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I Corrections.

In the paper mentioned above, the proof of Theorem 1.4 is incorrect. Using the notation
of the paper, we shall precisely explain what is incorrect. We do not know if Theorem 1.4
holds true but we shall give a weaker version of it, the proof of which is availlable in the
present Section II. Some other mistakes, detected by the referee, are also corrected.

Let us begin with the mistakes, which take place near (4.7) on page 26. The text begining
with the sentence containing (4.7) and ending on the same page with a formula containing
integrals (just before the words “Notice that”) should be replaced by the following one:

“It is the unitary operator on L2(Rd;Cm) given by

c(x∗0) = Uh exp
(
ih−1/2(x · ξ0 − x0 ·Dx)

)
Im , (4.7)

where Uh acts on L2(Rd;Cm) by Uhf(x) = h−d/4f(h−1/2x) (cf. [R, J2]). For any S ∈ Σr,t

with r, t ≤ 0 (cf. (3.1)), c(x∗0)
∗Swh c(x

∗
0) = S(x∗0) +OS(h1/2), strongly in L2(Rd;Cm). Since

θ(λ) = 1, we obtain, for x∗0 ∈ E(λ),∫ T

−T
c(x∗0)

∗θ
(
P̂ (h)

)(
F t(B)

)w
h
θ
(
P̂ (h)

)
c(x∗0) dt =

∫ T

−T
F t(B)(x∗0) dt + OT (h1/2) ,

strongly in L2(Rd;Cm).”.

1



The mentioned error is located in Section 4. The formulation of Kato’s notion of locally
P̂ (h)-smoothness in (4.1) is false. We are very grateful to Monique Combescure who
noticed this error. As a consequence, the proof Theorem 1.4 in Section 4.2, which crucially
uses (4.1), does not work.

Since, for all t,∥∥〈x〉−s θ(P̂ (h)
)
Uh(t)

∥∥2 =
∥∥(〈x〉−s θ(P̂ (h)

)
Uh(t)

)
·
(
〈x〉−s θ

(
P̂ (h)

)
Uh(t)

)∗∥∥
=

∥∥〈x〉−s θ(P̂ (h)
)2 〈x〉−s∥∥ ,

the integral in (4.1) diverges! The correct formulation of Kato’s notion of locally P̂ (h)-
smoothness is the following. There exists Cs > 0 such that, for all f ∈ L2(Rd;Cm),∫

R

∥∥〈x〉−s θ(P̂ (h)
)
Uh(t)f

∥∥2 dt ≤ Cs‖f‖2 . (I.1)

Replacing (4.1) by this estimate (I.1), the rest of Section 4.1 is valid (with the corrections
given above). In particular, the proofs of Proposition 4.1 and Theorem 1.8 are correct.
We do not see how to repare the proof of Theorem 1.4 in Section 4.2. However, we shall
prove the following weaker version of Theorem 1.4.

Theorem I.1. Consider a model of codimension 1 crossing that satisfies the special con-
dition at the crossing and the structure condition at infinity. Let λ > ‖M∞‖m. If the
property (1.3) and (1.4)) holds true then λ is non-trapping for all eigenvalues of the sym-
bol P of P̂ (h).

Remark I.2. If d = 1 (i.e. if the variable x lies in R), we do not need the special condition
at the crossing to prove Theorem I.1 of the present erratum, as shown in Remark II.1.

Remark I.3. The comments at the end of Section 5 on the role played by the special
condition at the crossing are relevant for the proof of the present Theorem I.1.

II Proof of Theorem I.1.

Let T > 0. Under the hypotheses of Proposition 4.3 but for an arbitrary symbol B ∈ Σ0,0,
we follow the beginning of its proof until (4.11) with t ∈ [−T ;T ]. Putting all together,
we obtain, for such t,

χ
(
P̂ (h);λ, ε

)(
Uh(t)

∗Bw
h Uh(t) −

(
F t(B)

)w
h

)
χ
(
P̂ (h);λ, ε

)
=

p∑
q=0

Rq + ÕT (ε) + ÕT,ε(h) , (II.1)

where

Rq = −
∫ t

0

χ
(
P̂ (h);λ, ε

)
Uh(t− r)∗

(
F r(B)

)w
h

·
(∑

j,k,l∈I

j 6=k

Πj

(
2ξ · ∇Πl

)
Πk ψq

)w
h

Uh(t− r)χ
(
P̂ (h);λ, ε

)
dr . (II.2)
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Now we introduce coherent states. Let x∗0 ∈ E∗(λ) and f ∈ L2(Rd;Cm) with ‖f‖ =
1. Then fh := c(x∗0)f (cf. (4.7)) is a coherent state microlocalized near x∗0. Since
χ(P̂ (h);λ, ε)fh = fh +Oε(h

1/2) in L2(Rd;Cm),

〈
fh , Uh(t)

∗Bw
h Uh(t)fh

〉
−
〈
fh ,

(
F t(B)

)w
h
fh
〉

=

p∑
q=0

rq +OT (ε) +OT,ε(h
1/2) ,(II.3)

for t ∈ [−T ;T ], where

rq = −
∫ t

0

〈
fh , Uh(t− r)∗

(
F r(B)

)w
h

·
(∑

j,k,l∈I

j 6=k

Πj

(
2ξ · ∇Πl

)
Πk ψq

)w
h

Uh(t− r)fh
〉
dr . (II.4)

We choose a polarized coherent state fh by requiring that, for some k0 ∈ {1; · · · ;N},
Πk0(x0)f = f . In particular, Πjfh = δjk0fh + O(h1/2) in L2(Rd;Cm). Let η > 0. If the
trajectory (φtk0(x

