Positivity constraints for lepton polarizationin neutrino deep inelastic scattering

Claude Bourrely, Jacques Soffer, Oleg V. Teryaev

To cite this version:

Claude Bourrely, Jacques Soffer, Oleg V. Teryaev. Positivity constraints for lepton polarizationin neutrino deep inelastic scattering. Physical Review D, 2004, 69, pp.114019. hal-00001310

HAL Id: hal-00001310
https://hal.science/hal-00001310
Submitted on 16 Mar 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Positivity constraints for lepton polarization in neutrino deep inelastic scattering

Claude Bourrely and Jacques Soffer
Centre de Physique Théorique ${ }^{1}$, CNRS-Luminy,
Case 907, F-13288 Marseille Cedex 9 - France
Oleg V. Teryaev
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russia

Abstract

We consider the spin polarization of leptons produced in neutrino and antineutrino nucleon deep inelastic scattering, via charged currents, and we study the positivity constraints on the spin components in a model independent way. These results are very important, in particular in the case of $\tau^{ \pm}$ leptons, because the polarization information is crucial in all future neutrino oscillation experiments.

PACS numbers: 12.38.Bx, 13.15.+g, 13.88.+e

CPT-2004/P. 001

[^0]
1 Introduction

Recent studies from neutrino oscillation experiments [1, 2, (3] provide evidence for non-zero neutrino masses. Results from the Super-Kamiokande underground experiment [3] measuring the atmospheric neutrino flux, suggest that muon neutrinos oscillate into tau neutrinos with nearly maximal mixing. This $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation hypothesis can be tested by means of τ production via ν_{τ} scattering through charged current interactions, namely

$$
\begin{equation*}
\nu_{\tau}\left(\bar{\nu}_{\tau}\right)+N \rightarrow \tau^{-}\left(\tau^{+}\right)+X, \tag{1}
\end{equation*}
$$

where N is a nucleon target. This process will be studied with underground neutrino telescopes, such as AMANDA, ANTARES, NESTOR and BAIKAL [4], as well as long-baseline neutrino oscillation experiments, such as ICARUS, MINOS, MONOLITH and OPERA [5]. Recently several authors have calculated the τ production cross section for nuclear targets [6, 7], but the τ polarization should be also studied in order to estimate more precisely the background events. This was the motivation for recent calculations of the τ polarization, which have been achieved in the framework of some particular models [8, ©], for deep inelastic scattering (1), but also for quasi-elastic scattering and resonance production.

The relevance of positivity in spin physics, which puts strong restrictions on spin observables in many areas of particle physics, has been already emphasized [10] and the above process is one more example. In this paper we show that the use of model independent positivity constraints reduces considerably the allowed region for the τ polarization. In the next section we recall the kinematics, the general formalism for deep inelastic scattering and the expressions for the components of the τ polarization. In Section 3, we exhibit the positivity conditions and our numerical results, which have a direct relevance to the experiments mentioned above. Concluding remarks are given in Section 4 and some technical considerations about the positivity of the hadronic tensor are given in the Appendix.

2 General formalism and kinematics

In lepton nucleon deep inelastic scattering all the observables involve the hadronic tensor of the nucleon $W_{\mu \nu}(p, q)$, where p, k and k^{\prime} are the four momenta of the nucleon, incoming $\nu_{\tau}\left(\bar{\nu}_{\tau}\right)$ and produced $\tau^{-}\left(\tau^{+}\right)$, respectively, and $q=k-k^{\prime}$ is the momentum transfer. Since we consider the scattering of an unpolarized nucleon, using Lorentz invariance and time reversal invariance, we can express $W_{\mu \nu}(p, q)$ in terms of five real structure functions W_{i} as follows [11, 12, 13],

$$
\begin{align*}
W_{\mu \nu}(p, q)= & -g_{\mu \nu} W_{1}\left(\nu, q^{2}\right)+\frac{p_{\mu} p_{\nu}}{M^{2}} W_{2}\left(\nu, q^{2}\right)-i \epsilon_{\mu \nu \alpha \beta} \frac{p^{\alpha} q^{\beta}}{2 M^{2}} W_{3}\left(\nu, q^{2}\right) \\
& +\frac{q_{\mu} q_{\nu}}{M^{2}} W_{4}\left(\nu, q^{2}\right)+\frac{p_{\mu} q_{\nu}+q_{\mu} p_{\nu}}{2 M^{2}} W_{5}\left(\nu, q^{2}\right) \tag{2}
\end{align*}
$$

