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Near-Best quasi-interpolants associated with

H-splines on a three-direction mesh

D. Barrera, M.J. Ibañez, P. Sablonnière, and D. Sbibih

Abstract

Spline quasi-interpolants with best approximation orders and small norms are useful
in several applications. In this paper, we construct the so-called near-best discrete and
integral quasi-interpolants based on H-splines, i.e., B-splines with regular hexagonal
supports on the uniform three-directional mesh of the plane. These quasi-interpolants
are obtained so as to be exact on some space of polynomials, and minimize an upper
bound of their infinite norms depending on a finite number of free parameters. We show
that this problem has always a solution, but it is not unique in general. Concrete examples
of these types of quasi-interpolants are given in the two last sections.

Keywords : H-splines, discrete quasi-interpolants, integral quasi-interpolants, near-best
quasi-interpolants.

AMS subject classification : 41A05, 41A15 ,65D05, 65D07.

1 Introduction

Let τ be the uniform triangulation of the plane, whose set of vertices in ZZ2, and whose
edges are parallel to the three directions e1 = (1, 0), e2 = (0, 1) and e3 = (1, 1). Let us
denote IPn the space of bivariate polynomials of total degree at most n, and IPk

n(τ) the
space of piecewise polynomial functions of degree n and class Ck defined on τ . In this
paper, we consider only H-splines, i.e., B-splines with regular hexagonal supports (whose
sides are composed of the same number of edges of τ). The family of H-splines contains
the classical box-splines in IP2k

3k+1(τ) for k ≥ 0, together with new families of B-splines
introduced in [8], [11], and [14]
For a given H-spline ϕ, S(ϕ) denote the space of splines

∑
c(α)ϕ(. − α), α ∈ ZZ2 and

c(α) ∈ IR} generated by the family of translates B(ϕ) = {ϕ(. − α), α ∈ ZZ2}.
All the families B(ϕ) that we use are globally linearly independent, i.e.,

∑

α∈ZZ2

c(α)ϕ(.−α) =

0 implies c(α) = 0 for all α ∈ ZZ2. We denote by IP(ϕ) the space of polynomials of
maximal total degree included in S(ϕ). We construct new families of discrete or integral
quasi-interpolants from Ck+1(IR2) into S(ϕ) which are exact on IP(ϕ), and minimize a
simple upper bound of their uniform norm. These quasi-interpolants can be considered as
an extension to the bivariate case of those introduced in [2] and [3]. They have the form
Qf = {

∑

α∈ZZ2

λα(f)ϕ(. − α), where λα(f) is a finite combination of values f(β) or mean

values < f, ϕ(. − β) >=
∫

f(x)ϕ(x − β)dx, where β ∈ ZZ2 lies in some hexagon centered
at α ∈ ZZ2. Such operators have already been considered by many authors ( see [6], [4]),
but the ones presented here seem to be new and interesting.
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The paper is organized as follows. In section 2, we recall some results on H-splines and
hexagonal sequences. Then, in section 3, we introduce discrete and integral quasi-interpolants
(QIs) based on some H-spline ϕ and which are exact on IP(ϕ). Starting from these QIs,
we study in section 4 new families of QIs. They are obtained by solving a minimization
problem that admits always a solution. Finally, in sections 4 and 5, we give two examples
of each type of these operators. In particular, we show that they are not unique in general.

2 H-splines and symmetrical hexagonal sequences

2.1 H-splines

For p ≥ 0, we denote by Hp the hexagon in τ centered at the origin, with sides of length
p. For p = 0, we define H0 = 0.
Let πr, r ≥ 0, be a H-spline supported on H1 of class Cr and of minimal degree d(r) for
which B(πr) is a partition of unity. It is proved in [9] that πr is unique with d(r) = 3r +1
for r even and 3r + 2 for r odd. If we put π = π0 the classical piecewise affine pyramid,
then πk = π ∗ · · · ∗ π (k times) is the box-spline in IP2k

3k+1(τ). For k = 0, we define π0
r = πr

and for k ≥ 1, πk
r = πr ∗ πk−1. Note that the power is the convolution power.

Using classical results on the convolution product of piecewise polynomial functions and
the Srang-Fix theory ( see [15]), the following result have been established in [14]( see
also [13]).

Theorem 2.1 (i) The support of πk
r is the hexagon Hk+1.

(ii) πk
r is a positive B-spline of class Cr+2k, of degree 3(r +k)+1 for r even and of degree

3(r + k) + 2 for r odd.
(iii) For k ≥ 1 we have

IP(πk
r ) =

{

IP2k+1 when r = 0,
IP2k when r ≥ 1.

(iv) The family B(πk
r ) is globally linearly independent.

From Property (iii), we deduce immediately that the approximation order of a smooth
function in the space S(πk

r ) is 2k+2 for r = 0 and 2k+1 for r ≥ 1. In the literature, there
exist different methods to construct spline operators giving this order of approximation.
For instance, in [4] and [6] are described quasi-interpolants using Appell sequences,
Neumann series or Fourier transform. In [10] and [12], discrete and integral quasi-interpolants
are defined from the values of an H-spline on a three direction mesh by exploiting the
relation between hexagonal sequences and central difference operators. It seems that
this later method is the the best adapted for the study proposed here. So, we recall in
the following subsections some properties of the hexagonal sequences and the algebra of
difference operators. For more details see e.g. [10].