∗
0))t∈[−T ;T ] does not intersect the set

C∗(λ; η) :=
{

x∗ = (x, ξ) ∈ C∗(λ) ; |ξ · ∇τ(x)| < η
}
, (II.5)

then, by [H],
ΠjUh(t)fh = δjk0Uh(t)fh + OT,η(h

1/2) (II.6)

in L2(Rd;Cm), for t ∈ [−T ;T ]. In particular, for any q, rq = OT,η(h
1/2), by (II.4), yielding〈

fh , Uh(t)
∗Bw

h Uh(t)fh
〉
−
〈
fh ,

(
F t(B)

)w
h
fh
〉

= OT (ε) + OT,ε,η(h
1/2) , (II.7)

for t ∈ [−T ;T ]. Now, we assume that the open set

J(x∗0; η) =
{
t ∈ [−T ;T ];φtk0(x

∗
0) ∈ C∗(λ; η)

}
is not empty and we want to show〈

fh , Uh(t)
∗Bw

h Uh(t)fh
〉
−
〈
fh ,

(
F t(B)

)w
h
fh
〉

= OT (η) + OT (ε) + OT,ε,η(h
1/2) , (II.8)

for t ∈ [−T ;T ]. If 0 6∈ J(x∗0; 2η) and t0, t1 > 0 such that φtk0(x
∗
0) 6∈ C∗(λ; η) for t ∈ [t0; t1],

then, setting gh := c(φt0k0(x
∗
0))f ,〈

fh , Uh(t)
∗Bw

h Uh(t)fh
〉
−
〈
gh , Uh(t− t0)∗Bw

h Uh(t− t0)gh
〉

= OT (ε) + OT,ε,η(h
1/2) ,

for t ∈ [t0; t1], by (II.7) applied to the fh and to the gh. Because of this fact and of
(II.7), it is sufficient to get (II.8) on [−T ;T ] to show it on [0; t0[ in the following case:
[0; t0[⊂ J(x∗0; 2η) and t0 6∈ J(x∗0; 2η). Notice that t0 may be bigger than T and even
infinite.
Let ψ̃, ψ̃1 ∈ C∞0 (T ∗Rd;R) such that ψ̃ = 1 on C∗(λ; 3η), supp ψ̃ ⊂ C∗(λ; 4η), and ψ̃2+ψ̃2

1 =
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1 . Take B = ψ̃2
1Im and t ∈ [0; min(t0, T )[. Let Aj(t) := (ψ̃1)

w
hΠjUh(t)fh. For any q, there

exists a continuous function r 7→ αq(r) ∈ R+ such that

|rq| ≤
∫ t

0

(∑
j

‖Aj(t− r)‖2
)1/2

αq(r)
(∑

k

‖Ak(t− r)‖2
)1/2

dr + OT (h) ,

since the symbols of the Weyl h-pseudodifferential operators in (II.4) are bounded. Putting
all together and setting z(t;h) := 〈fh , Uh(t)∗Bw

h Uh(t)fh〉, we obtain

z(t;h) ≤
〈
fh ,

(
F t(B)

)w
h
fh
〉

+

∫ t

0

z(t− r;h)
∑
q

αq(r) dr + OT (ε) + OT,ε,η(h
1/2) .

By Gronwall’s lemma (see [DG] for instance),

z(t;h) ≤ eOT (h0)
(〈
fh ,

(
F t(B)

)w
h
fh
〉

+ OT (ε) + OT,ε,η(h
1/2)
)
.

Since fh is polarized,〈
fh ,

(
F t(B)

)w
h
fh
〉

=
〈
fh ,

(
F t((1− ψ̃)2Πk0)

)w
h
fh
〉

+ OT (h)

= ψ̃2
1 ◦ φtk0(x

∗
0) + OT (h1/2) = OT (h1/2) ,

for t ∈ [0; min(t0, T )[, since [0; min(t0, T )[⊂ J(x∗0; 2η). This yields ‖(ψ̃1)
w
hUh(t)fh‖2 =

OT (ε) + OT,ε,η(h
1/2). For arbitrary B, t ∈ [0; min(t0, T )[, and all q,

rq = −
∫ t

0

〈
fh , Uh(t− r)∗

(
F r(B)

)w
h

·
(∑

j,k,l∈I

j 6=k

Πj

(
2ξ · ∇Πl

)
Πk ψqψ̃

2

)w
h

Uh(t− r)fh
〉
dr + OT (ε) + OT,ε,η(h

1/2)

= OT (η) + OT (ε) + OT,ε,η(h
1/2) , (II.9)

since ξ · ∇Πl = O(η) on the support of ψ̃ by the special condition at the crossing (cf.
Definition 2.9). Thus (II.3) yields (II.8).
Now the estimate (I.1) with f replaced by fh, (II.7), and (II.8) imply that, for B =
〈x〉−2xIm,∫ T

−T

〈
fh ,

(
F t(B)

)w
h
fh
〉
dt ≤ Cs +OT,η,ε(h

1/2) + OT (η) + OT (ε) ≤ 2Cs + OT,η,ε(h
1/2) ,

for some η, ε small enough. Since 〈fh , (F t(B))wh fh〉 = 〈πxφtk0(x
∗
0)〉−2s + OT (h1/2), we

obtain, letting h→ 0, ∫ T

−T
〈πxφtk0(x

∗
0)〉−2sdt ≤ 3Cs .

As in Section 4.2, this yields the non-trapping condition for pk0 at energy λ.

Remark II.1. If d = 1, the above proof gives a better result. Indeed, the function ψ̃
actually localizes near ξ = 0 so we directly get (II.9). We did not use the special condition
at the crossing.
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