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Abstract

Our work is motivated by Bourque and Pevzner’s (2002) simulation study of the effectiveness
of the parsimony method in studying genome rearrangement, and leads to a surprising result
about the random transposition walk on the group of permutations on n elements. Consider
this walk in continuous time starting at the identity and let Dt be the minimum number of
transpositions needed to go back to the identity from the location at time t. Dt undergoes a phase
transition: the distance Dcn/2 ∼ u(c)n, where u is an explicit function satisfying u(c) = c/2 for
c ≤ 1 and u(c) < c/2 for c > 1. In addition, we describe the fluctuations of Dcn/2 about its
mean in each of the three regimes (subcritical, critical and supercritical). The techniques used
involve viewing the cycles in the random permutation as a coagulation-fragmentation process
and relating the behavior to the Erdős-Renyi random graph model.
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1 General motivation

The relationship between the orders of genes in two species can be described by a signed permuta-
tion. For example the relationship between the human and mouse X chromosomes may be encoded
as (see Pevzner and Tesler (2003))

1 −7 6 −10 9 −8 2 −11 −3 5 4

In words the two X chromosomes can be partitioned into 11 segments. The first segment of the
mouse X chromosome is the same as that of humans, the second segment of mouse is the 7th human
segment with its orientation reversed, etc. The parsimony approach to estimation of evolutionary
changes of the X chromosome between human and mouse is to ask: what is the minimum number
of reversals (i.e., moves that reverse the order of a segment and therefore change its sign) needed
to transform the arrangement above back into 1, . . . , 11? In other words, what is the (reversal)
distance between the human and mouse X chromosomes ?

Hannehalli and Pevzner (1995) developed a polynomial algorithm for answering this question.
The first step in preparing to use the Hannehalli-Pevzner algorithm is to double the markers. When
segment i is doubled we replace it by two consecutive numbers 2i−1 and 2i, e.g., 6 becomes 11 and
12. A reversed segment −i is replaced by 2i and 2i− 1, for example, −7 is replaced by 14 and 13.
The doubled markers use up the integers 1 to 22. To these numbers we add a 0 at the front and a
23 at the end. Using commas to separate the ends of the markers we can write the two genomes
as follows:

mouse 0, 1 2, 14 13, 11 12, 20 19, 17 18, 16 15, 3 4, 22 21, 6 5, 9 10, 7 8, 23

human 0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23

The next step is to construct the breakpoint graph (see Figure 1) that results when the commas are
replaced by edges that connect vertices with the corresponding numbers. In the picture we have
written the vertices in their order in the mouse genome. Commas in the mouse order become thick
lines (black edges), while those in the human genome are thin lines (gray edges).

Each vertex has one black and one gray edge, so the connected components of the graph are
easy to find: start with a vertex and follow the connections in either direction until you come back
to where you start. In this example there are five components:

0 − 1 − 0 2 − 14 − 15 − 3 − 2 4 − 22 − 23 − 8 − 9 − 5 − 4

19 − 17 − 16 − 18 − 19 13 − 11 − 10 − 7 − 6 − 21 − 20 − 12 − 13

To compute a lower bound for the distance, we take the number of commas seen when we write
out one genome. In this example that is 12. In general, it is 1 plus the number of markers. We then
subtract the number of components in the breakpoint graph. In this example that is 5, so the result
is 7. This is a lower bound on the distance, since any reversal can at most reduce this quantity by
1, and it is 0 when the two genomes are the same. We can verify that 7 is the minimum distance
by constructing a sequence of 7 moves that transforms the mouse X chromosome into the human
order. There are thousands of solutions, so we leave this as an exercise for the reader. Here are
some hints: (i) To do this it suffices, at each step, to choose a reversal that increases the number
of cycles by 1. (ii) This never occurs if the two chosen black edges are in different cycles. (iii) If
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the two black edges are in the same cycle and are (a, b) and (c, d) as we read from left to right, this
will occur unless in the cycle minus these two edges a is connected to d and b to c, in which case
the number of cycles will not change. For example, in the graph in Figure 1 a reversal that breaks
black edges 19-17 and 18-16 will increase the number of cycles but the one that breaks 2-14 and
15-3 will not.

In general, the distance between genomes can be larger than the lower bound from the break-
point graph. There can be obstructions called hurdles that can prevent us from decreasing the
distance, and hurdles can be intertwined in a fortress of hurdles that takes an extra move to break.
See Hannehalli and Pevzner (1995). In symbols, if π is the signed permutation that represents the
relative order and orientation of segments in the two genomes, then

d(π) = n+ 1 − c(π) + h(π) + f(π)

where d(π) is the distance from the identity, n is the number of markers, c(π) is the number of
components in the breakpoint graph, h(π) is the number of hurdles, and f(π) is the indicator of
the event π is a fortress of hurdles. See Section 5.2 of Durrett (2002) or Chapter 10 of Pevzner
(2000) for more details.

Although d0(π) = n + 1 − c(π) is only a lower bound on the distance, it is the right answer
in most biological examples. Bafna and Pevzner (1995) consider 11 comparisons of mitochondrial
and chloroplast genomes and found that this lower bound gave the right answer in all cases. This
pattern has continued in more recent work, see York, Durrett, and Nielsen (2002), and Durrett,
Nielsen, and York (2003). The simulations in Figure 2 will give more evidence that d0(π) and d(π)
are close in many cases.

To motivate our main question, we will introduce a second data set. Ranz, Casals, and
Ruiz (2001) located 79 genes on chromosome 2 of D. repleta and on chromosome arm 3R of D.
melanogaster. If we number the genes according to their order in D. repleta then their order in D.
melanogaster is given in Table 1. This time we do not know the orientation of the segments, but
that is not a serious problem. Using simulated annealing, one can easily find an assignment of signs
that minimizes the distance, which in this case is 54. Given the large number of rearrangements
relative to the number of markers, we should ask: when is the parsimony estimate reliable?

Bourque and Pevzner (2002) approached this question by taking 100 markers in order, per-
forming k randomly chosen reversals to get a permutation πk, computing the minimum number of
reversals needed to return to the identity, d(πk), and then plotting the average value of d(πk)−k ≤ 0
for 100 simulations. They concluded, based on their simulations, that the parsimony distance for
n markers was a good estimate as long as the number of reversals performed was at most 0.4n.
In Figure 2 we have given −1 times their data. We have also repeated their experiment for the
approximate distance d0(π) = n + 1 − c(π) and plotted the average value of k − d0(πk) ≥ 0 for
10,000 replications. Our curve is less random, but close to data of Bourque and Pevzner (2000).
The smooth curve gives result of Theorem 3 for the limiting behavior of (tn − d0(πtn))/n (as a
function of t).

The biological question concerns the random reversal walk. However, it is also interesting to
consider the analogous problem for random transpositions. In that case the distance from the
identity can be easily computed: it is the number of markers n minus the number of cycles in the
permutation. For an example, consider the following permutation of 14 objects written in its cyclic
decomposition:

(1 7 4) (2) (3 12) (5 13 9 11 6) (8 10 14)
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which indicates that 1 → 7, 7 → 4, 4 → 1, 2 → 2, 3 → 12, 12 → 3, etc. There are 5 cycles so
the distance from the identity is 9. If we perform a transposition that includes markers from two
different cycles (e.g., 7 and 9) the two cycles merge into 1, while if we pick two in the same cycle
(e.g., 13 and 11) it splits into two.