2.2 Hexagonal sequences

Let Hp be the vector space of real sequences {c(α), α ∈ ZZ2} having their support in Hp,
i.e., satisfying c(α) = 0 for all α /∈ H∗

p = Hp ∩ ZZ2, which are invariant by the group of
symmetries and rotations of the hexagon Hp. It is easy to prove the following result.
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Figure 1:

Theorem 2.2

dimHp =

{

(q + 1)2 when p = 2q,
(q + 1)(q + 2) when p = 2q + 1.

Then, with any sequence c ∈Hp, we associate a list c̃ = {cα1
, · · · , cαn

}, where n =
dimHp. The corresponding between the list and the actual sequence is described in
Figure 1 for p = 2, so n = 4.

Let d1 ∈ H1 and d2 ∈ H2 be two hexagonal sequences associated respectively with the
lists d̃1 = [−6, 1] and d̃2 = [−6, 0, 1, 0]. We denote by I ∈ H0, the sequence associated
with the list reduced to [1]. For p ≥ 0, let Tp be the subset of (m,n) ∈ IN2 such that
0 ≤ m + 2n ≤ p and Bp = {dm

1
dn

2
, (m, n) ∈ IN2}, where the products are convolution

products, i.e., the elements dm

1
, dn

1
and dm

1
dn

2
of the spaces Hm, Hn and Hm+2n respectively

are given by :

dm

1
= {dm

1
(j) such that d1

1
(j) = d1(j) for j ∈ H∗

1
, and dm

1
(j) =

∑

i∈H∗

1

d1(i)d
m−1

1
(j−i) for j ∈ H∗

m
},

dn

2
= {dn

2
(j) such that d1

2
(j) = d2(j) for j ∈ H∗

2
, and dn

2
(j) =

∑

i∈H∗

2

d2(i)d
n−1

2
(j− i) for j ∈ H∗

2n
},

and
dm

1
dn

2
= {dm,n(j) such that dm,n(j) =

∑

i∈H∗

m

dm

1
(i)dn

2
(j − i)}.

Then, it is easy to check that dimHp = cardBp and, by induction on p, one can prove
that Bp is a basis for the space Hp.

2.3 The algebra of difference operators

To the above hexagonal sequences d1 and d2 of the spaces H1 and H2 respectively, we
associate the following difference operators ∆1 and ∆2 defined, for k = 1 or 2, by

(∆kf)(x) = f(x+ke1)+f(x+ke2)+f(x+ke3)−6f(x)+f(x−ke1)+f(x−ke2)+f(x−ke3),

which stand for the discrete schemes of the Laplacien operator ∆ = ∂2

∂x2 + ∂2

∂y2 .
Then, the relation between hexagonal sequences and these difference operators is given
by the following identity :

(∆kf)(α) = (dk ∗ f)(α),

where f denotes here the sequence {f(α), α ∈ ZZ2}.
Moreover, if we denote by Lp, p ≥ 0, the space with basis {∆m

1 ∆n
2 , (m, n) ∈ Tp}, then it
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is clear that the two spaces Lp and Hp are isomorphic. On the other hand, it is simple to
see that each element D of Lp, p ≥ 0, has an hexagonal support. Then, its inverse D−1

in the convolution algebra l1 (ZZ2 ) has a non bounded support. However, we show in the
following result that D−1 is finite when restricted to some spaces of polynomials.

Lemma 2.1 Let k ∈ IN∗ and D =
∑

(m,n)∈Tp

α(m,n)∆m
1 ∆n

2 ∈ Lp. Then the inverse D−1 of

D restricted to the space IP2k+1 is an element of L2p and it is given by

D−1 =
∑

r+s≤k

β(r, s)∆r
1∆

s
2,

where β(r, s) are solutions of the following linear system :

∑

r+m≤u, s+n≤v

α(m,n)β(r, s) =

{

1 for (u, v) = (0, 0),
0 for (u, v) 6= (0, 0).

Proof. It derives from the fact that ∆m
1 ∆n

2p = 0 for all p ∈ IP2r−1 such that m+n = r ≥ 1,
and the degree 2r − 1 is maximal.

3 Quasi-interpolants based on H-splines

As indicated in the introduction, our aim is to study new families of discrete and integral
quasi-interpolants based on some H-spline ϕ. They are obtained by solving minimization
problems under some linear constraints. In order to give the explicit formulae of these
linear constraints, it is necessary to express all the monomials of IP(ϕ) as linear combinations
of integer translates of ϕ. To do this, we need some results concerning differential
quasi-interpolants (see [5]).

3.1 Differential quasi-interpolants (DQIs)

Let ϕ be a H-spline of support Hk+1, k ≥ 0, ϕ̂ its Fourier transform. As ϕ̂(0) = 1, we
have in some neighborhood of the origin

1

ϕ̂(y)
=

∑

α∈IN2

aαyα.

Let d be the integer such that IPd = IP(ϕ) and Γϕ = {α ∈ IN2 such that mα ∈ IP(ϕ)}.
We denote by ID the following differential operator

IDf =
∑

|α|≤d

(−i)2aαDαf, i2 = −1,

and by Sf =
∑

i∈ZZ2

f(i)ϕ(. − i) the classical Schoenberg operator. Then it is well known ,

see e.g. [8] and [12], that S is an automorphism on IP(ϕ) and satisfies

Smα =
∑

β≤α

α!