Here $\epsilon_{\mu \nu \alpha \beta}$ is the total antisymmetric tensor with $\epsilon_{0123}=+1$ and W_{3} appears because of parity violation of weak interactions. All structure functions, which are made dimensionless by including appropriate mass factors, depend on two Lorentz scalars $\nu=p \cdot q / M$ and $q^{2}=-Q^{2}\left(Q^{2}>0\right)$, where M is the nucleon mass. In the laboratory frame, let us denote by E_{ν}, E_{τ} and p_{τ} the neutrino energy, τ energy and momentum, respectively and θ the scattering angle. We then have $\nu=E_{\nu}-E_{\tau}$ and $Q^{2}=2 E_{\nu}\left[E_{\tau}-p_{\tau} \cos \theta\right]-m_{\tau}^{2}$, where $m_{\tau}=1.777 \mathrm{GeV}$ is the τ mass. Finally, the Bjorken variable x is defined as $x=Q^{2} / 2 p \cdot q$ and the physical region is $x_{\text {min }} \leq x \leq 1$, where $x_{\text {min }}=m_{\tau}^{2} / 2 M\left(E_{\nu}-m_{\tau}\right)$. The unpolarized cross sections for deep inelastic scattering (1), are expressed as

$$
\begin{equation*}
\frac{d \sigma^{ \pm}}{d E_{\tau} d \cos \theta}=\frac{G_{F}^{2}}{2 \pi} \frac{M_{W}^{4} p_{\tau}}{\left(Q^{2}+M_{W}^{2}\right)^{2}} R_{ \pm} \tag{3}
\end{equation*}
$$

where G_{F} is the Fermi constant and M_{W} is the W-boson mass. Here

$$
\begin{align*}
R_{ \pm}= & \frac{1}{M}\left\{\left(2 W_{1}+\frac{m_{\tau}^{2}}{M^{2}} W_{4}\right)\left(E_{\tau}-p_{\tau} \cos \theta\right)+W_{2}\left(E_{\tau}+p_{\tau} \cos \theta\right)\right. \\
& \left. \pm \frac{W_{3}}{M}\left(E_{\nu} E_{\tau}+p_{\tau}^{2}-\left(E_{\nu}+E_{\tau}\right) p_{\tau} \cos \theta\right)-\frac{m_{\tau}^{2}}{M} W_{5}\right\} \tag{4}
\end{align*}
$$

where the \pm signs correspond to τ^{\mp} productions.
Because of time reversal invariance, the polarization vector \vec{P} of the τ in its rest frame, lies in the scattering plane defined by the momenta of the
incident neutrino and the produced τ. It has a component P_{L} along the direction of $\overrightarrow{p_{\tau}}$ and a component P_{P} perpendicular to $\overrightarrow{p_{\tau}}$, whose expressions are, in the laboratory frame, [8, 9, 12]

$$
\begin{align*}
P_{P}= & \mp \frac{m_{\tau} \sin \theta}{M R_{ \pm}}\left(2 W_{1}-W_{2} \pm \frac{E_{\nu}}{M} W_{3}-\frac{m_{\tau}^{2}}{M^{2}} W_{4}+\frac{E_{\tau}}{M} W_{5}\right), \tag{5}\\
P_{L}= & \mp \frac{1}{M R_{ \pm}}\left\{\left(2 W_{1}-\frac{m_{\tau}^{2}}{M^{2}} W_{4}\right)\left(p_{\tau}-E_{\tau} \cos \theta\right)+W_{2}\left(p_{\tau}+E_{\tau} \cos \theta\right)\right. \\
& \left. \pm \frac{W_{3}}{M}\left(\left(E_{\nu}+E_{\tau}\right) p_{\tau}-\left(E_{\nu} E_{\tau}+p_{\tau}^{2}\right) \cos \theta\right)-\frac{m_{\tau}^{2}}{M} W_{5} \cos \theta\right\} . \tag{6}
\end{align*}
$$

In addition, it is convenient to introduce also the degree of polarization defined as $P=\sqrt{P_{P}^{2}+P_{L}^{2}}$. As previously the \pm signs correspond to τ^{\mp} productions and it is clear that if $W_{3}=0$, one has $R_{+}=R_{-}$and τ^{+}and τ^{-}have opposite polarizations. We also note that if one can neglect the mass of the produced lepton ($m_{\tau}=0$), $P_{P}=0$, so such a lepton is purely left-handed, if negatively charged, or purely right-handed, if positive.