The situation is similar but slightly more complicated for reversals. There a reversal that
involves edges in two different components merges them into 1, but a reversal that involves two
edges of the same cycle may or may not increase the number of cycles. One can attempt to couple
the components of the breakpoint graph for random reversals on n − 1 markers and the cycles of
random transposition of n markers as follows: number the edges between markers in the reversal
chain (including the ends 0 and n); when markers i and j are transposed, do the inversion of edges
numbered i and j. The result of the coupled simulation is given in Figure 2. As expected time
minus distance is smaller for reversals but the qualitative behavior is similar. Thus, we will begin
by considering the biologically less relevant case of random transpositions, and ask a question that
in terms of the rate 1 continuous time random walk on the symmetric group is: how far from the
identity are we at time cn/2? We will see later that parts of the answer can be extended to the
reversal random walk.

2 The coagulation-fragmentation process and the random graph

process

Let (σt, t ≥ 0) be the continuous-time random walk on the group of permutations, starting at the
identity, in which, at times of a rate one Poisson process, we perform a transposition of two elements
chosen uniformly at random, with replacement, from {1, . . . , n}. Choosing with replacement causes
the chain to do nothing with probability 1/n, but makes some of the calculations a little nicer. If we
think of the permutation σ as being represented by numbered balls sitting on numbered locations
with ball σ(k) sitting at k, then transposition of i and j, ρi,j, can be implemented in two ways. We
can exchange the balls at i and j or the balls numbered i and j. Algebraically these correspond
to ρi,jσ and σρi,j. Since (σρi,j)

−1 = ρi,jσ
−1 and the partition of {1, . . . , n} induced by the cycle

decompositions of σ and σ−1 are equal, the results are the same for either random walk.

Define the distance to the identity Dt to be the minimum number of transpositions one needs to
perform on σt to go back to the identity element. A different way of looking at Dt is the following.
(σt, t ≥ 0) can be viewed as a random walk on a graph G, where G is the Cayley graph of the
symmetric group for the set of generators given by the set of all transpositions. Using this language,
we see that Dt is nothing but the graph distance from σt to the origin, the identity element.

It is clear that if Nt is the number of transpositions distinct from the identity performed up
to time t (a Poisson random variable with mean t[1 − 2/(n − 1)]), then Dt ≤ Nt. As mentioned
earlier Dt is given by Dt = n− |σt|, where |σt| is the number of cycles in the cycle decomposition
of σt. This formula allows us to turn any question about Dt into a question about |σt|. The key
to studying |σt| is that the cycles evolve according to the dynamics of a coagulation-fragmentation
process. When a transposition ρi,j occurs, if i and j belong to two different cycles then the cycles
merge. On the contrary, if they belong to the same cycle, this cycle is split into two cycles. From
the definition it can be seen that the ranked sizes of the cycles form a coagulation-fragmentation
process (see Aldous (1999) and Pitman (2002),(2003)) in which components of size x and y merge
at rate Kn(x, y) = 2xy/n2 and components of size x split at rate Fn(x) = x(x − 1)/n2 and are
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broken at a uniformly chosen random point. Diaconis, Mayer-Wolf, Zeitouni, and Zerner (2003)
have recently considered the corresponding Markov chain on partitions of the unit interval and
shown that the Poisson-Dirichlet distribution is the unique invariant measure.

To study the evolution of the cycles in the random permutation, we construct a random graph
process. Start with the initial graph on vertices {1, . . . , n} with no edge between the vertices. When
a transposition of i and j occurs in the random walk, draw an edge between the vertices i and j.
To take care of the rare event that a given transposition is chosen several times, we will allow the
possibility of multiple edges, and draw a second edge if one is already present. It is easy to see that
in our continuous time process, at time t this graph is a realization of the Erdős-Renyi random
graph G(n, p), in which edges are independently present with probability p = 1− exp(−2t/n2), see
Bollobás (1985) or Janson, Luczak, and Ruczinski (2000)1. It is also easy to see that in order for
two integers to be in the same cycle in the permutation it is necessary that they are in the same
component of the random graph.

To estimate the difference between cycles and components, let Ft denote the event that a
fragmentation occurs at time t. It is clear that

Dt = Nt − 2
∑

s≤t

1{Fs} (1)

A fragmentation occurs in the random permutation when a transposition occurs between two
integers in the same cycle, so tree components in the random graph correspond to unfragmented
cycles in the random walk. (Here and in all that follows, ”tree” has a multi-graph meaning : it
is a connected component with no nontrivial closed circuit.) Unicyclic components (with an equal
number of vertices and edges) correspond to cycles in the permutation that have experienced exactly
one fragmentation, but we need to know the order in which the edges were added to determine the
resulting cycles. For more complex components, the relationship between the random graph and
the permutation is less clear. Fortunately, these can be ignored in the proofs of our results.

3 Limit Theorems

We will now describe our results and sketch their proofs. Rigorous proofs of the results stated in
this section can be found in sections 4, 5 and 6.

3.1 The subcritical regime

Theorem 1. Let 0 < c < 1. The number of fragmentations

Zc :=
∑

s≤cn/2

1{Fs} ⇒ Poisson(κ(c)) (2)

where κ(c) = (− log(1 − c) − c)/2. In fact, the convergence holds for the process {Zc : 0 ≤ c < 1}
with the limit being a Poisson process with compensator κ(c).

1The fact that we allow multiple edges makes no difference. At each point where the distinction with the usual
Erdős-Renyi random graph may be relevant, a very simple calculation shows that the effect of multi-edges can be
neglected (see Janson et al. (1993), where this issue is discussed). To make the core of our arguments simpler to
follow, we will ignore this distinction from now on.
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Remark. The result for fluctuations is formulated in terms of fragmentations rather than the
distance, since Dcn/2 − cn/2 ≈ Ncn/2 − cn/2 = O(n1/2). For the embedded discrete time chain, if
k = ⌊cn/2⌋, then

(k −Dk)/2 ⇒ Poisson(κ(c)) as n→ ∞ (3)

We divide by 2 since a fragmentation reduces the distance by 1 instead of increasing it by 1. To
deduce (3) from (2) we note that time k in the discrete walk corresponds to time N−1(k) ≈ cn/2
in the continuous time walk.

Sketch of the proof. The process {Zc, 0 ≤ c < 1} is a càdlàg counting process. Therefore by
arguments from Jacod and Shiryaev (1987), it is enough to show that its compensator κn converges
to the deterministic limit κ(c). If fk(t) is the fraction of vertices that belong to cycles of size k, the
rate at which fragmentations occur is just

∑

k fk(t)(k − 1)/n. Hence κn is just the integral with
respect to time of this rate. We first show that the variance converges to 0 and then, by Chebycheff’s
inequality, it only remains to show Eκn(c) → κ(c). But by exchangeability E[fk(t)] = P [|C1| = k]
where |C1| is the size of the component that contains 1 at time t. It is not hard to see that this
quantity at time bn/2 converges in distribution to the total progeny τ of a Galton-Watson branching
process with offspring distribution Poisson(b), or PGW (b). Summing the geometric series, we see
that Eτ = 1/(1 − b). Integrating with respect to b we get the desired expected value, κ(c).

