The energy equality is satisfied,

1
2

∫
Q
|u(t, x)|2dx+ ν

∫ t

0

∫
Q
|∇u(t′, x)|2dxdt′ = 1

2

∫
Q
|u0(x)|2dx.(1.20)

• The sequence of LES velocities (wn)n∈IN converges strongly towards u in L2([0, T ],H1
x)

for each T > 0.

We mention that P. -L. Lions and N. Masmoudi [21] have proved that there is a unique
solution to the Navier-Stokes equation in the space C0

t (L3
x) by using a duality method.

We have tried here to relax C0
t (L3

x) into a L∞t (L3
x) bound on the approximations to obtain

uniqueness of the limit. For someone familiar with turbulence modelling, this is like a
closure hypothesis. But L∞t (L3

x) seems to be not enough to obtain uniqueness. This is
why we have considered the additional hypothesis (1.18), which is a regularity assumption
in time lighter than C0. Our proof uses mainly the regularity result (1.19) and the strong
convergence of the approximations.

2 LES Approximations

2.1 Definition of an LES filter

The mean operator Aδ is defined by

Aδφ := −δ2∆φ+ φ = φ,(2.1)

with periodic conditions, and fields with mean value equal to zero. This defines an operator

Aδ : W 1,p
x →W−1,p

x .

One easily sees that Aδ is self-adjoint and has the regularity property

∀ r, ∀φ ∈ Hr
x, φ = A−1

δ φ ∈ Hr+2
x .(2.2)

We shall call he operator A−1
δ the LES filter. Note that A−1

δ commutes with every differ-
ential operator thanks to the periodic conditions. That means for instance

∂iA
−1
δ φ = A−1

δ ∂iφ(2.3)

Remark 2.1 For obvious reasons, all the fields that we consider are Q-periodic in space
and have a zero mean value on Q equal to zero. We shall not mention it in the remainder.
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2.2 Approximations : existence and uniqueness

One consider the following problem, where (w, q) is the unknown Q-periodic field:

∂tw +∇ · (A−1
δ (ww))− ν∆w +∇q = 0,

∇ ·w = 0,
wt=0 = A−1

δ u0,∫
Q

w = 0,
∫

Q
q = 0.

(2.4)

Here we note ww = w ⊗w = (wiwj)1≤i,j≤3 and we recall that when ∇ ·w = 0, one has
∇ · (ww) = (w∇)w.

Results of [12] and [13] can be summerized as follows.

Theorem 2.1 Assume that u0 ∈ V . Then the model (2.4) has a unique weak solution

(wδ, qδ) ∈ [L2
t (H

2
x) ∩ L∞t (H1

x)]× L2
t (L

2
x)(2.5)

and the energy equality holds for all t > 0:

1
2

∫
Q
(|wδ(t, x)|2dx+ δ2

∫
Q
|∇wδ(t, x)|2) dx+

ν

∫ t

0

∫
Q
(|∇wδ(t′, x)|2 + δ2|∆wδ(t′, x)|2) dxdt′ =

1
2

∫
Q
(|u0(x)|2 + δ2|∇u0(x)|2) dx,

(2.6)

where u0 = A−1
δ u0. In addition if u0 ∈ V ∩Hk−1 (k ≥ 1), then

(wδ, qδ) ∈ [L2
t (H

k+2
x ) ∩ L∞t (Hk+1

x )]× L2
t (H

k
x).(2.7)

2.3 Convergence towards Navier-Stokes equations

Recall one result proved in [12].

Theorem 2.2 There is a sequence δn → 0 as n→∞ such that

(wδn , qδn) → (u, p) as n→∞

where
(u, p) ∈ [L∞t (L2

x) ∩ L2
t (H

1
x)]× L

4
3
t (L2

x)(2.8)

is a solution of the Navier-Stokes equations (1.1) in the sense of the distributions. The
sequence (wδn)n∈IN converges strongly to u in L2

t (L
2
x), a.e and weakly in L2

t (H
1
x) while the

sequence (qδn)n∈IN converges weakly to p in the space L
4
3
t (L2

x).

Definition 2.1 We shall say that u = u(t, x) is in the set V(u0) and p = p(t, x) in the
set P(u0) if and only if

(u, p) ∈ [L∞t (L2
x) ∩ L2

t (H
1
x)]× L

4
3
t (L2

x)

is a distributional solution to the Navier-Stokes equations (1.1) and is a limit of a subse-
quence of the sequence (wδ, qδ) solution of (2.4). We shall say that (u, p) is a LES solution
to the Navier-Stokes equations.

Notice that Theorem 2.2 makes sure that V(u0) 6= ∅, P(u0) 6= ∅.
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3 Classical estimates

3.1 Energy estimates

In the following one writes u = (u1, u2, u3) and uses the convention of repeated index
sommation. For a fixed u0 ∈ V , one puts

||u0||2L2
x

= E0.(3.1)

Given u = u(t, x) ∈ V(u0), one notes

E(t,u) =
1
2

∫
Q
|u(t, x)|2dx+ ν

∫ t

0

∫
Q
|∇u(t′, x)|2dxdt′.(3.2)

Theorem 3.1 Let u0 ∈ V , u ∈ V(u0). Then t→ E(t,u) is a non increasing function of
t and one has in particular

∀ t ∈ IR, E(t,u) ≤ E0.(3.3)

Corollary 3.1 The following inequalities hold:

||u||L∞t (L2
x) ≤

√
E0,(3.4)

||u||L2
t (H1

x) ≤

√
E0

2ν
.(3.5)

Proof of Theorem 3.1. The field u is limit of a subsequence of the sequence (wδ)δ>0,
subsequence still denoted by (wδ)δ>0. One starts from the energy balance (2.6). Let

Dδ(t) = δ2
(∫

Q
|∇wδ(t, x)|2dx+ ν

∫ t

0

∫
Q
|∆wδ(t′, x)|2dxdt′

)
.

Integrating (2.6) with respect to the time on the interval [0, τ ] yields
1
2

∫ τ

0

∫
Q
|wδ(t, x)|2dxdt+ ν

∫ τ

0

∫ t

0

∫
Q
|∇wδ(t′, x)|2dxdt′dt+

∫ τ

0
Dδ(t) dt =

1
2
τ

∫
Q
(|u0(x)|2 + δ2|∇u0(x)|2) dx,

(3.6)

where one has noted u0 = A−1
δ u0. One studies first the term Iδ = δ2

∫
Q
|∇u0(x)|2dx ≥ 0.