3 Positivity constraints and numerical results

From Eq. (2) clearly the hadronic tensor $W_{\mu \nu}(p, q)$ is Hermitian

$$
\begin{equation*}
W_{\mu \nu}(p, q)=W_{\nu \mu}^{*}(p, q), \tag{7}
\end{equation*}
$$

and semi-positive. This last property implies that

$$
\begin{equation*}
a_{\mu}^{*} W_{\mu \nu}(p, q) a_{\nu} \geq 0 \tag{8}
\end{equation*}
$$

for any complex 4-vector a_{μ}. The 4×4 matrix representation of $W_{\mu \nu}(p, q)$ in the laboratory frame where $p=(M, 0,0,0)$ and $q=\left(\nu, \sqrt{\nu^{2}+Q^{2}}, 0,0\right)$ reads $\left(\begin{array}{cc}M_{1} & 0 \\ 0 & M_{0}\end{array}\right)$ where M_{1} and M_{0} are the following 2×2 Hermitian matrices

$$
M_{1}=\left(\begin{array}{cc}
-W_{1}+W_{2}+\frac{\nu^{2}}{M^{2}} W_{4}+\frac{\nu}{M} W_{5} & \frac{\sqrt{\nu^{2}+Q^{2}}}{M}\left(\frac{\nu}{M} W_{4}+\frac{1}{2} W_{5}\right) \tag{9}\\
\frac{\sqrt{\nu^{2}+Q^{2}}}{M}\left(\frac{\nu}{M} W_{4}+\frac{1}{2} W_{5}\right) & W_{1}+\frac{\nu^{2}+Q^{2}}{M^{2}} W_{4}
\end{array}\right)
$$

and

$$
M_{0}=\left(\begin{array}{cc}
W_{1} & \frac{-i \sqrt{\nu^{2}+Q^{2}}}{2 M} W_{3} \tag{10}\\
\frac{+i \sqrt{\nu^{2}+Q^{2}}}{2 M} W_{3} & W_{1}
\end{array}\right) .
$$

The necessary and sufficient conditions for $W_{\mu \nu}(p, q)$ to satisfy inequality (8) are that all the principal minors of M_{1} and M_{0} should be positive definite. So for the diagonal elements we have three inequalities linear in the W_{i} 's namely

$$
\begin{gather*}
W_{1} \geq 0, \tag{11}\\
-W_{1}+W_{2}+\frac{\nu^{2}}{M^{2}} W_{4}+\frac{\nu}{M} W_{5} \geq 0, \tag{12}\\
W_{1}+\frac{\nu^{2}+Q^{2}}{M^{2}} W_{4} \geq 0, \tag{13}
\end{gather*}
$$

and from the 2×2 determinants of M_{0} and M_{1} we get two inequalities quadratic in the W_{i} 's namely

$$
\begin{equation*}
W_{1}^{2} \geq \frac{\nu^{2}+Q^{2}}{4 M^{2}} W_{3}^{2} \tag{14}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
W_{1} \geq \frac{\sqrt{\nu^{2}+Q^{2}}}{2 M}\left|W_{3}\right|, \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
\left(-W_{1}+W_{2}+\frac{\nu^{2}}{M^{2}} W_{4}\right. & \left.+\frac{\nu}{M} W_{5}\right)\left(W_{1}+\frac{\nu^{2}+Q^{2}}{M^{2}} W_{4}\right) \\
& \geq \frac{\nu^{2}+Q^{2}}{M^{2}}\left(\frac{\nu}{M} W_{4}+\frac{1}{2} W_{5}\right)^{2} . \tag{16}
\end{align*}
$$

By imposing the last condition, only one of the two inequalities (12) or (13) is needed, the other one follows automatically. Since the hadronic tensor $W_{\mu \nu}(p, q)$ allows the construction of the scattering amplitudes for a vectorboson nucleon Compton scattering process, the five structure functions W_{i} are related to the five s-channel helicity amplitudes, which survive in the forward direction. As a special case in Eq. (8), if one takes for a_{μ} the polarization vectors of the vector-boson, the nucleon being unpolarized, these amplitudes are

$$
\begin{equation*}
M\left(h^{\prime}, h\right)=\epsilon_{\mu}^{*}\left(h^{\prime}\right) W_{\mu \nu} \epsilon_{\nu}(h), \tag{17}
\end{equation*}
$$

where h and h^{\prime} are the helicities of the initial and final vector-boson, respectively ${ }^{2}$. The positivity conditions reflect the fact that the forward