To prepare for later developments, it is useful to take a second combinatorial approach to this
result. We begin with Cayley’s result that there are kk−2 trees with k labeled vertices. At time
cn/2 each edge is present with probability 1 − exp(−c/n) ∼ c/n so the expected number of trees
of size k present is

(

n

k

)

kk−2
( c

n

)k−1 (

1 − c

n

)k(n−k)+(k
2
)−k+1

(4)

since each of the k − 1 edges needs to be present and there can be no edges connecting the k
point set to its complement or any other edges connecting the k points. For fixed k the above is
asymptotic to

n
kk−2

k!
ck−1

(

1 − c

n

)kn

The quantity in parentheses at the end converges to e−ck so we have an asymptotic formula for the
number of tree components at time cn/2. As a side result we get the following known result:

Corollary 1. The probability distribution of the total progeny T of a Poisson(c) branching process

with c < 1 is given by P (T = k) = 1
c

kk−1

k! (ce−c)k

See section 4.1 of Pitman (1999) for another proof of this result. It was first discovered by
Borel (1942) and the distribution of T is called the Borel distribution. It is a particular case of the
so-called Borel-Tanner distribution, see Devroye (1992) and Pitman (1998) for further references.
In this context it appeared in the problem of the total number of units served in the first busy
period of a queue with Poisson arrivals and constant service times. See also Tanner (1961). Of
course, this becomes a branching process if we think of the customers that arrive during a person’s
service time as their children.
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3.2 The critical regime

It is well known in the theory of random graphs that the correct time-scale to describe the critical
regime is (n/2)(1 + λn−1/3), λ ∈ (−∞,∞). See Aldous (1997) for an interesting account that
relates the growth of large clusters in the critical random graph to the multiplicative coalescent. At
times (n/2)(1 − n−r) with r < 1/3, we are still in the subcritical regime, so the arguments in the
proof of Theorem 1, when done more carefully, are still valid. More precisely, we can show that if
cn(r) = 1 − n−r/3 for 0 ≤ r ≤ 1, then the expected number of fragmentations up to time cn(r)n/2
is again given by κ(cn(r)) ∼ (r/6) log n. Hence define:

Wn(r) =

(

6

log n

)1/2




∑

s≤cn(r)n/2

1{Fs} −
r

6
log n



 (5)

Theorem 2. As n → ∞, Wn(·) converge weakly, with respect to the Skorokhod topology on the
space of càdlàg functions on [0, 1], to {W (r), 0 ≤ r ≤ 1}, a standard Brownian Motion on [0, 1].
Furthermore,

(

6

log n

)1/2




∑

s≤n/2

1{Fs} −
1

6
log n



⇒W (1), (6)

Sketch of the proof. Intuitively, the first result is an immediate consequence of the Poisson limit
in Theorem 1 and the normal approximation to the Poisson. To prove it, we show that Wn(r)
is a martingale, whose jumps are asymptotically zero, and whose quadratic variation process is r
thanks to our time-change cn(r) = 1 − n−r/3. Therefore it converges to Brownian Motion.

At times (1 − n−1/3)n/2 ≤ t ≤ n/2 we are in the critical range of the random graph. Results
of Luczak, Pittel, and Wierman (1994) and computations with (4) imply that the number of
fragmentations in this interval is bounded in expectation and hence can be ignored.

Remark. While Theorem 2 is a nice theoretical result, it does not have much to say about any
biological example. If we think of the human genome and set n = 3 billion nucleotides, Theorem
2 says that after n/2 = 1.5 billion transpositions there have been an average of (log n)/6 = 3.63
fragmentations, with a standard deviation of 1.91. These numbers are small so even for n = 3
billion, we can’t expect a very good approximation to the normal distribution. In the example that
we simulated n = 100 and (log n)/6 = 0.767 versus an observed average number of fragmentations
= 0.662 (which translates into a value of 1.224 in Figure 2). While our estimation of the mean is
not very accurate, Figure 3 shows that the distribution of the number of fragmentations is almost
Poisson.

3.3 The supercritical regime

This is the most interesting case, and also the hardest one. We start by establishing a law of large
numbers. For all c > 0 define

βk(c) =
1

c

kk−1

k!
(ce−c)k

so that for c < 1 it coincides with the Borel distribution of Corollary 1. When c > 1,

lim
n→∞

P (|C1| = k) = βk(c)
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still holds but the βk(c)’s no longer sum up to 1 because there is a probability β∞(c) = 1 −
∑

k≥1 βk(c) > 0 that C1 is the giant component.
Let us denote by Υ(c) a random variable that takes the value 1/k with probability βk(c) when

1 ≤ k <∞ and the value 0 with probability β∞(c). The motivation for this definition is that 1/|Ck|
has the same distribution as Υ(c) and

∑n
k=1 1/|Ck| gives the number of components in the random

graph.

Theorem 3. Let c > 0 be a fixed positive number. Then the number of cycles in the random
permutation at time cn/2, |σcn/2| = g(c)n + ω(

√
n), where

g(c) := EΥ(c) =
∞
∑

k=1

1

c

kk−2

k!
(ce−c)k (7)

and the error term ω(
√
n)/an

√
n→ 0 in probability if an → ∞.

Note that the theorem is valid for all regimes and implies that the distance is given by Dcn/2 =
u(c)n + ω(

√
n) where u(c) = 1 − g(c). Although it is not obvious from the formula, u(c) = c/2

for c < 1 and u(c) < c/2 when c > 1. Using Stirling’s formula, k! ∼ kke−k
√

2πk, it is easy to
check that g′ exists for all c and is continuous, but g′′(1) does not exist. In words, there is phase
transition in the behavior of the distance of the random walk to the identity at time n/2 from linear
to sublinear.

Proof. In the supercritical regime the dynamics of the large components is quite complicated, but
there can never be more than

√
n components of size

√
n or larger. The expected number of

fragmentations that produce clusters of size smaller than
√
n by time cn/2 is at most n−1/2 · cn/2.

From this and Chebyshev’s inequality we see that up to a term ω(n1/2), |σcn/2| is the number of
components of the random graph, and the result follows Theorem 12 in Chapter V of Bollobás
(1985).

Theorem 4. Let c > 1. As n→ ∞,

Dcn/2 − u(c)n

n1/2
⇒ N (0, σ2) (8)

where σ = ρ[1+ρ(c/2−1)], and ρ = 1−θ(c) is the extinction probability of a supercritical PGW (c).

Remark. Note that the constant σ is different from the one given in Berestycki and Durrett
(2003). We were correct in claiming that the central limit theorem in Theorem 4 is the same as the
one for the number of components of the random graph, but we naively thought that the terms in
∑n

k=1 1/|Ck| were sufficiently independent so that σ2 = var (Υ(c)).

Sketch of Proof. By Pittel’s (1990) central limit theorem for the number of components of a
random graph, it suffices to prove that the number of extra components due to fragmentation at time
cn/2 is o(

√
n) (see his Corollary 1 and note that T/c = ρ). Our first step is to increase the cutoff for

large cycles to na where a > 1/2, so that the number of large cycles is at most n1−a = o(n1/2). The
number of fragmentations that produce “small” cycles is now n−(1−a) ·cn/2 = O(na) and cannot be
ignored, so we need to use the fact that fragmented cycles are reabsorbed by the large components.
If the fraction of mass in large cycles (“upstairs”) at time tn is λt then new fragments of size k are
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produced at rate ≤ 2λt and each fragment of size k is reabsorbed at rate 2kλt. After time change
this is bounded by an M/M/∞ queue in which the expected number of customers in equilibrium is
1/k. Using this, we can show that with high probability the number of small fragments at any time
is at most (log n)2. Of course, the coagulation fragmentation process is not exactly the queuing
system. Customers can split into two, coalesce with other customers, gain weight (and increase
their fragmentation rate) by eating small components, etc. However, (log n)2 is much smaller than
n1/2 so crude but robust estimates and patience eventually lead to a proof.

3.4 Results for Reversals.

Theorems 3 and 4 extend easily to the approximate distance for reversal chain. Recall that the
main difference lies in the fact that, a reversal involving edges from different components in the
breakpoint graph always yields a coagulation, but one involving two edges in the same component
may or may not cause a fragmentation. The proofs of Theorems 3 and 4 for transpositions are
based on showing that fragmentations can be ignored, so this difference is unimportant and these
results extend to reversals. As Figure 2 shows, this is not true for the more precise results in
Theorems 1 and 2. For example, the underlying data shows that up to c = 1, an average of 23%
of the reversals have caused no change in the distance. Since inversions that affect an edge are
much more frequent than those that involve it, it seems reasonable to guess that in the limit as
n → ∞ the relative orientations of the black edges in a component of the breakpoint graph are
independent. This would imply that the Poisson process of fragmentations in the reversal case is a
1/2-thinning of the one for transpositions, and Theorem 2 would hold with 6 replaced by 12.

