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Abstract

Bloch equations give a quantum description of the coupling between an atom and a
driving electric force. In this article, we address the asymptotics of these equations for high
frequency electric fields, in a weakly coupled regime. We prove the convergence towards
rate equations (i.e. linear Boltzmann equations, describing the transitions between energy
levels of the atom). We give an explicit form for the transition rates.

This has already been performed in [BFCD03] in the case when the energy levels
are fixed, and for different classes of electric fields: quasi or almost periodic, KBM, or
with continuous spectrum. Here, we extend the study to the case when energy levels are
possibly almost degenerate. However, we need to restrict to quasiperiodic forcings. The
techniques used stem from manipulations on the density matrix and the averaging theory
for ordinary differential equations. Possibly perturbed small divisor estimates play a key
rôle in the analysis.
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In the case of a finite number of energy levels, we also precisely analyze the initial
time-layer in the rate aquation, as well as the long-time convergence towards equilibrium.
We give hints and counterexamples in the infinite dimensional case.

Keywords: density matrix, Bloch equations, rate equations, linear Boltzmann equation,
averaging theory, small divisor estimates, degenerate energy levels.

1 Introduction

Bloch equations model the time evolution of a quantum mechanical system described in the
density matrix formulation and driven by an electromagnetic field. This formalism is very
precise but sometimes difficult to interpret and to use in practical simulations. It is therefore
useful to find asymptotic models under appropriate scaling assumptions. In a former article
[BFCD03] such a program is performed and leads to the rigorous derivation of rate equations,
which are often used in the physics literature. Here, we want to extend these results to the case
when the energy levels of the system are almost degenerate. There are many examples of such
almost degeneracies. This is the case for example of Zeemann hyperfine structures in complex
molecules, or quantum dots submitted to an external magnetic field. High levels of an atom
are also almost degenerate since there is an infinite number of levels with accumulation value
at the ionisation energy.

1.1 Bloch equations

According to the quantum theory, matter is described via a density matrix ρ, whose diagonal
entry ρ(t, n, n) is –in the eigenstates basis– the population of the n-th energy level at time t,
and the off-diagonal entry ρ(t, n,m) is linked to the transition probability from level n to level
m (conditioned by the corresponding populations). One may think of a collection of identical,
uncoupled atoms, with discrete energy levels. We refer the reader to [Boh79, Boy92, CTDRG88,
Lou91, NM92, SSL77, Bid03] for textbooks about wave/matter interaction issues, where Bloch
equations occur. To treat the mathematical problem, we use a dimensionless version of these
equations and consider that the density matrix ρ(t, n,m) is governed by:

ε2∂tρ(t, n,m) = −iωε(n,m)ρ(t, n,m) +Qε(ρ)(n,m) (1)

+iε
∑

k

[

V

(

t

ε2
, n, k

)

ρ(t, k,m)− V

(

t

ε2
, k,m

)

ρ(t, n, k)

]

.

Integers n ∈ N, m ∈ N, and k ∈ N are labelling discrete energy levels, and time t belongs to
R+. In the case of a finite number of energy levels, we add the restriction n ≤ N , m ≤ N ,
k ≤ N .

The dependence of the density matrix on the small parameter ε will always be implicit.
Here, the system is forced by a high frequency electromagnetic wave which is described by its
oscillatory amplitude φ(t/ε2) and contributes to the quantity

V

(

t

ε2
, n,m

)

= φ

(

t

ε2

)

V (n,m),
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where the interaction coefficient V (n,m) ∈ C is (up to a rescaling) an entry in the dipole
moment matrix which is Hermitian: V (m,n) = V (n,m)∗.

The parameter ε occurring in the scaling plays two rôles. First, the coupling between atoms
and the wave is small, of order ε, and its cumulated effects are considered over long time scales,
of size 1/ε2. This is the setting of the so-called weak coupling regime (see [Spo80, Spo91, vH55,
vH57]). Second, the scaling in Eq. (1) produces resonances between the eigenfrequencies ωk/ε
of the free atom and the electromagnetic source φ(t/ε2).

The quantity ωε(n,m) = ω(n,m) + εpδ(n,m) is the transition energy between levels n and
m. In the non-degenerate framework ω(n,m) = ω(n) − ω(m) ∈ R is the difference between
the energies ω(n) and ω(m) of levels n and m respectively. Here we model almost degenerate
levels replacing the energy ω(n) by ω(n) + εpδ(n) where p > 0 and δ(n) ∈ R. Therefore
δ(n,m) = δ(n)− δ(m). We notice that a large value for p means that levels n and m are very
close from one another if ω(n,m) = 0.

Last, relaxation terms are modelled by the operator Qε which reads

Qε(ρ)(n,m) = −εµγ(n,m)ρ(t, n,m), if n 6= m,

= ε2

(

∑

k

[W (k, n)ρ(t, k, k)−W (n, k)ρ(t, n, n)]

)

, if n = m.