Recall that one has
−δ2∆u0 + u0 = u0.(3.7)

Thus, taking u0 as test function yields

δ2
∫

Q
|∇u0(x)|2dx+

∫
Q
|u0(x)|2dx =

∫
Q

u0(x).u0(x) dx.(3.8)

By putting u0 = u0,δ, (3.8) makes sure that the sequence (u0,δ)δ>0 is bounded in L2
x.

Thus its converges weakly (up to a subsequence) to some g ∈ L2
x. One takes a smooth test

vector field v in (3.7) and one computes doing two part integrations on a cell. One has

−δ2
∫

Q
u0,δ.∆v +

∫
Q

u0,δ.v =
∫

Q
u0.v.
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When δ goes to zero, one obtains
∫

Q
u0.v =

∫
Q

g.v. Therefore, g = u0. The limit being

unique, all the sequence converges. One let δ go to zero in (3.8) and therefore

lim inf Iδ + lim inf
∫

Q
|u0,δ|2 =

∫
Q
|u0|2 = lim sup Iδ + lim sup

∫
Q
|u0,δ|2.

On one hand, lim inf Iδ ≥ 0. On the other hand, lim inf
∫

Q
|u0,δ|2 ≥

∫
Q
|u0|2. Consequently,

each term being non negative,

lim inf Iδ = lim sup Iδ = 0 = lim
δ→0

δ2
∫

Q
|∇u0(x)|2dx(3.9)

Notice that in addition, one has proved that the sequence (u0,δ)δ>0 converges strongly
towards u0 in L2

x because of the weak convergence, combined to the convergence of the
norms, consequence of the previous argument, that means

lim
δ→0

∫
Q
|u0,δ(x)|2dx =

∫
Q
|u0(x)|2dx.(3.10)

Let now consider the term
∫ τ

0
Dδ(t) dt in equality (3.6). Notice first that Dδ(t) ≥ 0. Each

term in the r.h.s of (3.6) being non negative, one can conclude that the sequence (Dδ(t))δ>0

is bounded in L1([0, T ]), T being any non negative real number that one fixes until the
end of the proof. Thus, up to a subsequence, it converges weakly in the sense of measures
to a non negative Radon measure µ1(t) and one has

lim
δ→0

∫ τ

0
Dδ(t) dt =

∫ τ

0
dµ1(t).(3.11)

Moreover, equality (2.6) combined with (3.9) and (3.10) makes sure that the sequence
(|∇wδ|2)δ>0 is bounded in L1

t,x. The weak convergence of (wδ)δ>0 towards u in L2
t (H

1
x)

guaranties the existence of a non negative Radon space periodic defect measure µ2(t, x)
such that 

lim
δ→0

∫ τ

0

∫ t

0

∫
Q
|∇wδ(t′, x)|2dxdt′dt =∫ τ

0

∫ t

0

∫
Q
|∇u(t′, x)|2dxdt′dt+

∫ τ

0

∫ t

0

∫
Q
dµ2(t′, x).

(3.12)

Finally, by the strong convergence of (wδ)δ>0 towards u in L2
t,x, one has

lim
δ→0

∫ τ

0

∫
Q
|wδ(t, x)|2dxdt =

∫ τ

0

∫
Q
|u(t, x)|2dxdt.(3.13)

By putting together (3.9), (3.10), (3.11), (3.12), (3.13), one obtains (for τ ∈ [0, T ]),∫ τ

0
E(t,u) dt+

∫ τ

0

∫ t

0

∫
Q
dµ2(t′, x) +

∫ τ

0
dµ1(t) = τE0,(3.14)

yielding

E(t,u) +
∫ t

0

∫
Q
dµ2(t′, x) + µ1(t) = E0.(3.15)

One deduces (3.3), E(t,u) ≤ E0, thanks to the positiveness of µ1 and µ2. Notice that
(3.15) does not depend on T and is true for each t ∈ IR. Inequalities (3.4) and (3.5) are
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direct consequences of (3.3). Classical results make sure that u ∈ C0
t (L2

x,w). This tells
that u is continuous with respect to the time into L2

x equipped with its weak topology.

It remains to prove that t → E(t,u) is a non increasing function of t. Let t0 ∈ IR. As
u ∈ C0

t (L2
x,w), one have u(t0, x) ∈ L2

x, and u(t0, x) ∈ V . Then one can solve (1.1) by
replacing u0 by u(t0, x) in (2.4) for t ≥ t0. Clearly, when substituting 0 by t0 one has for
t ≥ t0, u ∈ V(u(t0, x)). The previous reasoning applies and then

∀ t ≥ t0,
1
2

∫
Q
|u(t, x)|2dx+ ν

∫ t

t0

∫
Q
|∇u(t′, x)|2dxdt′ ≤

∫
Q
|u(t0, x)|2dx.(3.16)

Adding ν
∫ t0

0

∫
Q
|∇u(t′, x)|2dxdt′ in both side of (3.16) yields E(t,u) ≤ E(t0,u) for each

t ≥ t0, which means that E(t,u) is a non increasing function of t, finishing the proof of
Theorem 3.1.

Remark 3.1 Beside the scope of the previous proof is a property of singular perturbation
equations due to the operator Aδ for small values of δ. The reader may attempt that bound-
ary layers can appear. But we are here in a periodic case and looking for Lp properties.
This class of problems has been studied by J. -L. Lions [17] in the Hilbert case. In our
case, one can prove a more general result.

Lemma 3.1 Let ϕ ∈ Lp
x, 1 ≤ p <∞. Then one have

||A−1
δ ϕ||Lp

x
≤ ||ϕ||Lp

x
.(3.17)

Moreover, when p > 1, (A−1
δ ϕ)δ>0 converges towards ϕ strongly in Lp

x.

Proof. Put ϕ = A−1
δ ϕ. Recall that

−δ2∆ϕ+ ϕ = ϕ.(3.18)

Take ψ(ϕ) = ϕ|ϕ|p−2 as test function in (3.18) when p > 1, ψ(ϕ) = sgn(ϕ) when p = 1
and integrate by part (eventually use truncations and pass to the limit; we skip here this
kind of details, developed in a similar context in part 5). This yields to

δ2
∫

Q
ψ′(ϕ)|∇ϕ|2 +

∫
Q
|ϕ|p =

∫
Q
ϕψ(ϕ).(3.19)

Because ψ is a non decreasing function, we can deduce from (3.19) that∫
Q
|ϕ|p ≤

∫
Q
ϕψ(ϕ).(3.20)

Inequality (3.17) is directly deduced from (3.20) when p = 1. Assume now that p > 1.
Then (3.20) yields ∫

Q
|ϕ|p ≤

∫
Q
|ϕ| |ϕ|p−1.(3.21)

We use Hölder inequality in the r.h.s of (3.21). Then (3.21) becomes

||ϕ||p
Lp

x
≤ ||ϕ||Lp

x
||ϕ||p−1

Lp
x
,(3.22)
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yielding (3.17). When p > 1, (3.17) tells that from the sequence (A−1
δ ϕ)δ>0, we can

extract a subsequence (still denote by the same) which converges weakly in Lp
x towards

some g ∈ Lp
x. In (3.18), take v a smooth test function and integrate by part:

−δ2
∫

Q
ϕ∆v +

∫
Q
vϕ =

∫
Q
vϕ.(3.23)

In (3.23), the term
∫
ϕ∆v converges towards

∫
g∆v when δ goes to zero. Thus, when δ

goes to zero, one have ∫
Q
vg =

∫
Q
vϕ.(3.24)

Then, g = ϕ a.e. The space Lp
x being uniformely convex for p > 1, we deduce from

(3.18) the strong convergence in Lp
x. Finally, by uniqueness of the limit, all the sequence

converges and the proof is complete.