3.5 Emergence of a giant cycle?

Since cycles in the random permutation are smaller than components of the random graph, it
follows that if c < 1 then the largest cycle at time cn/2 has fewer than α(c)−1 log n vertices, where
α(c) = (c− 1 − log c). (See Theorem 10 in Chapter V of Bollobás (1985) or Lemma 3 below.)

For c > 1, the largest component of the random graph is, as is well known, “giant, ” meaning
that it is of order n. In fact it is asymptotic to θ(c)n where θ(c) is the survival probability of
a supercritical Poisson Galton-Watson with mean c. It is a natural question to ask whether the
largest cycle of the random permutation is also giant in the supercritical regime.

Conjecture. Let L1(t) be the size of the largest cycle at time t. If c > 1 then

L1(cn/2)

θ(c)n
⇒ V

where V is a random variable with 0 < V ≤ 1 a.s.

This problem is quite different from our original one. However our techniques enable us to prove a
partial result in this direction as a corollary of the proof of Theorem 4.

Theorem 5. For any c > 1, at time cn/2 there are at least θ(c)n − o(n) vertices located on large
cycles (i.e., of size greater than or equal to na, for any a < 2/3).

David Aldous (private communication) conjectures that the relative sizes of the pieces of the giant
cycle are in equilibrium at all times in the supercritical regime, i.e., have the Poisson-Dirichlet
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PD(0, 1) distribution, which gives the limiting behavior of the ordered sizes of cycles in a uniform
random permutation. According to this conjecture, V would be distributed as the first coordinate
of a PD(0, 1) random variable. One way to approach this conjecture would be to generalize Aldous
(1997) to show that the large cycles in the critical regime converge to a coagulation-fragmentation
process and to study the growth of clusters in that process.

Alternatively, one could look at the size of the cycle containing 1, K1(t), and try to show that

K1(cn/2)

θ(c)n
⇒ U

where U has a point mass of size 1− θ(c) at 0 and is otherwise uniform on (0, θ(c)). Figure 4 shows
the average growth of K1(cn/2)/n in 10,000 simulations of n = 100, n = 1000, and compares the
results to EU = θ(c)2/2. Although this considers only one aspect of the distribution of large cycles,
it agrees well with Aldous’ conjecture.

Figure 5 shows a histogram of the result of 100,000 simulations of K1(100) when n = 100. As the
graph shows, the spike in the frequency of clusters of size 4 or smaller is what one would predict
from the random graph cluster size distribution. The remainder of the distribution is roughly
uniform except for rounding at the upper end. The latter is to be expected if Aldous’ conjecture is
correct, since the size of the giant component satisfies the central limit theorem.

As we were finishing this paper, we learned that Oded Schramm (private communication) has
proved David Aldous’ conjecture.

Remark. The problem of the emergence of a giant cycle is closely related to Angel’s (2003) work
on the existence of infinite orbits for the random stirring process, which is the random transposition
random walk on an infinite graph such as Z

d or a tree, rather than the complete graph on {1, . . . , n}
considered in this work. To explain the connection, suppose that we construct our process using
a Poisson process with rate 2/n2 for each i 6= j, and at these times draw an edge between i and j
to indicate that i and j are to be transposed. To compute the cycles in the permutation at time
cn/2, we repeat the first [0, cn/2] units of time periodically and then observe the sites that a walker
starting at i visits at times kcn/2, for k = 1, 2, . . .. Angel (2003) calls this construction the cyclic
time random walk. Its relevance to his work is that the cyclic time random walk is transient if, and
only if, the cycles are infinite.

4 The subcritical regime

Let us introduce some notations for the different probability laws involved. For each n, we have
the coagulation-fragmentation process, and the Erdős-Renyi random graph model. To emphasize
when computations are being done for the random graph we will use Qp, for the random graph with
Bernoulli percolation parameter p, and Q for the law of the evolving random graph that at time s
has ps = 1 − exp(−2s/n2). When s = cn/2 this probability is p(c, n) = 1 − exp(−c/n) ≤ c/n. To
simplify notation we will use QX to denote the expected value of X with respect to the probability
Q.

4.1 Preliminary results : comparison with a branching process

Our first result provides a useful upper bound.

10



Lemma 1. The cluster size |C1| in Qc/n is dominated by Z, the total progeny of a branching process
in which each individual has a Binomial(n−1, c/n) number of children, i.e., we can construct these
random variables on the same probability space so that |C1| ≤ Z a.s. It follows from this that if
c < 1 then Qc/n|C1| ≤ 1/(1 − c).

Proof. Intuitively, this holds since a vertex in generation k may have children among all of the n
vertices of the graph except those of the first k generations. To begin to prove this formally, let
ξi,j, 1 ≤ i, j ≤ n be independent random variables, taking values 1 with probability c/n and 0 with
probability 1 − c/n. To start the random graph let Y0 = {1} and let Y1 = {j 6∈ Y0 : ξ1,j = 1}. To
start the branching process let Z0 = 1, Z1 = |Y1|, and let φ1 : Y1 → {1, 2, . . . Z1} be 1-1 and onto.

If the first k stages of the construction have been done and we have Yk 6= ∅ and a φk : Yk →
{1, . . . Zk} that is 1-1 (but not onto in general), then let

Yk+1 = ∪i∈Yk
{j 6∈ ∪k

ℓ=0Yℓ : ξi,j = 1}

We let individual φk(i) in the kth generation of the branching process have |{j 6= i : ξi,j = 1}|
children. The individuals in the branching process that are not in φk(Yk) have a number of children
given by independent binomials. It should be clear from the construction that can again define
φk+1 : Yk+1 → {1, . . . Zk+1} to be 1-1, and the comparison follows by induction. The inequality
follows by computing EZ (for instance by summing a geometric series).

The next result shows that the bound in Lemma 1 is exact in the limit. Let {Zk}∞k=0 be a
Poisson Galton-Watson process with offspring mean c and let Z =

∑∞
k=0 Zk be its total progeny.

Lemma 2. Let C1 be the cluster that contains vertex 1. If 0 ≤ c < 1 then as n→ ∞

Qp(c,n)(|C1| = k) → P (Z = k)

Proof. The number of children of vertex 1, Z1
n = |Y1| has distribution Binomial(n − 1, p(c, n)),

which converges to a Poisson(c) limit. Let k ≥ 1 and let (n1, ..., nk+1) ∈ N
k+1. If we let Zn

j = |Yj |
then

Qp(c,n)(Z
n
k+1 = nk+1|Zn

1 = n1, ..., Z
n
k = nk) = P

(

nk
∑

i=1

Bn
i = nk+1

)

where Bn
i are i.i.d. Binomial(n − s, p(c, n)) random variables, and s =

∑k
i=0 nk with n0 = 1. From

this it follows easily that the convergence of finite-dimensional distributions of {Zn
j }j≥1 to those of

PGW (c). Markov’s inequality and the domination result in Lemma 1 imply that

Qp(c,n)

(

∞
∑

k=K

Zn
k > 0

)

≤ Qp(c,n)

(

∞
∑

k=K

Zn
k

)

≤ cK/(1 − c)

and the desired conclusion follows.

Our next ingredient is

Lemma 3. Qc/n(|C1| ≥ y) ≤ c−1 exp(−(c− 1 − ln c)y).