We assume that the Pauli coefficient W (n,m) is non-negative, as well as the longitudinal coef-
ficient γ(n,m), which is besides symmetric: γ(n,m) = γ(m,n). To simplify further notations,
we extend its definition to the case when n = m introducing γ(n, n) = 0.

We assume that 0 ≤ µ < 1/2. This is already the case in the nondegenerate case [BFCD03].
This threshold value for µ arises in the estimates and we do not know whether it is optimal
or not. However it is no wonder that there is a threshold value. Indeed, in the case when
µ = 0, the initial Bloch equation (1) is time-irreversible and the asymptotic equation that we
derive in this paper is also time-irreversible. On the other hand, in the opposite case when
every coefficient γ(n,m) is identically zero (which can also be interpreted as µ = ∞), the initial
Bloch equation is time-reversible and the nature of the problem has changed.

The relaxation operator Qε determines an equilibrium state, to which the system has a
tendency to relax when no electromagnetic wave is applied. If the threshold µ < 1/2 is not
necessarily optimal, it is very important that µ < 2. This means that the off-diagonal terms of
the density matrix are more rapidly decreasing that the diagonal terms. We therefore expect
them to play no significant rôle on the time scale 1/ε2.

Finally, we associate to Eq. (1) an initial datum ρ(0, n,m) which satisfies

ρ(0, n,m) = 0, ∀n 6= m, and ρ(0, n, n) ≥ 0, ∀n. (2)

The vanishing of the off-diagonal entries means that we are dealing with “well prepared” initial
data. This is a standard assumption in the field (see e.g. [KL57, LK58, Zwa66]).

Remark. Note that the small coupling in Eq. (1) a priori induces perturbations of size 1/ε on
time scales 1/ε2. As we shall see, the very Hamiltonian nature of the equation actually makes
these perturbations of size 1.
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1.2 Rate equations

To describe the asymptotic dynamics, we are only interested in the diagonal part of the density
matrix (the populations) and set

ρd(t, n) := ρ(t, n, n),

which is the occupation number of the n-th level. The limiting model we look for as ε → 0 is
a system of rate equations which are Boltzmann type equations, in the form

∂tρ
app
d = (Wmod

ε )♯ρ
app
d , (3)

where the approximate populations ρappd are viewed as a vector, and the modified relaxation
matrix operator (Wmod

ε )♯ is defined from coefficients Wmod
ε (n, k) via the following notation.

Notation 1. To coefficients A(n, k), n 6= k (which may possibly be time dependent: A(t, n, k))
we associate the matrix A♯ (respectively A♯(t)) through

A♯(n, k) := A(k, n) if n 6= k,

A♯(n, n) := −
∑

m6=n

A(n,m) else.

If A(n, k) ∈ l∞n l1k ∩ l∞k l1n, A♯ is a bounded operator on lp, 1 ≤ p ≤ ∞ (see Appendix 8.1).

Apart from [BFCD03], in the past few years an extensive attention has been paid on the
rigourous derivation of Boltzmann type equations from dynamical models of (classical or quan-
tum) particles or models for the interaction of waves with random media. Convergence results
in the case of an electron in a periodic box may be found in [Cas99, Cas02, Cas01]. We also
mention the non-convergence result established in [CP02, CP03] in a particular, periodic situ-
ation. For the case when an electron is weakly coupled to random obstacles, the reader may
refer to [EY00, Spo77, Spo80, Spo91] and [KPR96] for the formal analysis performed. The
computation of the relevant cross-sections is performed in [Nie96]. All these results address the
case of a linear Boltzmann equation. A nonlinear case is studied in [BCEP03].

As proved in [BFCD03], in the non-perturbed case (δ(n) ≡ 0) the action of the wave
transforms the relaxation operatorW♯ associated with matrixW into a limit relaxation operator
(Wmod

ε )♯.
The goal of this article is to specify the precise form of matrix Wmod

ε (n, k) for the perturbed
case for a fixed ε. Once this rate equation is derived, we also give results about the limit ε → 0
and the size of the time-layer leading to equilibrium according to the value of µ/p.

1.3 Main results

1.3.1 The modified relation operator (Wmod
ε )♯

The modified transition rates Wmod
ε (n, k) is defined by

Wmod
ε (n, k) := 〈Ψε〉

dom(n, k) +W (n, k),
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and the non-negative coefficient 〈Ψε〉
dom(n, k) is given (see Proposition 4 and Theorem 6) by

〈Ψε〉
dom(n, k) := 2|V (n, k)|2

∑

β∈Zr

γ(k, n)

γ(k, n)2 + |ω(n, k) + β · ω + εpδ(k, n)|2
|φβ|

2 if µ = 0,

:= 2|V (n, k)|2
εµγ(k, n)

ε2µγ(k, n)2 + ε2pδ(k, n)2

∑

β∈Zr ; ω(k,n)+β·ω=0

|φβ|
2 if µ > 0.

Here, the electromagnetic wave φ is determined by its frequency vector ω ∈ Rr and its Fourier
coefficients φα:

φ(t) =
∑

α∈Zr

φα exp(iα · ωt), where we denote α · ω := α1ω1 + · · ·+ αrωr.