3.2 Interpolation

Notice first that by Sobolev imbedding theorem, (3.5) yields

||u||L2
t (L6

x) ≤ Cs6

√
E0

2ν
,(3.25)

where Cs6 is the Sobolev constant.

For the sake of the simplicity, one notes for 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞,

np,q = ||u||Lp
t (Lq

x).

Lemma 3.2 One has

∀ r ∈ [2, 6], n 4r
3(r−2)

,r ≤ n
6−r
2r
∞,2 n

3(r−2)
2r

2,6 .(3.26)

Corollary 3.2 The following holds

∀ r ∈ [2, 6], n 4r
3(r−2)

,r ≤
C

3(r−2)
2r

s6

(2ν)
3(r−2)

4r

√
E0.(3.27)

Corollary 3.2 and in particular (3.27) follows from (3.26) combined with (3.25), (3.4) and
(3.5)

Proof of lemma 3.2. Let r ∈ [2, 6] and write r = 2θ + 6(1 − θ). By Hölder inequality
one has ∫

Q
|u|r ≤

∫
Q

(
|u|2

)θ
(∫

Q
|u|6

)1−θ

≤ n2θ
∞,2||u||

6(1−θ)
L6

x
.(3.28)

Writing θ = 6−r
4 yields (∫

Q
|u|r

) 4
3(r−2)

≤ n
2(6−r)
3(r−2)

∞,2 ||u||2L6
x
,(3.29)

that is

||u||
4r

3(r−2)

Lr
x

≤ n
2(6−r)
3(r−2)

∞,2 ||u||2L6
x
.(3.30)

Inequality (3.26) is deduced from (3.30) after integrating with respect to the time and an
easy algebraic calculation. In what follows, one puts

t(r) =
4r

3(r − 2)
, r ∈ [2, 6].(3.31)
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3.3 Regularity of the convective term

Lemma 3.3 The convective term satisfies

∀ r ∈ [2, 6], ||(u∇)u||
L

4r
5r−6
t (L

2r
r+2
x )

≤ C
3(r−2)

2r
s6 (2ν)

6−5r
4r E0.(3.32)

Proof of corollary 3.3. An easy computation combined with Hölder inequality yields

||(u∇)u||
L

4r
5r−6
t (L

2r
r+2
x )

≤ ||u||
L

t(r)
t (Lr

x)
||∇u||L2

t (L2
x).

Then (3.32) is a consequence of (3.5) combined to (3.27). Notice that in particular

(u∇)u ∈ L1
t (L

3/2
x ) ∩ L2

t (L
1
x).

4 On the equation for the pressure

4.1 Orientations

Let u0 ∈ V , (u, p) ∈ V(u0)× P(u0). We start by classical estimates on p.

Next, because (u, p) is a LES solution, it is limit of a sequence (wn, qn)n∈IN such that
(wn, qn) is the unique solution to

∂twn +∇ · (A−1
δn

(wnwn))− ν∆wn +∇qn = 0,
∇ ·wn = 0,
(wn)t=0 = A−1

δn
u0,

(4.1)

where (δn)n∈IN is a sequence of non negative numbers which converges to 0.

We seek in this section for more estimates for qn when n is fixed. Next, we derive entropy
estimates satisfied by the sequence (qn)n∈IN .

4.2 Direct estimates

We start with direct estimates on the pressure. Taking the divergence of the motion’s
equation in (1.1) yields the following equation for the pressure

−∆p = −∇ · ((u∇)u).(4.2)

Lemma 4.1 One has

∀ r ∈ [2, 6], ||p||
L

4r
5r−6
t (W

1, 2r
r+2

x )
≤ C

3(r−2)
2r

s6 (2ν)
6−5r
4r E0.(4.3)

Proof This is a direct consequence of the classical elliptic theory combined with (3.32)
and the fact that we are working with periodic conditions. Notice that one has in particular

p ∈ L1
t (W

1,3/2
x ).(4.4)

Remark 4.1 Such kind of estimates for the pressure can be founded in a book of P. -L.
Lions [20]. We mention that improved estimates using Hardy spaces can be found in [6].

Remark 4.2 Beside de scope of estimate (4.3) we have used the fact that −∆ is an iso-
morphism between W 1,p

x and W−1,p
x , a fact that we shall use again in the remainder. This

is mainly due to the famous well known regularity results of S. Agmon, A. Douglis and
L. Nirenberg [1]. We mention also a proof of a similar result due to J. -L. Lions and E.
Magenes [19].
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4.3 Improved estimates for the approximations

One give here an improvement to the results of [12] needed for future applications in the
paper. Fix n and denote by qn the corresponding pressure in (2.4).
One first remark that for any non compressible field v (with ∇ · v = 0), one has

∇ · ((v∇)v) = ∇v : ∇vt.(4.5)

Therefore, equation (4.2) can be rewrited as

−∆p = −∇u : ∇ut ∈ L1
t,x.(4.6)

Lemma 4.2 For a fixed n one have

qn ∈ L∞t (W 4,3
x ).(4.7)

Proof. Thanks to (4.5) and (2.3), the equation for qn can be written under the form

−∆qn = A−1
δn

(∇wn : ∇wt
n).(4.8)

Due to the regularity result (2.7), ∇wn ∈ L∞t (H1
x) and thus ∇wn : ∇wt

n ∈ L∞t (L3
x).

Consequently, A−1
δn

(∇wn : ∇wt
n) ∈ L∞t (W 2,3

x ) and (4.7) is obvious.