β!
(−iD)βϕ̂(0)Dβmα, and S−1mα = gα for all α ∈ Γϕ,
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where mα(x) = xα are the monomials of IP(ϕ) and gα is a recursive family of polynomials
defined by







g0 = m0

gα = mα −
∑

j∈ZZ2

ϕ(j)
∑

β≤α,β 6=α

(−j)α−βα!

(α − β)!
gβ. (1)

Moreover, we have the following result.

Lemma 3.1 The operator ID coincides on IP(ϕ) with S−1. Therefore ID is also an
automorphism on IP(ϕ).

Proof. Consider the power series expansion ϕ̂(y) =
∑

β∈IN2

1

β!
Dβϕ̂(0)yβ. Hence, ϕ̂ϕ̂−1 = 1

implies that
∑

α+β=γ

aα

β!
Dβϕ̂(0) = δ0γ =

{

1 when γ = 0
0 when γ 6= 0.

On the other hand, for all α ∈ Γ(ϕ) we have

mα =
∑

γ≤α

(−iD)γmαδ0γ =
∑

γ≤α

(−iD)γmα

∑

β+θ=γ

aβ

θ!
Dθϕ̂(0)

=
∑

β,θ≤α

(−iD)β+θmα

aβ

θ!
Dθϕ̂(0) =

∑

θ≤α

(
∑

β∈Γ(ϕ)

aβ(−iD)β(Dθmα))
(−iD)θϕ̂(0)

θ!

=
∑

θ≤α

ID(Dθmα)
(−iD)θϕ̂(0)

θ!
= ID(

∑

θ≤α

Dθmα

(−iD)θϕ̂(0)

θ!
)

= IDSmα.

Then, we deduce that ID = S−1 and consequently ID is an automorphism on IP(ϕ).

Now, using the operator ID, we define the following differential quasi-interpolant :

Df = SIDf =
∑

j∈ZZ2

(
∑

|α|≤d

(−i)2aαDαf(j))ϕ(. − j).

Thus, it is clear that D is exact on IPd.
According to section 2, the space IPd coincides with IP2k+1 when ϕ is a box-spline in
IP2k

2k+1(τ). In this case, the Fourier transform ϕ̂ is well known and the computation of the
coefficients aα can be done directly. Therefore, as

Dmα = mα, for all α ∈ IP2k+1,

we easily deduce the needed expressions of mα.
For a H-spline ϕ which is not a box-spline, we have not in general the explicit formula of its
Fourier transform. However, as shown in the following result, the associated coefficients
aα are determined only in terms of the values ϕ(j), j ∈ supp(ϕ) ∩ ZZ2, which can be
computed by standard convolution algorithms (see e.g. [8]).

Lemma 3.2 For any α ∈ Γϕ, we have

aα = i|α|gα(0).

Proof. It derives from the fact that gα = S−1mα = IDmα, for all α ∈ Γϕ.
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3.2 Discrete quasi-interpolants (dQIs)

Let Φ = {ϕ(α), α ∈ H∗
k = Hk ∩ZZ2} be the hexagonal sequence of Hk associated with the

H-spline ϕ, and D ∈ Lk its corresponding difference operator. As the above Schoenberg
operator S is an automorphism on IP(ϕ), there exists for each p ∈ IP(ϕ) a unique q ∈ IP(ϕ)
such that p = Sq. Then, according to the definition of S, we obtain

Sp =
∑

i∈ZZ2

Sq(i)ϕ(. − i) =
∑

i∈ZZ2

(
∑

α∈ZZ2

q(α)ϕ(i − α))ϕ(. − i)

=
∑

i∈ZZ2

(
∑

α∈H∗

k

ϕ(α)q(i + α))ϕ(. − i) =
∑

i∈ZZ2

Dq(i)ϕ(. − i).

On the other hand, using the fact that

∑

i∈ZZ2

∆rq(i)ϕ(. − i) =
∑

i∈ZZ2

q(i)∆rϕ(. − i), r = 1 or 2,

we deduce that

Sq =
∑

i∈ZZ2

Dq(i)ϕ(. − i) =
∑

i∈ZZ2

q(i)Dϕ(. − i) = DSq = Dp.

Hence, S coincides with D on IP(ϕ).
Now, if we set D−1 the inverse of D on IP(ϕ), then the discrete quasi-interpolant defined
by

Qf = SD−1f =
∑

i∈ZZ2

D−1f(i)ϕ(. − i) =
∑

i∈ZZ2

f(i)(D−1ϕ)(. − i) = D−1Sf

is exact on IP(ϕ).
According to Lemma 2.1, the operator D−1 is finite on IP(ϕ), and it can be written in the
form :

D−1f =
∑

α∈H∗

k

cαf(. + α).

Therefore, the above expression of Qf becomes

Qf =
∑

i∈ZZ2

(
∑

α∈H∗

k

cαf(i + α))ϕ(. − i),

which is equivalent to
Qf =

∑

i∈ZZ2

f(i)L(. − i),

where L denotes the fundamental function defined by

L =
∑

α∈H∗

k

cαϕ(. − α).