11



Proof. In view of Lemma 1, it suffices to prove the result for Z, rather than |C1|. To do this, let

φn(θ) = e−θ
n−1
∑

m=0

(

n− 1

m

)

( c

n

)m (

1 − c

n

)n−1−m
eθm

= e−θ
(

1 − c

n
+
c

n
eθ
)n−1

be the moment generating function of the distribution of the number offspring minus 1. Let Sm

be a random walk that takes steps with this distribution and S0 = 1, so that Sm explores the
Galton-Watson tree. Then τ = inf{m : Sm = 0} has the same distribution as Z. Let Rm =
exp(θSm)/φn(θ)m. Rm is a nonnegative martingale. Stopping at time τ we have eθ ≥ E(φn(θ)−τ ).
If φn(θ) < 1 it follows that

P (τ ≥ y)φn(θ)−y ≤ E[φn(θ)−τ ] ≤ eθ

Using φn(θ) ≤ e−θ exp(c(eθ − 1)) now we have

P (τ ≥ y) ≤ eθ
(

e−θ exp(c(eθ − 1))
)y

To optimize the bound we want to minimize c(eθ − 1)− θ. Differentiating this means that we want
ceθ − 1 = 0 or θ = − log(c). Plugging this and recalling that τ and Z have the same distribution
we have

P (Z ≥ y) ≤ 1

c
exp(−(c− 1 − ln c)y)

It follows that

Qc/n(|C1| ≥ y) ≤ 1

c
exp(−(c− 1 − ln c)y)

which completes the proof of Lemma 3.

Now recall that for c < 1, Zc =
∑

s≤cn/2 1{Fs} is the number of fragmentations up to time cn/2.

Lemma 4. Let fk(s) be the empirical fraction of vertices in cycles of size k at time s. If 0 ≤ c < 1
then Efk(cn/2) → P (Z = k) and EZc → κ(c), where κ(c) was defined in Theorem 1.

Proof. The cycle sizes at time s in the coagulation-fragmentation process are dominated by the
cluster sizes in the random graph model with ps = 1 − exp(−2s/n2) ≤ 2s/n2. Therefore,

EZc ≤
∫ cn/2

0
Qfk(s)

k − 1

n
ds ≤

∫ cn/2

0
Q2s/n2 |C1| −

1

n
ds

Using Lemma 1 Q2s/n2|C1| ≤ 1/(1 − (2s/n)). Changing variables un/2 = s we have

EZc ≤ −1

2
(log(1 − c) + c) = κ(c) (9)

Since unfragmented cycles are the same as tree components in the random graph, the first conver-
gence result follows from Lemma 2. The second one follows from Fatou’s lemma and (9).

The final preparatory step is:
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Lemma 5. If c < 1 the expected number of fragmentations that occur to cycles that have already
been fragmented is ≤ Kc(log n)2/n, and Kc = 9cκ(c)α(c)−2. (Recall α(c) = (c− 1 − log c)).

Proof. The expected number of such fragmentations is at most:

≤ E

∫ cn/2

0

#vertices in fragments

n

L1(bn/2)

n
dt

n

2

∫ c

0
EZb

(

L1(bn/2)

n

)2

db

where L1(t) is the size of the largest component at time t. In the event that L1(cn/2) ≤ 3α(c)−1 log n,
the above is at most

(n/2)(3α(c)−1 log n/n)2
∫ c

0
κ(b)db ≤ 1

2
Kc

(log n)2

n

On the other hand by Lemma 3 the complement of this event has probability at most n−2, and
there can never be more than cn/2 such fragmentations, so Lemma 5 is proved.

4.2 Proof of Theorem 1

We are now ready to prove Theorem 1. Let Z̄n
c =

∑

s≤cn/2 1{F̄s}, 0 ≤ c < 1 be the counting process
of fragmentations that occur to cycles which (a) have not been fragmented previously and (b) have
size ≤ n0.7. The second condition is irrelevant in this section, but imposing it now will help in the
next one. Unfragmented cycles correspond to trees in the random graph so the compensator of Z̄n

c

is

κ̄n(c) =

∫ cn/2

0
ψ̄n

s ds (10)

where ψ̄n
s =

∑n0.7

k=1 f̄k(s)(k−1)/n and f̄k(s) is the fraction of vertices that belong to tree components
of size k. As noted in the sketch of the proof, it is enough to show that for each fixed c, κn(c)
converges in probability to κ(c), or, by Lemma 5, that κ̄n(c) converges to κ(c) in probability.

Lemmas 3 and 4 imply that E[
∫ cn/2
0 ψ̄n

s ds] → κ(c). It remains to show that var
∫ cn/2
0 ψ̄n

s ds → 0.
Our first step will be to prove :

var (ψ̄n
s ) ≤ K

n3
Qp(c,n)[|C1|3] (11)

for all time s ≤ cn/2, where K is a constant that depends only on c.

To see this, first observe that in terms of cluster sizes

ψ̄n
s =

1

n2

n
∑

i=1

(|Ci| − 1)Ii

where Ii is the indicator of the event that Ci is a tree. Let di = (|Ci| − 1)Ii.

var
1

n2
(d1 + · · · + dn) =

1

n4
(nvar (d1) + n(n− 1)cov (d1, d2)) (12)
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Monotonicity and Lemma 3 imply,

var (d1) ≤ Qp(c,n)[|C1|2] ≤ K (13)

It remains to bound cov (d1, d2). If we let

πn,i = ii−2 (ps)
i−1 (1 − ps)

i(n−i)+(i
2
)−(i−1)

where ps = 1 − exp(−2s/n2) then by the reasoning for (4) we have

Qps [C1 ∩ C2 = ∅, |C1| = j, |C2| = k, C1 and C2 are trees] =

(

n− 2

j − 1

)

πn,j

(

n− j − 1

k − 1

)

πn−j,k

Qps [C1 = C2, |C1| = k, C1 is a tree] =

(

n− 2

k − 2

)

πn,k

From this it follows that cov (d1, d2)

=
∑

j,k

[(

n− 2

j − 1

)(

n− j − 1

k − 1

)

(1 − ps)
−j −

(

n− 1

j − 1

)(

n− 1

k − 1

)]

(j − 1)(k − 1)πn,jπn,k

+
∑

k

(

n− 2

k − 2

)

(k − 1)2πn,k

For the first term in the right-hand side,

[(

n− 2

j − 1

)(

n− j − 1

k − 1

)

(1 − ps)
−j −

(

n− 1

j − 1

)(

n− 1

k − 1

)]

≤ (n − 2)!ec

(j − 1)!(k − 1)!(n − j − k)!
− (n − 1)!

(j − 1)!(n − j)!

(n − 1)!

(k − 1)!(n − k)!

≤ 0

since (n− 2)!ec ≤ (n− 1)! for large n and (n− j)!/(n − j − k)! ≤ (n− 1)!/(n − 1 − k)!.

For the second term,

∑

k

(

n− 2

k − 2

)

(k − 1)2πn,k ≤ 1

n− 1

∑

k

k3

(

n− 1

k − 1

)

πn,k ≤ 1

n− 1
Qp(c,n)[|C1|3]

Combining this with (12) and (13) gives (11).

Hence by the Cauchy-Schwarz inequality we get:

var

(
∫ t

0
ψ̄n

s ds

)

= Q

[

(
∫ t

0
(ψ̄n

s −Q[ψ̄n
s ]) ds

)2
]

≤ t

∫ t

0
var (ψ̄n

s )ds (14)

≤ cn

2

∫ cn/2

0

K

n3
ds =

c2K

4n
→ 0

where we have used both (11) and Lemma 3. This completes the proof of Theorem 1.