When one combines (2.7) with (4.7), one obtains for a fixed n,

∂twn ∈ L2
t (H

1
x) ∩ L∞t (L2

x).(4.9)

4.4 Entropy estimates

Let g be a bounded Lipchitz function with a derivative having a finite number of discon-
tinuities in view of using the results of Stampacchia [24]. We assume that

(g′)2 = g′, g′′ = 0.(4.10)

Lemma 4.3 One has
||g(qn)||L2

t (H1
x) ≤ C||g||∞

E0

2ν
,(4.11)

where C is a generic constant.

Proof. Thanks to the regularity property (4.7), all the manipulations below are justified,
thanks to [24]. Take Aδnqn = −δ2n∆g(qn) + g(qn) as test function in (4.8). Notice that
∆g(qn) = g′(qn)∆qn because of (4.10). Using the fact that Aδ is self-adjoint, this leads to∫

Q
g′(qn)|∇qn|2 + δ2n

∫
Q
g′(qn)|∆qn|2 =

∫
Q
(∇wn : ∇wt

n) g(qn).(4.12)

Because of (4.10),∫
Q
g′(qn)|∆qn|2 =

∫
Q
|g′(qn)∆qn|2 =

∫
Q
|∆g(qn)|2 ≥ 0.

in the same way ∫
Q
g′(qn)|∇qn|2 =

∫
Q
|g′(qn)∇qn|2 =

∫
Q
|∇g(qn)|2.
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Finally, ∣∣∣∣∫
Q
(∇wn : ∇wt

n) g(qn)
∣∣∣∣ ≤ ||g||∞||∇wn||2L2

x
.

Therefore, (4.12) yields ∫
Q
|∇g(qn)|2 ≤ ||g||∞||∇wn||2L2

x
.(4.13)

Estimate (4.11) is obtained when one integrates (4.13) with respect to the time and one
uses (2.6), (3.9) and (3.10).

Remark 4.3 When one takes g = Tk (which satisfies (4.10)), one sees that the sequence
(Tkqn)n∈IN is bounded in L2

t (H
1
x). Therefore, one can extract from this sequence a sub-

sequence which converges weakly in L2
t (H

1
x) to a function p̃k. Arguing as in [22], we can

prove that there is a measurable function p̃ such that p̃k = Tk(p̃). Despite the fact that
(qn)n∈IN converges weakly to p in L

4/3
t,x , we have no reason to claim that p = p̃. Indeed, if

the sequence (qn)n∈IN devellops high oscillations at infinity (what it probably does), then
one can have p 6= p̃.

5 The vorticity equation

5.1 Statement of the main result

Let u0 ∈ V , u ∈ V(u0). One defines the vorticity by

ω = ∇× u.(5.1)

Notice that one deduces from estimate (3.5) the natural estimate for the vorticity

||ω||L2
t (L2

x) ≤ C

√
E0

2ν
,(5.2)

C being a generic constant.

Recall the classical formula for incompressible vector fields v,

∇×∇ · (vv) = (v∇)(∇× v)− ((∇× v)∇)v.(5.3)

Taking formally the curl of the motion equation in (1.1) yields the equation for ω (see for
instance in [3]): {

∂tω + (u∇)ω − ν∆ω = (ω∇)u,
ωt=0 = ω0 = ∇× u0.

(5.4)

We shall focus our attention on the following equation:{
∂tω + (u∇)ω − ν∆ω = ((∇× u)∇)u,
ωt=0 = ω0 = ∇× u0,

(5.5)

where ω is space periodic and have a zero mean value. We do not know if for any u0 ∈ V
and u ∈ V(u0) and a suitable assumption on ω0, equation (5.5) admits a unique distri-
butional solution ω which satisfies estimates (5.2) and is also solution to equation (5.4).
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We assume throughout this section

ω0 = ∇× u0 ∈ L1
x.(5.6)

We first remark that (3.5) makes sure that

((∇× u)∇)u ∈ L1
t,x(5.7)

Then, (5.5) is an equation with ”a second hand side in L1”.

Until the end of this part, one shall have proved the following.

Theorem 5.1 Let u0 ∈ V satisfying (5.6), that is ∇ × u0 ∈ L1
x, and u ∈ V(u0). Then

ω = ∇ × u is a distributional solution to equation (5.5), hence to equation (5.4), which
satisfies

ω ∈ L∞t (L1
x),(5.8)

∀ k ∈ IR+, Tk(ω) ∈ L2
t (H

1
x),(5.9)

ω ∈
⋂

p<5/4

Lp
t (W

1,p).(5.10)

Moreover, there exists a constant C such that

||ω||L∞t (L1
x) ≤ C

(
E0

2ν
+ ||ω0||L1

x

)
.(5.11)

In the previous statement, Tk denotes the truncation function at height k, that is

Tk(x) = x if |x| ≤ k, Tk(x) = k
x

|x|
if |x| ≥ k.(5.12)

If ω = (ω1, ω2, ω3), Tk(ω) is the vector field (Tk(ω1), Tk(ω2), Tk(ω3)).

Remark 5.1 The regularity result (5.10) is formally a consequence of the Boccardo-Gallouët
inequalities [5] that we have carfully to establish below.

Remark 5.2 As already mentionned, similar estimate as (5.11) can be found in [7] and
in [20]. It is also mentionned in the review of C. Bardos and B. Nicolaenko [2].

In what follows, we shall note H the space defined by

H = {v ∈ V ; ∇× v ∈ L1
x}.(5.13)

5.2 Approximations for the vorticity’s equation

Fix u0 ∈ H, where H is defined by (5.13). Consider (u, p) ∈ V(u0) × P(u0). Thus it is a
limit of a sequence (wn, qn)n∈IN solution of

∂twn +∇ · (A−1
δn

(wnwn))− ν∆wn +∇qn = 0,
∇ ·wn = 0,
(wn)t=0 = A−1

δn
u0,

(5.14)

where δn goes to zero when n goes to infinity. Let

ωn = ∇×wn.(5.15)
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Using (2.3) and (5.3), we know that ωn satisfies the equation{
∂tωn +A−1

δn
((wn∇)ωn)− ν∆ωn = A−1

δn
(((∇×wn)∇)wn),

(ωn)t=0 = A−1
δn

(ω0) = ∇× (A−1
δn

u0).
(5.16)

Notice that by (2.7) and (4.9), we know that for fixed n, wn ∈ L2
t (H

3
x) ∩ L∞t (H2

x), ∂tw ∈
L2

t (H
1
x). Thus one has for a fixed n,

ωn ∈ L2
t (H

2
x) ∩ L∞t (H1

x),(5.17)
∂tωn ∈ L2

t (L
2
x).(5.18)

Lemma 5.1 The sequence (ωn)n∈IN is bounded in L∞t (L1
x) and there exists a constant C

such that
||ωn||L∞t (L1

x) ≤ Cζn,(5.19)

where lim
n→∞

ζn =
E0

2ν
+ ||ω0||L1

x
.