It is simple to verify that
‖Q‖∞ ≤ ν(c) =

∑

α∈H∗

k

|cα|.
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3.3 Integral quasi-interpolants (iQIs)

It was shown in [8] and [14], that each ϕ of H-splines considered in this paper satisfies
∫

ϕ(x)dx = 1. Then, we can introduce the following integral form of the Schoenberg
operator :

S̃f =
∑

i∈ZZ2

< f(. + i), ϕ > ϕ(. − i),

where < f, ϕ >=
∫

f(x)ϕ(x)dx.
As S, the operator S̃ is also an automorphism on IP(ϕ) and coincides with a difference
operator. Indeed, according to section 3.2, for any p ∈ IP(ϕ) there exists a unique
q ∈ IP(ϕ) such that S̃q = p. Then,

S̃p =
∑

i∈ZZ2

< Sq(. + i), ϕ > ϕ(. − i) =
∑

i∈ZZ2

(
∑

α∈ZZ2

vαq(α + i))ϕ(. − i),

where vα =
∫

ϕ(x)ϕ(x − α)dx. It is simple to see that vα = 0 for all α /∈ H∗
k . Then, if we

put D̃q(x) =
∑

α∈H∗

k

vαq(x + α), we verify easily that we have

S̃p =
∑

i∈ZZ2

D̃q(i)ϕ(. − i) =
∑

i∈ZZ2

q(i)D̃ϕ(. − i) = D̃Sq = D̃p.

Consequently, S̃ coincides on IP(ϕ) with D̃, and D̃−1 has a finite expression on IP(ϕ).
We now consider the following integral quasi-interpolant based on D̃−1 :

Tf = S̃D̃−1f =
∑

i∈ZZ2

< D̃−1f(. + i), ϕ > ϕ(. − i)

=
∑

i∈ZZ2

(
∑

α∈H∗

k

dα < f(. + i + α), ϕ >)ϕ(. − i).

We remark that for all p ∈ IP(ϕ), we have Tp = S̃D̃−1p = D̃D̃−1p = p. Thus, the iQI T
is exact on IP(ϕ).
Once again, as we obtained above for the dQI Q,

‖T‖∞ ≤ ν(d) =
∑

α∈H∗

k

|dα|.

The study of these iQIs, illustrated by examples, is given [8], [10] and [14].

Let us denote by Q one of the above dQI Q or iQI T . It is well known that the infinite
norm of Q appears in the approximation error of f by Qf . More specifically, we have

‖f −Qf‖∞ ≤ (1 + ‖Q‖∞)dist(f, S(ϕ)).

Then, it is interesting to construct a quasi-interpolant Q with a small norm. In general,
it is difficult to minimize the true norm. To remedy partially this problem, P. Sablonnière
has proposed in [12], a method for solving the problem of discrete quasi-interpolant
with minimal infinite norm. It consisted in trying to construct bases of the algebras of
hexagonal sequences in order to get small norms for the corresponding discrete quasi-interpolants.
In the next section, we present another method which seems more interesting.
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4 Near-best dQIs and iQIs based on H-splines

The proposed method consists to choose a priori a sequence c (resp. d) with a larger
support and afterwards minimize ν(c) (resp. ν(d)) under the linear constraints consisting
of reproducing all monomials in IP(ϕ). More specifically, for s ≥ k, we construct families
of discrete or integral quasi-interpolants :

Qk+1,sf =
∑

i∈ZZ2

(
∑

α∈H∗

s

cαf(i + α))ϕ(. − i) (2)

Tk+1,sf =
∑

i∈ZZ2

(
∑

α∈H∗

s

dα < f(. + i + α), ϕ >)ϕ(. − i) (3)

which satisfy the two following properties
i) Qk+1,s and Tk+1,s are exact on IP(ϕ).
ii) The coefficients cα (resp. dα), α ∈ H∗

s , are those that minimize the l1-norm ν(c) (resp.
ν(d) of c (resp. d) under the linear constraints consisting of reproducing all monomials in
IP(ϕ).

As a sequence c (resp. d) is fully determined by a list c̃ = [cα1
, · · · , cαn

] (resp. d̃ =
[dα1

, · · · , dαn
]), it is clear that the exactness of Qk+1,s (resp. Tk+1,s) on IP(ϕ) implies that

there exist a p × n matrix A of rang p < n and a vector b1 (resp. b2) in IRp such that
Ac̃ = b1 (resp. Ad̃ = b2). If we put Vi = {x̃ ∈ IRn : Ax̃ = bi, i = 1, 2}, then the
construction of Qk+1,s or Tk+1,s is equivalent to solve the following minimization problem
:

Problem (i) Solve Min{‖x‖1, x̃ ∈ Vi}.

Definition 4.1 If c (resp. d) is a solution of Problem (1) (resp. Problem (2)), then
the associated dQI (resp. iQI)defined by (2) (resp. (3)) is called a near-best dQI (resp.
near-best iQI).

Proposition 4.1 For i = 1 or 2, the minimization Problem (i) has at least one solution.

Proof. Since the rang of A is p, the above system Ax̃ = bi, i = 1 or 2, can be solved
and each xαj

, 1 ≤ j ≤ n, is an affine function of n − p parameters of x̃. Moreover, the
sequence x is an element of Hk. On the other hand, by substituting the affine functions
xαj

in the expression of ‖x‖1, we obtain a n× (n− p) matrix Ã and a vector b̃i such that

‖x‖1 = ‖b̃i − Ãx̃‖1. Thus, solving Problem (i) is equivalent to determine the best linear
l1-approximation of b̃i using the elements of Ãx̃, and the existence of at least one solution
is guaranteed.