[^1]amplitudes, which are indeed cross sections, must be positive. The linear conditions correspond to the polarized vector-boson scattering, with longitudinal, transverse or scalar polarizations and the quadratic condition (16), is a Cauchy-Schwarz inequality which corresponds to the scalar-longitudinal interference. The above set of positivity constraints might appear to be different from the ones derived earlier [14, (15), but this is not the case as we will discuss in the Appendix.

In order to test the usefulness of these constraints to restrict the allowed domains for P_{P} and P_{L}, we proceed by the following method, without refering to a specific model for the W_{i} 's. We generate randomly the values of the W_{i} 's, in the ranges $[0,+1]$ for W_{1} and W_{2}, which are clearly positive and $[-1,+1]$ for $i=3,4,5$. The most trivial positivity constraints are $R_{ \pm} \geq 0$, but in fact they are too weak and do not imply the obvious requirements $\left|P_{L}\right| \leq 1$ and $\left|P_{P}\right| \leq 1$ or $P \leq 1^{3}$. So we first impose $R_{ \pm} \geq 0$ and $P \leq 1$ for different values of E_{ν}, Q^{2} and x and as shown in Fig. 1, for τ^{+}production, the points which satisfy these constraints are represented by grey dots inside the disk, $P_{L}^{2}+P_{P}^{2} \leq 1$. If we now add the non trivial positivity constraints Eqs.(10-15), which also garantee that $P \leq 1$, we get the black dots, giving a much smaller area. In Fig. 1, the top row corresponds to $E_{\nu}=10 \mathrm{GeV}$ and $Q^{2}=1 \mathrm{GeV}^{2}$, the row below to $E_{\nu}=10 \mathrm{GeV}$ and $Q^{2}=4 \mathrm{GeV}^{2}$ and the next two rows to $E_{\nu}=20 \mathrm{GeV}$ and $Q^{2}=1,4 \mathrm{GeV}^{2}$. Going from left to right x increases from a value close to its minimum to 0.9 . It is interesting to note that the black allowed area increases with Q^{2} and becomes smaller for increasing incident energy and increasing x. For τ^{-}production, the corresponding areas are obtained by symmetry with respect to the center of the disk. For increasing x, since P_{L} is more and more restricted to values close to +1 for $\tau^{+}(-1$ for τ^{-}), it is striking to observe that the non trivial positivity constraints lead to a situation where the $\tau^{+}\left(\tau^{-}\right)$is almost purely right-handed (left-handed), although it has a non zero mass.

Another way to present our results is seen in Fig. 2, which shows the upper and lower bounds from the non trivial positivity constraints for a given incident energy and different x values, versus Q^{2}. These bounds are obtained by selecting the larger and smaller allowed values of P_{L} and P_{P}, when the W_{i} 's are varied for a fixed bin of E_{ν} and x. We also indicate the scattering angle which increases with Q^{2} and we recall that for $\theta=0$ we have $P_{P}=0$ (see Eq. (4)).

[^2]Finally we have tested the effect of some approximate relations among the W_{i} 's, which have been proposed in the literature. First, as an example for a particular kinematic situation we show in Fig. 3 the effect of imposing the Callan-Gross relation [16], namely $Q^{2} W_{1}=\nu^{2} W_{2}$. It further reduces both the grey dots and the black dots areas, since this has to be compared with the first row of Fig. 1. For the same kinematic situation we also show in Fig. 4, the effect of the Albright-Jarlskog relations [12], namely $M W_{1}=$ νW_{5} and $W_{4}=0$, and we observe again that the allowed regions are much smaller. These examples illustrate the fact that a more precise knowledge of the structure functions W_{i} 's, will certainly further restrict the domains shown in Fig.1.