Proof. Put ωn = (ω1
n, ω

2
n, ω

3
n). Writing (5.16) component by component yields

∂tω
j
n +A−1

δn
((wn∇)ωj

n)− ν∆ωj
n = A−1

δn
((∇×wn)i∂iwj

n).(5.20)

Let ε > 0 and ϕε the function defined on IR by

∀ 0 ≤ x ≤ ε, ϕε(x) = x, ∀x ≥ ε, ϕε(x) = 1, ϕε(−x) = −ϕε(x).

Let
ψε(x) =

∫ x

0
ϕε(x′) dx′.

Take Aδnϕε(ωj
n) = −δ2∆ϕε(ωj

n) + ϕε(ωj
n) as test function in (5.16) and integrate by part.

This operation makes sense thanks to the regularity properties (5.17) and (5.18). One
obtains:

d

dt

∫
Q
ψε(ωj

n)− δ2n

∫
Q
ϕ′ε(ω

j
n)∂tω

j
n∆ωj

n +
∫

Q
A−1

δn
((wn∇)ωj

n)Aδnϕε(ωj
n) +

ν

∫
Q
ϕ′ε(ω

j
n)|∇ωj

n|2 + νδ2n

∫
Q
ϕ′ε(ω

j
n)|∆ωj

n|2 =∫
Q
A−1

δn
((∇×wn)i∂iwj

n)Aδnϕε(ωj
n).

(5.21)

We have used the fact that ∆ϕε(ωj
n) = ϕ′ε(ω

j
n)ωj

n + ϕ′′ε(ω
j
n)|∇ωj

n|2 and ϕ′′ε = 0. These
computations are justified by the results of G. Stampacchia [24] combined with (5.17) and
(5.18).

Because Aδn is self-adjoint and wn has a zero divergence,∫
Q
A−1

δn
((wn∇)ωj

n)Aδnϕε(ωj
n) =

∫
Q
((wn∇)ωj

n)ϕε(ωj
n) = 0.(5.22)

Moreover, because |ϕε| ≤ 1, one has
∣∣∣∣∫

Q
A−1

δn
(((∇×wn)i∂iwj

n)Aδnϕε(ωj
n)

∣∣∣∣ =∣∣∣∣∫
Q
((∇×wn)i∂iwj

n)ϕε(ωj
n)

∣∣∣∣ ≤ C||∇wn||2L2
x
,

(5.23)
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where C denotes a generic constant. Finally, one has∫
Q
ϕ′ε(ω

j
n)|∇ωj

n|2 ≥ 0,
∫ t

0

∫
Q
ϕ′ε(ω

j
n)|∆ωj

n|2 ≥ 0.(5.24)

When one combines (5.21), (5.22), (5.23) and (5.24), one obtains

d

dt

∫
Q
ψε(ωj

n)− δ2n

∫
Q
ϕ′ε(ω

j
n)∂tω

j
n∆ωj

n ≤ C||∇wn||2L2
x
.(5.25)

One integrates (5.25) with respect to the time on the interval [0, t]:∫
Q
ψε(ωj

n(t, x)) dx− δ2n

∫ t

0

∫
Q
ϕ′ε(ω

j
n)∂tω

j
n∆ωj

n ≤ C||∇wn||2L2
x

+
∫

Q
ψε((ωj

n)0).(5.26)

Note that it is easy seen that ωj
n ∈ C0

t (L2
x) thanks to (5.18). Then because

lim
ε→0

ψε(x) = |x|,

it is obvious that

lim
ε→0

∫
Q
ψε(ωj

n(t, x)) dx =
∫

Q
|ωj

n(t, x)| dx, lim
ε→0

∫
Q
ψε((ωj

n)0) dx = ||(ωj
n)0||L1

x
.(5.27)

Consider
En(t) =

{
(t′, x) ∈ [0, t]×Q; ωj

n(t′, x) = 0
}
.

We note that
lim
ε→0

ϕ′ε(ω
j
n) = 1|En(t) a.e. in [0, t]×Q,

where 1|En(t)(x) = 0 if x /∈ En(t), 1|En(t)(x) = 1 if x ∈ En(t). Because |ϕ′ε| ≤ 1 and thanks
to (5.17) and (5.18), Lebesgue’s Theorem yields

lim
ε→0

∫ t

0

∫
Q
ϕ′ε(ω

j
n)∂tω

j
n∆ωj

n =
∫ ∫

En(t)
∂tω

j
n∆ωj

n.(5.28)

Using again the results of G. Stampacchia [24] combined to (5.17) and (5.18), one has∫ ∫
En(t)

∂tω
j
n∆ωj

n = 0.(5.29)

When one combines (5.26), (5.27), (5.28) and (5.29), one obtains∫
Q
|ωj

n(t, x)| dx ≤ C||∇wn||2L2
t (L2

x) + ||(ωj
n)0||L1

x
.(5.30)

Then (5.19) is a consequence of (5.30) combined to (2.6), (3.9) and (3.10). The proof of
Lemma 5.1 is complete.

5.3 Entropy inequalities

The goal of this part is the proof of general entropy inequalities in order to prove (5.9)
and (5.10) for the sequence (ωn)n∈IN .

Let g be a Lipschitz bounded function such that its derivative has a finite number of
discontinuities. Let

G(x) =
∫ x

0
g(x′) dx′.

16



Assume that
(g′)2 = g′, g′′ = 0.(5.31)

We shall note in the following

Bk
n,j =

{
(t, x) ∈ IR×Q; k ≤ |ωj

n(t, x)| ≤ k + 1
}
.(5.32)

Lemma 5.2 The sequence (ωj
n)n∈IN satisfies for all t

∫
Q
G(ωj

n(t, x)) dx + δ2n

∫
Q
|∇g(ωj

n(t, x))|2dx+

ν

∫ t

0

∫
Q
g′(ωj

n(t′, x))|∇ωj
n(t′, x)|2dxdt′ + νδ2n

∫ t

0

∫
Q
|∆g(ωj

n(t, x))|2dxdt′ ≤

C||g||∞E0 +
∫

Q
G(ω0

j(x)) dx+ δ2n

∫
Q
|∇g(ω0

j(x)|2dx,

(5.33)

where ω0
j = Aδn

−1ω0
j.