Before giving some examples of these quasi-interpolants, note that the exactness
equations of Tk+1,s on IP(ϕ) include the moments µα(ϕ) =

∫

mα(x)ϕ(x)dx, α ∈ Γϕ, of
ϕ. It was shown in [14] that µα(ϕ) = (i)|α|Dαϕ̂(0), |α| = α1 + α2. Then, when ϕ is a
box-spline, we know explicitly its Fourier transform ϕ̂ and therefore the computation of
µα(ϕ) can be done easily. But, for ϕ which is not a box-spline, we can determine its
corresponding moments by using only the values ϕ(j), j ∈ Hk ∩ ZZ2. Indeed, if we put
tα =

∑

j∈ZZ2

mα(j)ϕ(j), then we have the following result.
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Lemma 4.1 For any α ∈ Γϕ we have

µα(ϕ) =

{

tα when |α| is odd,
0 when |α| is odd.

Proof. According to the expression (1), we get the following connection between tα and
gα.

gα = mα −
∑

β≤α,β 6=α

(−1)|α−β|α!

(α − β)
tα−βgβ. (4)

On the other hand, see e.g. [6], the sequence (gα)α∈IN2 may be written in the form :






g0 = m0

gα = mα −
∑

j∈ZZ2

∑

β≤α,β 6=α

α!

(α − β)
(−iD)α−βϕ̂(0)gβ. (5)

Hence, by comparing (4) and (5), we obtain

tα = (−iD)α−βϕ̂(0) = µα(ϕ)

Using the symmetries of ϕ, we easily verify that tα = (−1)|α|tα, i.e., tα = 0 for all α such
that |α| is odd. Then, the announced result yields.

5 Examples of near-best dQIs

5.1 Near-best dQI based on the quartic box-spline π2

0

The differential quasi-interpolant based on the C2 quartic box-spline π2
0 (k = 1) is given

by

Df =
∑

j∈ZZ2

(f(i) −
1

6
(D(2,0)f(i) + D(1,1)f(i) + D(0,2)f(i)))π2

0(. − i).

As D is exact on IP3, we get the following expressions

m0,0 =
∑

j∈ZZ2

ϕ(. − i); m1,0 =
∑

j∈ZZ2

i1ϕ(. − i);

m2,0 =
∑

j∈ZZ2

(i21 −
1

3
)ϕ(. − i); m1,1 =

∑

j∈ZZ2

(i1i2 −
1

6
)ϕ(. − i);

m3,0 =
∑

j∈ZZ2

(i31 − i1)ϕ(. − i); m2,1 =
∑

j∈ZZ2

(i21i2 −
1

3
i1 −

1

3
i2)ϕ(. − i),

and by symmetry we deduce the expressions of m0,1,m0,2,m1,2 and m0,3.
Now, by using the properties of the hexagonal sequences (cα)α∈H∗

s
, it is simple to verify

that the quasi-interpolant

Q2,sf =
∑

i∈ZZ2

(
∑

α∈H∗

s

cαf(i + α))π2
0(. − i), s ≥ 1,

is exact on IP3 if and only if the coefficients cα satisfy the following equations

∑

α∈H∗

s

cα = 1 and
∑

α∈H∗

s

α1
2cα = −

1

3
.

9



Remark 5.1 For s = 1, the dimension of H1 coincides with the number of the exactness
conditions of Q2,1 on IP3. Therefore, Q2,1 is unique and it is given by

Q2,1f =
∑

i∈ZZ2

(
3

2
f(i) −

1

12

3∑

l=1

f(i + el))π
2
0(. − i).

Thus, in order to have parameters in the minimization problem, it is necessary to take
s > 1.

Proposition 5.1 Let c∗0,0 = 1 + 1
2(2t)2

and c∗2t,0 = − 1
12(2t)2

. Then

(c∗0,0, 0, · · · , 0
︸ ︷︷ ︸

t2+t−1

, c∗2t,0, 0, · · · , 0
︸ ︷︷ ︸

t

)T ∈ IR(t+1)2

is a solution of Problem 1 for k = 1 and s = 2t, t ≥ 1.

Proof. For k = 1 and s = 2t, t ≥ 1, the expression of ‖c‖1 is

‖c‖1 = |c0,0| + 6
t∑

j=1

(|c2j,j| + |c2j,0|) + 12
t∑

j=2

j−1
∑

l=1

|c2j,l| + 6
t−1∑

j=1

|c2j+1,0| + 12
t∑

j=1

j−1
∑

l=1

|c2j−1,l|,

and the associated linear constraints in Problem 1 are






1 = c0,0 + 6
t∑

j=1

c2j,j + c2j,0 + 12
t∑

j=2

j−1
∑

l=1

c2j,l + 6
t−1∑

j=1

c2j+1,0 + 12
t∑

j=1

j−1
∑

l=1

c2j−1,l

−1
3

=
t∑

j=1

{4(2j)2c2j,0 + (2(2j)2 + 4j2)c2j,j} +
t∑

j=2

j−1
∑

l=1

4{(2j)2 + l2 + (2j − l)2}c2j,l

+
t∑

j=2

j−1
∑

l=1

4{(2j − 1)2 + l2 + (2j − 1 − l)2}c2j−1,l

(6)