4 Concluding remarks

We have shown in this paper that the positivity conditions on the hadronic tensor of the nucleon $W_{\mu \nu}(p, q)$, is essential to reduce the allowed values for the $\tau^{ \pm}$polarization in neutrino deep inelastic scattering. We have not used a specific model and we have considered only a few kinematic situations, which are relevant for the long baseline neutrino oscillation experiments, but they can be easily applied to other kinematic ranges and in the framework of any given model. They are less usefull for ultra high neutrino energies, because in this case $\theta \simeq 0$, so $P_{P} \simeq 0$ and $P_{L} \simeq \pm 1$ for τ^{\mp}. The universality of $W_{\mu \nu}(p, q)$, which occurs in processes we have not studied here (i.e. quasielastic scattering etc...), also increases the importance of these positivity constraints.

5 Appendix

The positivity conditions on $W_{\mu \nu}(p, q)$ were first obtained in Refs. [14, 15] and they were reported in Refs. [11, [2] under a slightly different form due to the use of our definition of $W_{\mu \nu}(p, q)$, which differs from that of Ref. [15]. Moreover in Ref. [15] instead of the laboratory system, they were using a frame where q is purely space-like. Although from covariance one expects the equivalence of the different sets of conditions, it seems natural to show it explicitely. Let us consider the frame where $p=\left(M \sqrt{1+\nu^{2} / Q^{2}},-\nu M / \sqrt{Q^{2}}, 0,0\right)$ and $q=\left(0, \sqrt{Q^{2}}, 0,0\right)$. The 4×4 matrix representation of $W_{\mu \nu}(p, q)$ is very
similar to the case of the laboratory frame, since it reads $\left(\begin{array}{cc}M_{2} & 0 \\ 0 & M_{0}\end{array}\right)$ where M_{2} is

$$
M_{2}=\left(\begin{array}{cc}
-W_{1}+\left(1+\frac{\nu^{2}}{Q^{2}}\right) W_{2} & \frac{\sqrt{\nu^{2}+Q^{2}}}{2 M}\left(W_{5}-\frac{2 M \nu}{Q^{2}} W_{2}\right) \tag{18}\\
\frac{\sqrt{\nu^{2}+Q^{2}}}{2 M}\left(W_{5}-\frac{2 M \nu}{Q^{2}} W_{2}\right) & W_{1}+\frac{\nu^{2}}{Q^{2}} W_{2}+\frac{Q^{2}}{M^{2}} W_{4}-\frac{\nu}{M} W_{5}
\end{array}\right)
$$

and M_{0} was given in (10). The momenta p and q defined in the two reference frames are related by a Lorentz transform, so the matrix elements of M_{1} and M_{2} are simply related. Moreover one can check that, first,

$$
\begin{equation*}
\operatorname{det}\left(M_{1}\right)=\operatorname{det}\left(M_{2}\right), \tag{19}
\end{equation*}
$$

second, the difference of the diagonal elements of M_{1} and M_{2} is the same and these diagonal elements must be both either positive or negative, due to Eq. (19). So in order to establish the equivalence of the positivity conditions in the two reference frames, a simple calculation proves that the two inequalities (12) or (13) imply

$$
\begin{equation*}
-W_{1}+\left(1+\frac{\nu^{2}}{Q^{2}}\right) W_{2} \geq 0 \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
W_{1}+\frac{\nu^{2}}{Q^{2}} W_{2}+\frac{Q^{2}}{M^{2}} W_{4}-\frac{\nu}{M} W_{5} \geq 0 \tag{21}
\end{equation*}
$$

Acknowledgments: We thank V. A. Naumov and K. Kuzmin for some discussions and correspondance. O. V. Teryaev is grateful to the Centre de Physique Théorique, where part of this work was done, and CNRS for financial support. His work was partially supported by RFBR (Grant 03-0216816).