Lemma 5.3 One has

δ2n

∫
Q
|∇g(ω0

j(x)|2dx ≤ 2||g||∞||ωj
0||L1

x
.(5.34)

Corollary 5.1 The following inequalities hold

∀ k > 0, ||Tk(ωj
n)||2L2

x(H1
x) ≤ CkE0 + k2mes(Q) + (2k + 1)||ωj

0||L1
x
,(5.35)

∀ k > 0,
∫ ∫

Bk
n,j

|∇ωj
n|2 ≤ CE0 + 2||ωj

0||L1
x

+mes(Q),(5.36)

∀ p < 5/4, ||ωj
n||Lp

t (W 1,p
x )

≤ Cp(E0, ||ωj
0||L1

x
),(5.37)

where Cp(E0, ||ωj
0||L1

x
) goes to infinity when p goes to 5/4.

Proof of Lemma 5.2. Due to the regularity results (5.17) and (5.18) for a fixed n, the
fact that g is Lipchitz with a derivative with a finite number of discontinuity, the results
of G. Stampacchia [24] apply and validate all the following manipulations below.

In equation (5.20) take Aδng(ω
j
n) = −δ2n∆g(ωj

n) + g(ωj
n) as test function. Notice that by

assumption (5.31), ∆g(ωj
n) = g′(ωj

n)∆ωj
n. Moreover, as we have several used before by the

fact that Aδn is self-adjoint,∫
Q
A−1

δn
((∇×wn)i∂iwj

n)Aδng(ω
j
n) =

∫
Q
(∇×wn)i∂iwj

ng(ω
j
n).(5.38)

Finally, because ∇ ·wn = 0,∫
Q
A−1

δn
((wn∇)ωj

n)Aδng(ω
j
n) =

∫
Q
(wn∇)ωj

ng(ω
j
n) = 0.(5.39)

Then one obtains
d

dt

∫
Q
G(ωj

n)− δ2n

∫
Q
g′(ωj

n)∂tω
j
n∆ωj

n + ν

∫
Q
g′(ωj

n)|∇ωj
n|2 +

δ2nν

∫
Q
g′(ωj

n)|∆(ωj
n)|2 ≤ ||g||∞||∇wn||2L2

x
.

(5.40)
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By using assumption (5.31), g′ = (g′)2, one has
∫

Q
g′(ωj

n) ∂tω
j
n ∆ωj

n =
∫

Q
g′(ωj

n) ∂tω
j
n g

′(ωj
n)∆ωj

n =∫
Q
g′(ωj

n) ∂tω
j
n ∆g(ωj

n) =
∫

Q
∂tg(ωj

n) ∆g(ωj
n) = − d

dt

∫
Q
|∇g(ωj

n)|2.
(5.41)

Still using (5.31),∫
Q
g′(ωj

n)|∆(ωj
n)|2 =

∫
Q
g′(ωj

n)∆(ωj
n)g′(ωj

n)∆(ωj
n) =

∫
Q
|∆(g(ωj

n))|2.(5.42)

When one combines (5.40), (5.41) and (5.42) one obtains
d

dt

∫
Q
G(ωj

n) + δ2n
d

dt

∫
Q
|∇g(ωj

n)|2 + ν

∫
Q
g′(ωj

n)|∇ωj
n|2 +

δ2nν

∫
Q
|∆(g(ωj

n))|2 ≤ ||g||∞||∇wn||2L2
x
.

(5.43)

Inequality (5.33) follows by integrating (5.37) with respect to the time and by using (2.6),
(3.9) and (3.10).

Proof of Lemma 5.3. Recall that

−δ2n∆ω0
j + ω0

j = ωj
0.(5.44)

Taking g(ω0
j) as test function in (5.44) yield

δ2n

∫
Q
g′(ω0

j)|∇ω0
j |2 +

∫
Q
g(ω0

j)ω0
j =

∫
Q
g(ω0

j)ωj
0(5.45)

By still using (5.31), (5.45) reads

δ2n

∫
Q
|∇g(ω0

j)|2 ≤ ||g||∞
(∫

Q
|ω0

j |+
∫

Q
|ωj

0|
)
.(5.46)

Then (5.34) is a consequence of (5.46) combined to (3.17) in Lemma 3.1.

Remark 5.3 We do not know if

lim
n→∞

δ2n

∫
Q
|∇g(A−1

δn
ω0

j)|2 = 0.

Proof of Corollary 5.1. Inequality (5.35) follows from (5.33) by taking g(x) = Tk(x).
Inequality (5.36) is obtained when one takes the odd function g = gk be such that gk(x) = 0
for 0 ≤ x ≤ k, gk(x) = x− k for k ≤ x ≤ k + 1 and gk(x) = 1 for x ≥ k + 1. Notice that
both Tk and gk are bounded Lipchitz functions with their derivative having a finite number
of discontinuities and satisfy (5.31). The inequalities are consequences of (5.19), (5.34),
(3.17) and the reasonning made in [16] page 131 and 132. Finally, (5.37) is a consequence
of (5.35) and (5.36) combined with the Boccardo-Gallouët inequality (see in [5]).
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5.4 Passing to the limit : proof of theorem 5.1

We now have to prove Theorem 5.1. Therefore, we have to pass to the limit in equation
(5.16) to prove that ω is a distributional solution to (5.5) and show that (5.8), (5.9) and
(5.10) hold.

Thanks to (5.37) and arguing like in [16], one can extract from the sequence (ωn)n a
subsequence (still denoted by the same) such that (ωn)n converges weakly to some ω̃ in
Lp

t (W
1,p
x ) for all p < 5/4. Because ωn = ∇ × wn, we also know that (ωn)n∈IN converges

weakly to ω in L2
t,x. Thus ω̃ = ω. In particular (5.10) is proved. Moreover, (−∆ωn)n∈IN

converges weakly to −∆ω in Lp(W−1,p) for each p < 5/4.

Let consider now the transport term. For ϕ a smooth test vector field, one has

< A−1
δ ((wn∇)ωn), ϕ >=

∫
Q
∇ ·A−1

δn
(wnωn)ϕ = −

∫
Q
A−1

δn
(wnωn)∇ϕ.

Combining (3.17), (3.27) and (5.2), one remarks that the sequence (A−1
δn

(wnωn))n∈IN is

bounded in L
8/7
t (L3/4

x ). Thus, (A−1
δn

((wn∇)ωn))n∈IN is bounded in L
8/7
t (W−1,3/4

x ). Let

ε > 0. Because of the strong compactness of (wn)n∈IN in L
8/3−ε
t (L4−ε

x ) and the weak
compactness of (ωn)n∈IN , it is easy seen that (A−1

δn
((wn∇)ωn))n∈IN converges weakly in

L
8/7−ε
t (W−1,3/4+ε

x ) to (u∇)ω.