14



5 The critical regime

The first step in the proof of Theorem 2 is to argue that fragmentations of previously fragmented
cycles can be ignored. The number of such fragmentations is smaller than the total number of
cycles in multicyclic components (i.e., components with at least 2 cycles) in the random graph.
Theorem 1 and Corollary 3 in Luczak, Pittel, and Weirman (1994) imply that the total number of
cycles in multicyclic components in the critical regime is bounded in probability.2 In particular,
divided by (log n)1/2 it converges to 0 in probability. As a result, by the converging together lemma
(see e.g., Durrett (1996), Chap.2, Ex. 2.10), it suffices to prove the central limit theorem for the
number of fragmentations on tree components.

As in the previous section, we will in addition restrict our attention to fragmentations of tree
components of size at most n0.7, and continue to use the notation introduced there. (Indeed,
classical results from the theory of random graphs, or Aldous (1997), show that asymptotically
almost surely all clusters are smaller than n0.7).

Let W̄n(r) := (6/ log n)1/2(Z̄n(r)−κ̄n(r)). By standard methodology in the theory of stochastic pro-
cesses (see Jacod and Shiryaev (1987) or Revuz and Yor(1999) for instance), to prove convergence of
W̄n(·) to Brownian Motion, the two things we need to check are: (i) E[sup0≤r≤1|W̄n(r)−W̄n(r−)|] →
0 and (ii) The quadratic variation of Wn, i.e. the increasing process associated with W̄n(·)2, must
converge to r at time r. (i) is obvious because Z̄n is a counting process, and (ii) turns into
E(6Z̄n(r)/ log n) → r and var (6Z̄n(r)/ log n) → 0. These two steps are dealt with respectively in
lemmas 7 and 8.

But first, we need a technical lemma that will be useful on several occasions (e.g., for computing
precise asymptotics of the number of trees of a given size).

Lemma 6. If k → ∞ and k = o(n3/4) then

γn,k(c) ≡
(

n

k

)

kk−2
( c

n

)k−1 (

1 − c

n

)kn−k2/2−3k/2+1

∼ nk−5/2

c
√

2π
exp

(

−α(c)k + (c− 1)
k2

2n
− k3

3n2

)

≡ λn,k(c)

where α(c) = c − 1 − log(c). There is a constant K so that if 1 ≤ k ≤ n0.7 and c ≤ 1 then
γn,k(c) ≤ Kλn,k(c).

Proof. Stirling’s formula implies k! ∼ kke−k
√

2πk. Using this we have that

γn,k(c) ∼
nk−5/2

c
√

2π





k−1
∏

j=1

(

1 − j

n

)



 ekck
(

1 − c

n

)kn−k2/2−3k/2+1

Using the expansion log(1 − x) = −x− x2/2 − x3/3 − . . . we see that if k = o(n) then

(

1 − c

n

)kn−k2/2−3k/2+1
∼ exp(−ck + k2/2n)

2This result could also be derived from the Folk Theorem 1 in Aldous (1997) which gives the limit for the joint
distribution of the component sizes and the number of cycles they contain. See the discussion page 850 of his paper.
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while if k = o(n3/4) we have

k−1
∏

j=1

(

1 − j

n

)

= exp



− 1

n

k−1
∑

j=1

j − 1

n2

k−1
∑

j=1

j2 +O

(

j4

n3

)





∼ exp

(

−k(k − 1)

2n
− k(k − 1)(2k − 1)

6n2

)

∼ exp

(

− k2

2n
− k3

3n2

)

Combining the last three formulas gives the asymptotic formula. To prove the bound we note that
Stirling’s formula implies k! ≥ δkke−k

√
2πk for some δ > 0. Using the bounds log(1−x) ≤ −x and

log(1 − x) ≤ −x− x2/2 in the last two calculations gives the upper bound.

Lemma 7.

E

[

6

log n

∫ cn(r)n/2

0
ψ̄n

s ds

]

→ r

Proof. The upper bound follows from (9) which holds for all c < 1. In the other direction, changing
variables s = cn(v)n/2 where cn(v) = 1 − n−v/3 and noting c′n(v) = (1/3)(log n)n−v/3 gives

E

[

6

log n
Z̄n(r)

]

= n

∫ r

0
Q[ψ̄n

cn(v)n/2]n
−v/3 dv (15)

=

∫ r

0

n0.7
∑

k=1

k − 1

n
Qp(cn(v),n)[kTk]n−v/3 dv

where Tk is the number of tree components of size k, and p(c, n) = 1 − exp(−c/n).
We can take the limit of the last expression by using formula (4), combined with Lemma 6.

Indeed formula (4) shows that ETk = γn,k(c), and k ≤ n0.7 = o(n3/4), so that the use of Lemma 6
is justified. Hence

E

[

6

log n
Z̄n(r)

]

=

∫ r

0

n0.7
∑

k=1

k(k − 1)

n
γn,k(cn(v))n−v/3 dv

Setting c = 1 − b with b = n−v/3 → 0 and using Taylor’s theorem

−(c− 1 − log(c))k − b
k2

n
= −b

2

2
k − b

k2

n
+ o(b2k)

The first term becomes significantly negative when k ≈ 1/b2 = n2v/3, the second when k ≈
√

n/b =
n1+v/3. When v ≤ r < 1 the first threshold is smaller and the second term can be ignored. Thus
Lemma 6 and the last observation imply that if v < 1

n0.7
∑

k=1

k2

n
Qp(cn(v),n)[Tk] ∼

1√
2π

n0.7
∑

k=1

k−1/2 exp(−n−2v/3k/2) (16)

Here we have used the asymptotic formula of Lemma 6 for all k. However, the next computation
will show that the sum grows like nv/3 so the contributions from small k can be ignored.
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If we view the sum in (16) as a Riemann sum with spacing n−2v/3, we can rewrite it as

nv/3
n0.7
∑

k=1

n−2v/3(n−2v/3k)−1/2 exp(−n−2v/3k/2)

From this it follows that

n−v/3
n0.7
∑

k=1

k(k − 1)

n
Qp(cn(v),n)[Tk] →

∫ ∞

0

x−1/2

√
2π

e−x/2 dx

Changing variables x = y2, dx = 2y dy the integral becomes (2π)−1/2
∫∞
0 2e−y2/2 dy = 1. Therefore,

by Fatou’s lemma:

lim infn→∞E

[

6

log n
Z̄n(r)

]

≥
∫ r

0
n−v/3 · nv/3 dv = r

We turn now to the analysis of the variance.

Lemma 8. var
(

6
log n κ̄n(r)

)

→ 0

Proof. Changing variables as in (15) and using Cauchy-Schwarz inequality as in (14),

var

(

6

log n

∫ cn(r)n/2

0
ψ̄n

s ds

)

= var

(

n

∫ r

0
ψ̄n

cn(v)n/2 n
−2v/3 dv

)

≤ n2

∫ r

0
n−2v/3var (ψ̄n

cn(v)n/2) dv

≤ 2

n

∫ r

0
n−2v/3Qp(cn(v),n)[|C1|3I1] dv

Reasoning as in (16) but using the bound in Lemma 6

n
∑

k=1

k3Qp(cn(v),n)[kTk] ≤ K
n
∑

k=1

k3/2 exp(−n−2v/3k/2)

To check the right-hand side note that the power of k has increased by 2, from the previous
calculation. If we view the last sum as a Riemann sum with spacing n−2v/3, we can rewrite it as

n5v/3
n
∑

k=1

n−2v/3(n−2v/3k)3/2 exp(−n−2v/3k/2)

Now x3/2e−x/2 has derivative ((3/2)x1/2 − (1/2)x3/2)e−x/2 so it is increasing on [0, 3] and then
decreasing on [3,∞). Thus if we discard the term with the largest k so that n−2v/3k ≤ 3 we have
a lower bound on the integral.

n−2v/3
n
∑

k=1

k3Qp(cn(v),n)[kTk] ≤ nv 1√
2π

∫ ∞

0
x3/2e−x/2 dx+ nv/333/2e−3/2
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Using this it follows that

var

(

6

log n
κ̄n(r)

)

≤ K

n

∫ r

0
nu du

Writing nu = exp(−u log n)) and integrating we have that the right-hand side is ≤ K/(log n) → 0.
This concludes the proof of the first result in Theorem 2.