References

[1] K. S. Hirata et al., Phys. Lett. B 205, 416 (1988); ibid 280, 146 (1992).
[2] D. Casper et al., Phys. Rev. Lett. 66, 2561 (1991); R. Becker-Szendy et al., Phys. Rev. D 46, 3720 (1992).
[3] Super-Kamiokande Collaboration, Y. Fukuda et al., Phys. Lett. B 335, 237 (1994); ibid 433, 9 (1998); 436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); ibid 85, 3999 (2000).
[4] AMANDA Collaboration, J. Ahrens et al., Nucl. Phys. A 721, 545 (2003); ANTARES Collaboration, G. D. Hallewell et al. Nucl. Instrum. Meth. A 502, 138 (2003); BAIKAL Collaboration, R. Wischnewski et al., astro-ph/0305302; NESTOR Collaboration, S. E. Tzamarias Nucl. Instrum. Meth. A 502, 150 (2003); F. Halzen and Dan Hooper, astroph/0310152.
[5] ICARUS Collaboration, F. Arneodo et al., Nucl. Instrum. Meth. A 508, 287 (2003), see also the home page, http://www.aquila.infn.it/icarus/; MINOS Collaboration, V. Paolone et al., Nucl. Phys. (Proc. Suppl.) 100, 197 (2001), see also MINOS Collaboration home page, http://wwwnumi.fnal.gov; MINOLITH Collaboration, F. Terranova et al., Int. J. Mod. Phys. A 16S1B, 736 (2001); A. Rubbia, Nucl. Phys. (Proc. Suppl.) 91, 223 (2000), see also the OPERA Collaboration home page, http://operaweb.web.cern.ch/operaweb.
[6] E. A. Paschos and J. Y. Yu, Phys. Rev. D 65, 033002 (2002).
[7] S. Kretzer and M. H. Reno, Phys. Rev. D 66, 113007 (2002).
[8] K. Hagiwara, K. Mawatari and H. Yokoya, Nucl. Phys. B 668, 364 (2003).
[9] K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, contribution to the 10th Int. Workshop on High Energy Spin Physics (SPIN03), JINR Dubna, Russia, 16-20 Sept. 2003, hep-ph/0312107.
[10] J. Soffer, A.I.P. Conference Proceedings 570, 461 (2001).
[11] C. H. Llewellyn Smith, Phys. Rep. 3, 261 (1972).
[12] C. H. Albright and C. Jarlskog, Nucl. Phys. B 84, 467 (1975).
[13] X. Ji, Nucl. Phys. B 402, 217 (1993).
[14] T. D. Lee and C. N. Yang, Phys. Rev. 126, 2239 (1962).
[15] M. G. Doncel and E. De Rafael, Nuovo Cimento A 4, 363 (1971).
[16] C. G. Callan and D. G. Gross, Phys. Rev. Lett. 22, 156 (1969).

Figure 1: For τ^{+}production, P_{P} versus P_{L} in a domain limited by $R_{+} \geq 0$, $P \leq 1$ (grey area) plus non trivial positivity constraints (black area). From top to bottom and left to right, $E_{\nu}=10 \mathrm{GeV}, Q^{2}=1 \mathrm{GeV}^{2}, x=0.25,0.6,0.9$, $E_{\nu}=10 \mathrm{GeV}, Q^{2}=4 \mathrm{GeV}^{2}, x=0.4,0.6,0.9, E_{\nu}=20 \mathrm{GeV}, Q^{2}=$ $1 \mathrm{GeV}^{2}, x=0.25,0.6,0.9, E_{\nu}=20 \mathrm{GeV}, Q^{2}=4 \mathrm{GeV}^{2}, x=0.25,0.6,0.9$.

Figure 2: For τ^{+}production, upper and lower bounds on P_{P} (open circles) and P_{L} (full circles) as a function of Q^{2} for $E_{\nu}=10 \mathrm{GeV}$ and $x=0.25,0.6,0.9$.

Figure 3: For τ^{+}production, P_{P} versus P_{L} in a domain limited by $R_{+} \geq$ $0, P \leq 1$ assuming the Callan-Gross relation (grey area) plus non trivial positivity constraints (black area). $E_{\nu}=10 \mathrm{GeV}, Q^{2}=1 \mathrm{GeV}^{2}$, from top to bottom, $x=0.25,0.6,0.9$.

Figure 4: For τ^{+}production, P_{P} versus P_{L} in a domain limited by $R_{+} \geq 0$, $P \leq 1$ assuming the Albright-Jarlskog relations (grey area) plus non trivial positivity constraints (black area). $E_{\nu}=10 \mathrm{GeV}, Q^{2}=1 \mathrm{GeV}^{2}$, from top to bottom, $x=0.25,0.6,0.9$.

[^0]: ${ }^{1}$ UMR 6207 - Unit Mixte de Recherche du CNRS et des Universits Aix-Marseille I, Aix-Marseille II et de l'Universit du Sud Toulon-Var - Laboratoire affili la FRUMAM

[^1]: ${ }^{2}$ For a complete study of deep inelastic scattering with a polarized nucleon, in terms of fourteen structure functions, see Ref. [13].

[^2]: ${ }^{3}$ Note that in the trivial case where $W_{3}=W_{4}=W_{5}=0, R \geq 0$ implies $P \leq 1$.