If we put

‖c‖1 = ω(c0,0, c1,0, c2,0, c3,0, c3,1, · · · , c2t−1,0, c2t−1,1, · · · , c2t−1,t−1, c2t,0, c2t,1, · · · , c2t,t−1, c2t,t),

then, by using equations (6), we can express c0,0 and c2t,0 in terms of the other coefficients
of the hexagonal sequence c. Therefore, minimizing ‖c‖1 under the linear constraints

given in (6) becomes equivalent to minimize in IR(t+1)2−2 the polyhedral convex function
ω of the following variables

c1,0, c2,0, c2,1, c3,0, c3,1, . . . , c2t−1,0, c2t−1,1, . . . , c2t−1,t−1, c2t,1, . . . , c2t,t−1, c2t,t). (7)

Let ci,j any variable in (7). Denote by ω̄(ci,j) the restriction of ω obtained by replacing its
variables by zero except ci,j. We will prove that this univariate function ω̄(ci,j) admits a
minimum at 0 ∈ IR. Indeed, assume for example ci,j = c1,0. Then, by annulling the other
variables in equations (6), we get the expressions of c0,0 and c2t,0 in terms of c1,0. More
precisely, we obtain

c0,0 = c∗0,0 −
6

(2t)2
((2t)2 − 1)c1,0

c2t,0 = c∗2t,0 −
1

(2t)2
c1,0.

10



Thus, ω̄(c1,0) takes the following expression

ω̄(c1,0) = |c0,0| + 6|c2t,0| + 6|c1,0|

= |c∗0,0 −
6

(2t)2
((2t)2 − 1)c1,0| + 6|c∗2t,0 −

1

(2t)2
c1,0| + 6|c1,0|.

It is simple to see that for small values of c1,0, ω̄(c1,0) becomes

ω̄(c1,0) = c∗0,0 −
6

(2t)2
((2t)2 − 1)c1,0 − 6(c∗2t,0 −

1

(2t)2
c1,0) + 6|c1,0|

= (c∗0,0 − 6c∗2t,0) −
6

(2t)2
((2t)2 − 1)c1,0 −

6

(2t)2
c1,0 + 6|c1,0|

= ω∗ +
6

(2t)2
(2 − (2t)2)c1,0 + 6|c1,0|.

Therefore, in both cases c1,0 > 0 and c1,0 < 0, we verify easily that

ω̄(c1,0) > ω∗ = ω̄(0).

A similar technique can be applied for each of the other variables in (7).
Consequently, we conclude that the convex function ω without constraints attains its
global minimum at 0 ∈ IR(t+1)2−2. In other words, we have

ω∗ = ω(c∗0,0, 0, · · · , 0
︸ ︷︷ ︸

t2+t−1

, c∗2t,0, 0, · · · , 0
︸ ︷︷ ︸

t

) = min{‖c‖1, c̃ ∈ V1}.

Remark 5.2 A similar result can be obtained when s is odd, i.e., s = 2t + 1, t ≥ 1. In
this case we have

‖c‖1 = |c0,0| + 6
t∑

j=1

(|c2j,j| + |c2j,0|) + 12
t∑

j=2

j−1
∑

l=1

|c2j,l| + 6
t∑

j=0

|c2j+1,0| + 12
t+1∑

j=1

j−1
∑

l=1

|c2j−1,l|.

Moreover, if we put c∗0,0 = 1 + 1
2(2t+1)2

and c∗2t+1,0 = − 1
12(2t+1)2

, then the vector

c̃∗ = (c∗0,0, 0, · · · , 0, c
∗
2t+1,0, 0, · · · , 0)T ∈ IR(t+1)(t+2)

is a solution of Problem 1 for k = 1 and s = 2t + 1, t ≥ 1.

According to Proposition 5.1 and Remark 5.2, the near minimally normed dQIs
associated with Hs, s ≥ 2, and exact on IP3 are given by

Q2,sf =
∑

i∈ZZ2

(

(1 +
1

2s2
)f(i) −

1

12s2

3∑

l=1

f(i + (−)sel)

)

ϕ(. − i). (8)

Proposition 5.2 For all s ≥ 2 we have

‖Q2,s‖∞ ≤ 1 +
1

s2
.

Moreover, the sequence (Q2,s)s≥2 converges in the infinite norm to the Schoenberg’s operator
S.
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Proof. Let f ∈ C(IR2) such that ‖f‖∞ ≤ 1. Then, from (8) we obtain

|Q2,sf | ≤
∑

i∈ZZ2

(

(1 +
1

2s2
)|f(i)| +

1

12s2

3∑

l=1

|f(i ± sel)|

)

ϕ(. − i)

≤ ‖f‖∞
∑

i∈ZZ2

(

(1 +
1

2s2
) +

6

12s2

)

ϕ(. − i)

≤ 1 +
1

s2
.

Hence, ‖Q2,s‖∞ ≤ 1 + 1
s2 .

On the other hand, by using the expression of S given in section 3.1 , we get

Q2,sf − Sf =
1

2s2

(

f(i) −
1

6

3∑

l=1

f(i + (−)sel)

)

ϕ(. − i).

Therefore

|Q2,sf − Sf | ≤
1

2s2

∑

i∈ZZ2

(2‖f‖∞) ϕ(. − i)

≤
1

s2
.

Then, we conclude that ‖Q2,s − S‖∞ ≤ 1
s2 , i.e., Q2,s converges to S when s −→ +∞.