The final step is to estimate the number of fragmentations that occur to tree components of
size ≤ n0.7 at times between (1 − n−1/3)n/2 and n/2:

∫ n/2

(1−n−1/3)n/2
Qψ̄n

s ds

For each s in the interval the integrand is smaller than
∑n0.7

k=1
k2

n Q1/nTk. Using Lemma 6, the last
quantity is smaller than

K

n

∞
∑

k=1

k−1/2 exp(−k3/3n2)

which we can rewrite as

K

n
n1/3

∞
∑

k=1

n−2/3(kn−2/3)−1/2 exp(−(kn−2/3)3/2)

The above sum is a Riemann sum so it converges to
∫∞
0 x−1/2e−x3/2dx. Therefore, Qψ̄n

s ≤ Kn−2/3.

Since the duration of the critical regime is n2/3/2, the expected number of fragmentations is bounded
and the proof of Theorem 2 is complete.

6 The supercritical regime

By Pittel’s (1990) central limit theorem for the number of components of a supercritical random
graph, it is enough to show that, with probability going to 1 as n → ∞, at time cn/2 there are
fewer than o(n1/2) extra components due to fragmentation. (This was already indicated in the
sketch of the proof of Theorem 4).

Let a = 0.55. (In fact the results stated in this section would also be valid for any 1/2 < a < 2/3
but making this choice makes some proofs slightly easier). We call cycles of size k ≥ na large. These
can be ignored since there cannot be more than n1−a = o(n1/2) such components. We define the
amount of mass “upstairs” by

N↑
t =

∑

k>na

kXk(t)

where Xk(t) is the number of cycles of size k at time n/2 + t. (It is convenient in this section
to shift the time so that t = 0 corresponds to critical time n/2.) If all of the mass was upstairs,
then the expected number of cycles of size less than na produced by fragmentation would be
2na−1(cn/2) = O(na). It is overly pessimistic to think that all of the mass will be upstairs, but
by analogy with the random graph, we expect (and will eventually prove in Theorem 5) that at
times c > 1 a positive fraction of the total mass n will be there, so this estimate of the number of
fragmentations is too large to ignore.
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To improve this crude estimate, we take advantage of the fact that fragmented pieces are
reabsorbed upstairs. Let X↓

k(t) be the number of cycles of size k produced by fragmentation of

cycles upstairs. X↓
k(t) can only increase when a transposition is performed, and only if it is made

of one of the N↑
t vertices upstairs and of one of the 2 points located k steps away when writing

the corresponding cycle of the current permutation. This gives a rate at most 2N↑
t /n

2. As for the
death rate, one way to get rid of a component of size k is by picking one of the k vertices of one of
the X↓

k(t) components and one of the N↑
t vertices upstairs. This happens with rate 2kX↓

k(t)N↑
t /n

2.
For the moment we are ignoring the fact that cycles may experience coalescence or fragmentation
while downstairs. We will deal with these complexities once we have an understanding of the basic
birth and death process of fragments of large clusters.

6.1 The cluster queuing system

It is fortunate that the unknown quantity N↑
t ≤ n appears in both rates, so that as along as N↑

t > 0
we can remove it by time change. Once this is done, we have a system of stochastic processes ξk

t ,
for 1 ≤ k ≤ na that we call a cluster queuing system: let ξk

t be independent birth-and-death chains
with birth rate 1 and death rate kξk

t , that begin with ξk
0 = 0.

Lemma 9. With probability → 1 as n→ ∞ we have

na
∑

k=1

ξk
t ≤ (log n)2 and

na
∑

k=1

kξk
t ≤ na(log n)2

for all t ≤ c (c > 0).

Remark. Although this system of stochastic processes can be defined without any reference to
our random walk problem, it is useful to bear in mind that the state of this cluster queuing system
at time t describes the number of fragments of large cycles at time

n

2
+

∫ t

0

n2

2N↑
s

ds ≥ n

2
(1 + t)

since N↑
s ≤ n. Thus the control obtained in the above lemma for all t ≤ c, will provide useful

information for the random walk between times n/2 and (1 + c)n/2 for any c > 0. On our original
time-scale, this corresponds exactly to the supercritical regime, i.e. up to time cn/2 for any c > 1.

Proof. The second result is a trivial consequence of the first. The key idea to handle the processes
ξk
t is to consider strips 2j ≤ k < 2j+1. Because there are no simultaneous jumps, we can prove

that the queues ξk
t at each level k are independent processes (see e.g. Revuz-Yor (1999), chap.

XII, prop. (1.7), for a proof of this fact in the case of Poisson processes). Therefore, for each
1 ≤ j ≤ log2 n

a, the number of cycles with sizes in [2j , 2j+1), ζj
t , is dominated by a birth and death

chain with birth and death rates respectively 2j and 2jζj
t . To analyze these processes, we consider

the successive excursions away from 0. Their embedded discrete time processes Ys jump from m to
m− 1 with probability m/(m+ 1) and from m to m+ 1 with probability 1/(m+ 1). Let us try to
find a function φ such that φ(0) = 0, φ(1) = 1 and φ(Ys) is a martingale. The latter implies

1

m+ 1
[φ(m+ 1) − φ(m)] =

m

m+ 1
[φ(m) − φ(m− 1)]
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so φ(x) =
∑x

k=1(k − 1)!. Since φ(1) = 1 and φ(0) = 0, it follows by optional sampling that the
maximum level reached during an excursion of ζj, M , satisfies

P (M > x) = 1/φ(x + 1) ≤ 1/x! (17)

To bound the number of excursions for the process in the jth strip before time c, Nj(c), we
note that jumps from 0 to 1 occur at rate 2j so ignoring the amount of time it takes to return to
0 from 1, the number of excursions by time c is bounded by a Poisson random variable with mean
2jc ≤ cna. Markov’s inequality implies that P (Nj(c) > n2) ≤ cna−2 so

P

(

max
1≤j≤a log2 n

Nj(c) > n2

)

→ 0 (18)

To estimate the probability that the maximum of n2 excursions is > log n we recall (17) and that
Stirling’s formula implies k! ≥ δ0k

ke−k/
√

2πk for some δ0 > 0, so

(log n)! ≥ δ1(log n)log nn−1(log n)−1/2 = δ1n
log log n−1(log n)−1/2

The right-hand size goes to ∞ faster than n2 log2 n so using (18) we have

P

(

max
1≤j≤a log2 n

max
0≤t≤c

ζj
t > log n

)

→ 0

When the last event does not occur we have

na
∑

k=1

ξk
t ≤ a(log2 n) log n =

a

log 2
(log n)2

Since a < 2/3 < log 2 ≈ 0.69, this gives the desired result.

6.2 Completion of the proof of Theorem 4

The cluster queuing system is the first approximation to the analysis of the dynamics of the su-
percritical regime. However, it ignores customer fragmentation and a number of “bad events” that
we need to consider in order to give a rigorous proof of Theorem 4. Though a priori one might
expect it to be difficult to take account of corrections of second order, third order, . . ., and have
nightmares about adding up infinitely many terms, we were pleasantly surprised to see that the
proof could be completed with a few simple estimates.