Thanks to the L1
t,x bound of (A−1

δn
(((∇×wn)∇)wn))n∈IN , we deduce from the considera-

tions above that (∂tωn)n∈IN is bounded in L1(W−3,p) for some p > 1. Therefore, by using
an Aubin-Lions lemma adapted to the L1 time case (see in [16]), we know that (ωn)n∈IN is
compact in L1

t,x. Thererefore, from (ωn)n∈IN one can extract a subsequence (still denoted
by the same) which converges a.e. in space-time to ω a and with its modulus dominated
by a L1

t,x-function.

Now, there exists sets At ⊂ IR and Ax ⊂ Q, with mes(Ac
x) = mes(Ac

t) = 0 and for all
(t, x) ∈ At × Ax, (ωn(t, x))n∈IN converges to ω(t, x). Therefore, when one fixes t ∈ At,
(ωn(t, ·))n∈IN converges a.e. to ω(t, ·). By Fatou’s Lemma combined with (5.19) one has
for almost every time t,∫

Q
|ω(t, ·)| ≤ lim inf

n∈IN

∫
Q
|ωn(t, ·)| ≤ C

(
E0

2ν
+ ||ω0||L1

x

)
.

Thereore, ω ∈ L∞t (L1
x) and one has

||ω||L∞t (L1
x) ≤ C

(
E0

2ν
+ ||ω0||L1

x

)
.(5.47)

Then (5.8) is proved.

Thanks to (5.35), one knows that for a fixed k > 0, the sequence (Tk(ωn))n∈IN is bounded
in L2

t (H
1
x). Thus from this sequence one can extract a subsequence wich weakly converges

in L2
t (H

1
x) to a vector field ω̃k ∈ L2

t (H
1
x). But, one also know from the above arguments

that (Tk(ωn))n∈IN converges a.e. to Tkω, and therefore thanks to Lebesgue’s Theorem,
strongly in L2

x,t (|Tk(ωn)| ≤ k ∈ L∞(IR×Q)). Therefore, ω̃k = Tk(ω) ∈ L2
t (H

1
x) and (5.9)

is proved.

It is now easy seen that (∂tωn)n∈IN converges to ∂tω in the distributional sens. It remains
to treat the source term in the equations.
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Remark now that for ϕ a smooth test vector field, one has

< A−1
δn

(((∇×wn)∇)wn), ϕ >=
∫

Q
∇·A−1

δn
((∇×wn)wn).ϕ = −

∫
Q
A−1

δn
((∇×wn)wn) : ∇ϕ.

Thus, the same argument as above applies, and one concludes that (A−1
δn

(((∇×wn)∇)wn))n∈IN

converges to (∇× u)∇)u = (ω∇)u in the sense of the distribution.

Considerations above yields the following conclusion when one passes to the limit in (5.16):
∀ϕ periodic, with C∞ class in space and time and with compact support in time,

< ∂tω, ϕ > + < (u∇)ω, ϕ > +ν
∫ ∞

0

∫
Q
∇ω : ∇ϕ =

∫ ∞

0

∫
Q
(ω∇)u.ϕ.(5.48)

To finish the proof of Theorem 5.1, one has to deal with the initial data. Notice that we
cannot make sure that the sequence (A−1

δn
ω0)n∈IN converges strongly in L1 to ω. We do

not need this information. Indeed, let ϕ a C∞ in space-time vector field, but not with
time compact support and such that ϕ(T, ·) = 0 for some T > 0. One has

< ∂tωn, ϕ >=
∫

Q
A−1

δn
ω0 .ϕ−

∫ T

0

∫
Q
ωn.∂tϕ.

Of course,

lim
n→∞

∫ T

0

∫
Q
ωn. ∂tϕ =

∫ T

0

∫
Q
ω. ∂tϕ.

Remark now that ∫
Q
A−1

δn
ω0 . ϕ = −

∫
Q
A−1

δn
u0 .∇× ϕ.

Thanks to Lemma 3.1 and u0 ∈ L2
x, (A−1

δn
u0)n∈IN converges strongly to u0 in L2

x. Therefore,

lim
n→∞

∫
Q
A−1

δn
u0 .∇× ϕ =

∫
Q

u0 .∇× ϕ = −
∫

Q
ω0.ϕ,

yielding

lim
n→∞

< ∂tωn, ϕ >=
∫

Q
ω0.ϕ−

∫ T

0

∫
Q
ω. ∂tϕ.

Now we are totaly sure that ω is a distributional solution to (5.5) realized as limit of the
approximations (5.16). The proof of Theorem 5.1 is now complete.

5.5 First conclusion : end of the proof of Theorem 1.1

The proof of Theorem 1.1 announced in the introduction is almost finished. It remains to
check (1.14), (1.15) and (1.16).

The fact that p ∈ L
5/4
t (W 1,5/4

x ), that is (1.15), is a direct consequence of (4.3) with
r = 10/3.

We note now that

∇×∇× v = ∇(∇ · v)−∆v.(5.49)

Thus, combined with the incompressible constrain, (5.1) yields

−∆u = ∇× ω.(5.50)
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Therefore, (1.14) holds, that is

u ∈
⋂

p<5/4

Lp
t (W

2,p
x ).

This is a direct consequence of (5.10) (see also Remark 4.2) . Now (1.16), that is ∂tu ∈⋂
p<5/4 L

p
t,x, is obvious.

Remark 5.4 Thanks to the hypothesis ”ω0 ∈ L1
x”, we have gain 2 space-derivative for

the velocity but we did not have gain anything for the pressure, we mean better than (4.3).
This is due to the fact that we did not have gain enough regularity in time.

6 Further remarks on uniqueness

6.1 Orientations

Let u0 ∈ H. Assume that any u ∈ V(u0) satisfies the following two hypothesis.

(H1) u ∈ L∞t (L3
x), and there exists a LES sequence (wn)n∈IN corresponding to u which

is bounded in L∞t (L3
x).

(H2) For any u ∈ V(u0), one has

lim
k→∞

||u− Tk(u)||L∞t (L3
x) = 0.(6.1)

We shall prove the following statements, that we have summerized in Proposition 1.1.

Proposition 6.1 Let u0 ∈ V such that (H1) holds. Let u ∈ V(u0). Then

Du
Dt

= ∂tu + (u∇)u ∈ L2
t (W

′),(6.2)

where
W = {v ∈ H1

x; ∇ · v = 0}.(6.3)

The energy equality is satisfied ∀ t > 0,

1
2

∫
Q
|u(t, x)|2dx+ ν

∫ t

0

∫
Q
|∇u(t′, x)|2dxdt′ = 1

2

∫
Q
|u0(x)|2dx,(6.4)

and the sequence of LES velocities (wn)n∈IN converges strongly towards u in L2([0, T ],H1
x)

for each T > 0.

Remark 6.1 Notice that we do not need (H2) to prove (6.2) and (6.4) and the strong
convergence of the approximations, for which the L∞t (L3

x) environment is enough.