Remark 5.3 Using the Bernstein-Bézier form of π2
0, we can easily compute the infinite

norm of Q2,s for the first values of s. For instance, if s = 1, 2, 3, we get

‖Q2,1‖∞ =
193

144
≃ 1.34028

‖Q2,2‖∞ =
59

48
≃ 1.22917

‖Q2,13‖∞ =
119

108
≃ 1.10185

On the other hand, it is simple to check that ‖Q2,1‖∞ ≤ 2, and from Proposition 5.2, we
have

‖Q2,2‖∞ ≤
5

4
= 1.25 and ‖Q2,3‖∞ ≤

10

9
≃ 1.1111.

Therefore, the bounds of ‖Q2,s‖∞, s = 2, 3, are small in comparison with that of ‖Q2,1‖∞.
Moreover, these bounds are close to the exact values of the infinite norm of these new
dQIs.

5.2 Near-best dQI based on the box-spline π3

0

The interest in the study of this example is to show that Problem (1) can be have an
infinite set of solutions. Indeed, according to section 2, the box-spline π3

0 is of class C4

, degree 7 and support H3. The differential quasi-interpolant based on π3
0 and which is

exact on IP5 is defined by

Df =
∑

i∈ZZ2

[f(i) − 1
4
(D(2,0)f(i) + D(1,1)f(i) + D(0,2)f(i))

+ 1
30

(D(4,0)f(i) + 2D(3,1)f(i) + 3D(2,2)f(i) + 2D(1,3)f(i) + D(0,4)f(i))]π3
0(. − i).
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Then, with the help of D we easily get the expressions of the monomials mα, |α| ≤ 4, as
linear combinations of the integer translates of π3

0 ( see e.g. [7] for more details).
Now, let us consider the dQI

Q3,sf =
∑

i∈ZZ2

(
∑

α∈H∗

s

cαf(i + α))π3
0(. − i).

Using the properties of (cα)α∈H∗

s
, we verify that Q3,s is exact on IP5 if and only if

∑

α∈H∗

s

cα = 1,
∑

α∈H∗

s

α2
1cα = −

1

2
and

∑

α∈H∗

s

α4
1cα =

4

5
.

In particular, for s = 2, a sequence c ∈ H2 can be determined only in terms of c0,0, c1,0, c2,0,
and c2,1. Hence, the above equations of exactness become

c0,0 + 6c1,0 + 6c2,0 + 6c2,1 = 1

c1,0 + 4c2,0 + 3c2,1 = −
1

8
(9)

c1,0 + 16c2,0 + 9c2,1 =
1

5
.

Therefore, if we put c2,1 = γ, γ ∈ IR, then the other three coefficients in (9) can be
computed in terms of γ. Moreover, we have the following result.

Proposition 5.3 For each γ ∈ [− 7
30

, 0],

Q3,2f =
∑

i∈ZZ2

{(
179

80
+ 3γ)f(i) + (

7

30
+ γ)

3∑

i=1

f(i ± el) + (
13

480
−

1

2
γ)

3∑

i=1

f(i ± 2el)

+ γ(f(±(e1 + e3)) + f(±(e2 + e3)) + f(±(−e1 + e2)))}π
3
0(. − i)

is a near minimally normed dQI associated to π3
0.

Proof. The solution of system (9) is given by

c0,0 =
179

80
+ 3γ

c1,0 =
7

30
+ γ

c2,0 =
13

480
−

1

2
γ

c2,1 = γ.

Then,

‖c‖1 = |c0,0| + 6|c1,0| + 6|c2,0| + 6|c2,1|

= |
179

80
+ 3γ| + 6|

7

30
+ γ| + 6|

13

480
−

1

2
γ| + 6|γ|.

It is simple to check that

min
γ∈IR

‖c‖1 =
19

5
for all γ ∈ [−

7

30
, 0].

Consequently, for each γ ∈ [− 7
30

, 0], we obtain a near-best dQI based on the box-spline
π3

0.

13



6 Examples of near-best iQIs

6.1 Near-best iQI based on the H-spline π1

1

According to section 2, the H-spline π1
1 is supported on H2, and it is of class C3 and

degree 8. Moreover, the space S(π1
1) contains IP2. It was shown in [14] that the associated

differential quasi-interpolant is defined by

Df =
∑

j∈ZZ2

(f(i) −
25

168
(D(2,0)f(i) + D(1,1)f(i) + D(0,2)f(i)))π1

1(. − i),

and it is exact on IP2. Then we deduce the following formulae

m0,0 =
∑

j∈ZZ2

π1
1(. − i); m1,0 =

∑

j∈ZZ2

i1π
1
1(. − i);

m2,0 =
∑

j∈ZZ2

(i21 −
25

84
)π1

1(. − i); m1,1 =
∑

j∈ZZ2

(i1i2 −
25

168
)π1

1(. − i),

and by symmetry we get the expressions of m0,1 and m0,2.
The near-best iQI based on π1

1 is given by

T2,sf =
∑

i∈ZZ2

(
∑

α∈H∗

s

dα < f(. + i + α), π1
1 >)π1

1(. − i).

From Lemma 4.1 we deduce the moments µα(π1
1) =

∫

mα(x)π1
1(x)dx, |α| ≤ 2, of π1

1. Their
values are as follows

µ(0,0) = 1; µ(1,0) = µ(1,0) = 0; µ(2,0) = µ(0,2) = 2µ(1,1) =
25

84

Then, we easily verify that T2,s is exact on IP2 if and only if the coefficient dα satisfy

∑

α∈H∗

s

dα = 1 and
∑

α∈H∗

s

α1
2dα = −

25

42
.