The first technical problem to confront is to show that the total amount of mass upstairs stays
positive at any given time so we can apply our time change. This is done in section 6.3.

The more difficult problem is to control the difference between the CQS and the real system of
clusters. To do this, we need a notational scheme to verify that we have indeed taken care of all
of the relevant events. We call clusters of size larger than na large, those in the CQS (i.e., those
that were generated by a fragmentation of some large cycle), medium, and non-giant clusters in
the random graph small. Writing frag and coag as shorthand for fragmentation and coagulation,
we have three frag and six coag events to handle:
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coag(small,small) is a natural part of the random graph so these events are not errors. The fragmen-
tation of small clusters involves o(n1/2) clusters and hence does not significantly alter this process
(see frag(small) and Lemma 12).

coag(small,large) eliminates a small component, but in the random graph these correspond to the
small cluster being absorbed into the giant component, so this is not an error.

frag(small) is easy to take care of due to the duality principle which asserts that finite clusters in
the random graph at time c > 1 have the same distribution as clusters at time cρ < 1 where ρ is
the probability of no percolation. This allows use to use our subcritical estimates for fragmentation
of small supercritical clusters. More details are given in Lemma 12.

coag(large,large) We do not care about these events since we do not need to keep track of the
number of cycles upstairs.

frag(large) These are the arrivals in the cluster queuing system

coag(medium,large) are (almost) the departures in the cluster queuing system. The problem is that
the next three events can cause clusters to gain weight or split into two.

coag(medium,medium) are helpful events since they reduce the number of customers in the CQS.
This does make the fragmentation rate for the new cluster larger than the sum of the two previous
clusters but Lemma 11 will take care of this. More importantly, it makes the departure rate of the
new cluster larger. This, applied to coag(medium,medium) and coag(medium,small), shows that the
number of medium clusters is stochastically bounded by the CQS of section 6.1, and is the content
of Lemma 10.

coag(medium,small) eliminates a small component, but in the random graph these correspond to the
small cluster being absorbed into the giant component. Again, this also makes the fragmentation
rate larger for the cluster that gained weight but Lemma 11 will take care of this.

frag(medium) is taken care of by Lemma 11.

To complete the proof it remains to prove the three promised lemmas.

Lemma 10. The number of medium clusters is dominated by that of the CQS. Therefore there
are never more than (log n)2 medium clusters, and never more than na(log n)2 vertices in medium
clusters.

Proof. As was just mentioned, the only differences between the CQS and the medium clusters are
generated by events of type coag(medium,medium) and coag(small, medium). However both those
events do not increase the number of medium clusters, and both those events make the death rate
of the clusters concerned higher. Hence we can construct the CQS and the medium clusters process
on the same probability space, in such a way that the total number of medium clusters is smaller
than that of the CQS.

Lemma 11. The expected number of fragmentations of medium clusters is at most O(n2a−1(log n)2).

Proof. There are never more than (log n)2 medium clusters. Since there are at most na vertices
per medium clusters the total number of vertices is at most na(log n)2. The rate at which those
fragmenatations happen is thus bounded by

(

na(log n)2

n

)

na

n
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so that the expected number of such fragmentations is indeed O(n2a−1(log n)2).

Lemma 12. The number of fragmentations of small components is o(n1/2).

Proof. By a now familiar estimate, the expected number of fragmentations that produce clusters of
size smaller than np at times between n and n+t is at most 2np−1t. So we can ignore fragmentations
that (a) produce clusters of size smaller than n0.45 before time cn/2 and (b) produce clusters of
size smaller than n0.55 at times between n and n+ n0.9.

If c > 1 the distribution of nongiant components in the random graph is given by progeny of a
Poisson Galton Watson process with mean c on the event of its extinction. If we let ρ denote its
extinction probability, then the offspring distribution conditional on extinction is given by

1

ρ
e−c (cρ)k

k!
= e−cρ (cρ)k

k!

since ρ = e−c(1−ρ). In short, PGW (c) conditioned on extinction is PGW (cρ). The last observation
implies that results for finite supercritical clusters can be derived from those for subcritical clusters.
In particular, by Lemma 3, the largest nongiant components seen after time n + n0.9, are smaller
than n0.2. Since fragmentations of such clusters necessarily produce pieces smaller than n0.2 these
fragmentations can be ignored by (a).

6.3 The initial mass upstairs

The last step in the proof of Theorem 4 is to ensure that upstairs never becomes empty in this
process. In other words we must prove that N↑

t > 0 for all t > 0 with high probability, so that we

can indeed time-change the queues by (N↑
t )−1, and use rigorously all the analysis carried out on

(CQS) in section 6.1. This will be done by showing that initially there are already more vertices
upstairs than will ever (with high probability) be taken away by fragmentation in the cluster
queuing system.

Lemma 13. Initially, upstairs contains at least N↑
0 ≥ Kn1−a/2 vertices. In particular N↑

0 >
na(log n)2 and it never becomes empty during the supercritical regime.

Proof. Lemma 6 implies that when c = 1 the expected number of trees of size k

ETk ∼ nk−5/2

√
2π

exp(−k3/3n2)

If we let |C≥a| =
∑∞

k=na Tk then it follows that

E|C≥a| ∼
n√
2π

∞
∑

k=na

k−5/2 ∼ 2

3
√

2π
n1−3a/2

Bollobás (1985) has calculated (see page 107) that the expected number of ordered pairs of trees
of sizes j and k,

E(Tj , Tk) ≤ ETjETk
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When j 6= k this implies cov (Tj , Tk) ≤ 0 and for j = k that ETk(Tk−1) ≤ (ETk)2 or var (Tk) ≤ ETk.
Summing we have

var (|C≥a|) ≤ E|C≥a|
and it follows from Chebyshev’s inequality that |C≥a|/E|C≥a| → 1 in probability. These trees
have not experienced fragmentation so their size is always at least na and the total mass in large
components is at least Kn1−a/2. When a < 2/3 and n is large, this is much larger than the
na(log n)2 upper bound on the missing mass due to fragmentations.

At this point the proof of Theorem 4 is complete.

6.4 A sharper estimate for the mass upstairs

In section 6.3 above, we have just proved that upstairs never becomes empty in the supercritical
regime (Lemma 13). But, as was already mentioned earlier, we expect by analogy with the random
graph that in fact a positive fraction of all n vertices stay upstairs. This is the content of Theorem
5, which we restate here for convenience and then prove.

Theorem 5 For any c > 1, at time cn/2 there are at least θ(c)n − o(n) vertices located on large
cycles (i.e., of size greater than or equal to na, for any a < 2/3).

Proof. In fact it is a simple consequence of Lemmas 10 and 11. Indeed, the mass missing upstairs
must be a piece of the random graph’s giant component fallen downstairs by fragmentation. There-
fore either it is a medium cluster or it has experienced a consecutive fragmentation. But we now
know that there are never more than na(log n)2 vertices in medium clusters by Lemma 10. On the
other hand, by Lemma 11, the expected number of vertices in clusters having experienced multiple
fragmentation has to be smaller than

na ·Kn2a−1(log n)2 = o(n)

as long as a < 2/3.
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Figure 1: Breakpoint graph for human-mouse X chromosome comparison
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36 37 17 40 16 15 14 63 10 9
55 28 13 51 22 79 39 70 66 5
6 7 35 64 33 32 60 61 18 65
62 12 1 11 23 20 4 52 68 29
48 3 21 53 8 43 72 58 57 56
19 49 34 59 30 77 31 67 44 2
27 38 50 26 25 76 69 41 24 75
71 78 73 47 54 45 74 42 46

Table 1: Order of the genes in D. repleta compared to their order in D. melanogaster
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