Proposition 6.2 Let u0 ∈ V such that (H1) and (H2) hold. Then card(V(u0)) =
card(P(u0)) = 1, that means that there is exactly one LES solution to (1.1).

Remark 6.2 The results of Proposition 6.1 and Proposition 6.2 are obtain without the
assumption ω0 ∈ L1

x.
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6.2 Regularity of the acceleration and convergence of the energies

We start with the following classical elementary result;

Lemma 6.1 For each function v one has

||v||2L4
x
≤ ||v||L3

x
||v||L6

x
≤ C||v||L3

x
||v||H1

x
.(6.5)

Proof. For the simplicity, assume v ≥ 0. By Hölder inequality,∫
Q
v4 =

∫
Q
v2.v2 ≤

(∫
Q
v3

)2/3 (∫
Q
v6

)1/3

,

and (6.5) follows, by using the Sobolev inequality.

Lemma 6.2 Let u0 ∈ V such that (H1) holds. Let u ∈ V(u0) and (wn)n∈IN the corre-
sponding LES sequence. Then the sequence

(
∂twn +∇ · (A−1

δn
(wnwn))

)
n∈IN

is bounded in

L2
t (W

′) and converges weakly in L2(W ′) to
Du
Dt

= ∂tu + (u∇)u ∈ L2
t (W

′).

Proof. Thanks to its regularity (5.17) and (5.18), each wn satisfies

∀v ∈W, < ∂twn,v >=< Cn(wn),v > − < Dn(wn),v >,(6.6)

where

< Cn(wn),v >=
∫ ∞

0

∫
Q
A−1

δn
(wnwn) : ∇v,(6.7)

< Dn(wn),v >= ν

∫ ∞

0

∫
Q
∇wn : ∇v.(6.8)

Assumption (H1) combined with (2.6), (3.9), (3.10) and (6.5) make sure that the sequence
(wn)n∈IN is bounded in L4

t,x. Hence, thanks to (3.17), (A−1
δn

(wnwn))n∈IN is bounded in
L2

t,x. It is easy checked that this sequence (A−1
δn

(wnwn))n∈IN converges weakly in L2
t,x to

uu. Thus, (Cn(wn))n∈IN converges weakly in L2(W ′) to C(u) where

∀v ∈W, lim
n→∞

< Cn(wn),v >=< C(u),v >=
∫ ∞

0

∫
Q

uu : ∇v.(6.9)

We already know that

∀v ∈W, lim
n→∞

< Dn(wn),v >=
∫ ∞

0

∫
Q
∇u : ∇v =< D(u),v > .(6.10)

The sequence
(
∂twn +∇ · (A−1

δn
(wnwn))

)
n∈IN

is now clearly bounded in L2
t (W

′). Then,
passing to the limit in (6.6) thanks to the already known fact that (∂twn)n∈IN converges
to ∂tu in D′ yields

∀v ∈W, < ∂tu,v >=< C(u),v > − < D(u),v > .(6.11)

Thus in the sense of L2(W ′),

Du
Dt

= ∂tu + C(u) ∈ L2(W ′),
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and the convergence of
(
∂twn +∇ · (A−1

δn
(wnwn))

)
n∈IN

towards
Du
Dt

in L2(W ′) weak is

the consequence of (6.11), (6.6), (6.9) and (6.10) and the lemma is proved.

Proof of Proposition 6.1. Let t > 0. One has
Du
Dt

∈ L2([0, t],W ′) and u ∈ L2([0, t],H1
x)∩

L∞([0, t], L2
x). Then, because u0 ∈ V ,〈

Du
Dt

,u
〉

=
1
2

∫
Q
|u(t, x)|2 dx− 1

2

∫
Q
|u0(x)|2 dx,(6.12)

see for instance in the book of J. -L. Lions [18]. Now, (6.4) is clear by taking the “autho-
rized” u as test function in (6.11).

It remains to prove the strong convergence of the sequence (wn)n∈IN to u in L2([0, T ],H1
x)

for T > 0 fixed. Let T0 > T . When one combines (3.10) with (6.4) one sees that µ1 = 0
and µ2 = 0, with the notations of (3.14). Hence, thanks to (3.12), one has

lim
n→∞

∫ T0

0

∫ t

0

∫
Q
|∇wn(t′, x)|2 dx dt′dt =

∫ T0

0

∫ t

0

∫
Q
|∇u(t′, x)|2 dx dt′dt.(6.13)

It is a classical exercice to check that (6.13) yields the strong convergence of (wn)n∈IN to
u in L2([0, T ],H1

x) for each T < T0. The proof of Proposition 6.1 is now complete because
the result does not depend on the choice of T0.

6.3 Uniqueness result

We prove in this subsection Proposition 6.2. Notice that thanks to (3.32) and (4.2), it
is enough to prove that cardV(u0) = 1. Let u1 and u2 both in V(u0), p1 and p2 the
corresponding pressures. Note δu = u2 − u1, δp = p2 − p1. Then one has

∂tδu + (u2∇)δu− ν∆δu +∇δp = −(δu∇)u1.(6.14)

Thanks to (6.11) and Proposition 6.1, δu is an authorized test function in (6.14). Using
it yields

d

2dt

∫
Q
|δu|2 + ν

∫
Q
|∇δu|2 =

∫
Q
(δu)u1 : ∇δu.(6.15)

Then one has 
d

2dt

∫
Q
|δu|2 + ν

∫
Q
|∇δu|2 ≤∫

Q
|(δu)(Tku1) : ∇δu|+

∫
Q
|(δu)(u1 − Tku1) : ∇δu|.

(6.16)

Thus, by using Hölder inequality,
d

2dt

∫
Q
|δu|2 + ν

∫
Q
|∇δu|2 ≤

k

∫
Q
|δu : ∇δu|+ ||δu||L6

x
||u1 − Tku1||L3

x
||∇δu||L2

x
.

(6.17)

Then by Sobolev inequality, using hypothesis (H2) and (6.1) and chossing k such that
||u1 − Tku1||L∞(L3

x) ≤ ν/2C (C = Sobolev’s constant), one deduces from (6.17)

d

2dt

∫
Q
|δu|2 +

ν

2

∫
Q
|∇δu|2 ≤ k

∫
Q
|δu : ∇δu|.(6.18)
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Finally, Young by Young inequality one obtains

d

2dt

∫
Q
|δu|2 +

ν

4

∫
Q
|∇δu|2 ≤ 4k2

ν

∫
Q
|δu|2(6.19)

One concluded that δu = 0 thanks to Gronwall’s lemma and the fact that δut=0 = 0 and
Proposition 6.2 is proved.
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