In particular, for s = 1, these coefficients are unique and the corresponding iQI is given
by

T2,1f =
∑

i∈ZZ2

[
53

28
< f, π1

1 > −
25

168

3∑

l=1

< f(. ± el), π
1
1 >]π1

1(. − i)

Now, assume that s > 1, then by using a similar technique as in Proposition 5.1, one can
show the following result.

Proposition 6.1 Let c∗0,0 = 1 + 25
28(s)2

and c∗2t,0 = − 25
168(s)2

. Then

(c∗0,0, 0, · · · , 0
︸ ︷︷ ︸

t2+t−1

, c∗2t,0, 0, · · · , 0
︸ ︷︷ ︸

t

)T ∈ IR(t+1)2

is a solution of Problem 2 for k = 1 and s > 1.

Hence, The near minimally normed iQI based on π1
1 and exact on IP2 takes the following

form

T2,sf =
∑

i∈ZZ2

[(1 +
25

28s2
) < f, π1

1 > −
25

168s2

3∑

l=1

< f(. ± el), π
1
1 >]π1

1(. − i)

It is simple to check that ‖T2,s‖∞ ≤ 1+ 25
14s2 , and therefore the sequence (T2,s)s≥2 converges

in the infinite norm to the operator S̃.
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a2 a3 a2

a3 a1 a1 a3

a2 a1 a0 a1 a2

a3 a1 a1 a3

a2 a3 a2

with (a0, a1, a2, a3) = (
24528

66528
,

6663

66528
,

48

66528
,

289

66528
)

Figure 2: The values of π3
1 on H∗

2

6.2 Near-best iQI based on the H-spline π3

1

According to section 2, the H-spline π3
1 is of class C5, degree 11 and support H3. As

S(π3
1) contains polynomials of total degree ≤ 4, one can define quasi-interpolants which

are exact on IP4. For instance, by using only the values of π3
1 on H∗

2 , see Figure 2, we
have got the following expression of its associated differential quasi-interpolant :

Df =
∑

i∈ZZ2

[f(i) +
13

56
(D(2,0)f(i) + D(1,1)f(i) + D(0,2)f(i))

+
2435

84672
(D(4,0)f(i) + 2D(3,1)f(i) + 3D(2,2)f(i) + 2D(1,3)f(i) + D(0,4)f(i))]π3

1(. − i).

Then, the exactness of D on IP4 allows us to express easily the monomials mα, |α| ≤ 4, in
terms of the integer translates of π3

1. On the other hand, in order to give an explicit formula
of the iQI based on π3

1, we need to compute the moments µα(π3
1) =

∫

mα(x)π3
1(x)dx, |α| ≤

4. Once again, these moments are determined only in terms of the values given in Figure
2. Hence, after computation we get

µ(0,0) = 1,

µ(1,0) = µ(0,1) = µ(1,2) = µ(2,1) = µ(3,0) = µ(0,3) = 0,

µ(2,0) = µ(0,2) = 2µ(1,1) =
13

28
, (10)

µ(4,0) = µ(0,4) = 2µ(2,2) = 2µ(3,1) = 2µ(1,3) =
38

63
.

We introduce now the following iQI

T3,sf =
∑

i∈ZZ2

(
∑

α∈H∗

s

dα < f(. + i + α), π3
1 >)π3

1(. − i).

Using the values given in (10) and the expressions of the monomials mα, |α| ≤ 4, as linear
combinations of the integer translates of π3

1 provided by the quasi-interpolant D , we
verify that the iQI T3,s is exact on IP4 if and only if

∑

α∈H∗

s

cα = 1,
∑

α∈H∗

s

α2
1cα = 0 and

∑

α∈H∗

s

α4
1cα =

307

3528
.

As in section 5.1, when s = 2, a sequence d of H2 is entirely determined by its elements
d0,0, d1,0, d2,0, and d2,1. In this case, the exactness equations of T3,2 on IP4 are

d0,0 + 6d1,0 + 6d2,0 + 6d2,1 = 1

d1,0 + 4d2,0 + 3d2,1 = 0 (11)

d1,0 + 16d2,0 + 9d2,1 =
307

14112
.
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Therefore, if we put d21 = γ, γ ∈ IR, then the other three coefficients in (11) can be
computed in terms of γ. Moreover, we have the following result.

Proposition 6.2 For each γ ∈ [− 307
42336

, 0],

T3,2f =
∑

i∈ZZ2

{(
29145

28224
+ 3γ)f(i) − (

307

42336
+ γ)

3∑

i=1

f(i ± el) + (
307

169344
−

1

2
γ)

3∑

i=1

f(i ± 2el)

+ γ(f(±(e1 + e3)) + f(±(e2 + e3)) + f(±(−e1 + e2)))}π
3
0(. − i)

is a near minimally normed iQI associated to π3
1.

Proof. The proof is similar to that of Proposition 5.3.

Remark 6.1 According to Proposition 6.2, the near-minimally iQI T3,2 is not unique. In
addition, for all γ ∈ [− 307

42336
, 0], we have ‖T3,2‖ ≤ 3835

3528
= 1.087. Then, we remark that

this bound is is close to 1, and therefore this quasi-interpolant seems very interesting.
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