Under assumptions that we specify in Section 2), we prove the following: if ρ is a solution
to Eq. (1), and ρappd the solution to Eq. (3) with the same initial datum, then for all T > 0,
there exists C > 0 such that

‖ρod‖L∞([0,T ],l1) ≤ Cε1−µ and ‖ρd − ρappd ‖L∞([0,T ],l2) ≤ C(εµ + ε1−2µ).

1.3.2 The asymptotic state

We study the convergence of the solution ρ to Bloch equation (1) on some fixed time interval
[0, T ], as ε goes to zero. This dynamics is thus given by the corresponding solution ρappd to
Eq. (3). Since the operator (Wmod

ε )♯ has a non-positive spectrum (see the Appendix 8.1), one
may think that, as time grows, ρappd approaches some equilibrium state, i.e. a stationary state
ρ ∈ l2 belonging to the kernel of (Wmod

ε )♯. We describe this convergence carefully in the case of
a finite number of quantum levels. In the case of an infinite number of levels, we exhibit simple
examples for which convergence does not occur.

1.3.3 The case of a finite number of levels

The evolution of ρd can be summarized as:

(i) The levels n which do not resonate with the wave (〈Ψε〉
dom(n, k) = 0 for all k) and are

not coupled to others via relaxations either (W (n, k) = 0 for all k) remain constant.

(ii) Polarization: the remaining levels belonging to the space (l2)-orthogonal to the kernel
of the singular part 〈Ψε〉

sing
♯ of 〈Ψε〉

dom
♯ vanish in time O(εσ). The precise definitions of

〈Ψε〉
sing
♯ and σ > 0 are given in Section 6.

(iii) After this time, the evolution of the remaining levels is given by an ε-independent system
for Πρappd ,

∂tΠρ
app
d = Π(W +Ψnonsing

0 )♯Πρ
app
d .

Here, Π is the orthogonal projector onto the space orthogonal to the ones treated in
the first two steps. Also, we set 〈Ψε〉

nonsing := 〈Ψε〉
dom − 〈Ψε〉

sing, and Ψnonsing
0 is the

value of 〈Ψε〉
nonsing as ε vanishes. For each initial datum ρ(0), the solution to this system

converges, as t goes to infinity, to some (unique) equilibrium state ρ (see Appendix 8.1).
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In the unperturbed case δ = 0 [BFCD03], we have σ = µ. The perturbation can affect the
exponent σ, the transition rates given by 〈Ψε〉

sing
♯ , as well as the final equilibrium (determined

by 〈Ψε〉
nonsing
♯ ). The precise value of σ and the possibility of modifying the limiting operator

according to the value of µ/p are given in Table 1.

µ/p σ difference with the unperturbed case
[BFCD03]

0 ≤ µ/p < 1 µ none

µ/p = 1 µ transition rates

1 < µ/p < 2 2p− µ transition rates and time-layer

2 ≤ µ/p < ∞ µ projector Π and asymptotic state

Table 1: Consequences of the perturbation for a finite number of levels.

1.3.4 The case of an infinite number of levels

For an infinite number of levels, Proposition 4 and Theorem 6 hold. They give the approxima-
tion of the solution to Eq. (1) by the solution to Eq. (3). The transition rates W (n, k) are again
transformed into Wmod

ε (n, k). However, the analysis of the asymptotic behavior of the solution
to Eq. (3) is more intricate than in the finite case. In Appendix 8.1.2, we give examples for
which there does not exist any possible equilibrium state in l2 (see Corollary 16).

It is still true that non-interacting levels remain constant, as in item (i) of Section 1.3.3.
Nevertheless, we are unable to prove the precise polarization property of the two other items,
even if we expect that the results of Table 1 hold. An equivalent to Table 1 for an infinite
number of levels is given in Section 6.5, for the values of µ/p for which we can conclude.

1.4 Outline

The article is organized as follows. Section 2 is devoted to the introduction of the precise
notations and assumptions needed in the sequel. In Section 3 a closed equation which governs
populations only is derived from the Bloch equations up to an approximation of order O(ε2(1−µ)).
This equation is already a Boltzmann type equation, but the transition rates depend on time
and ε. The off-diagonal terms are proven to be negligible, of order O(ε1−µ). This transformation
uses classical arguments for the Bloch equation in the weak coupling regime (see [Cas99, Cas02,
Cas01] and also [KL57, LK58, Kre83, Zwa66] for this point).

In Section 4 a new Boltzmann type equation is derived removing the time-dependence of the
transition rates up to an approximation of order O(ε1−2µ). These transition rates still include
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some terms which do not correspond to a resonance between the wave and the matter. These
contributions are removed in Section 5 with a new error of order O(εµ). The thus obtained
equation is the rate equation we want to derive in this article. The main theorem in this Section
(namely Theorem 6) yields the form of the transition rates in the rate equation. The techniques
used are those of the averaging theory for ordinary differential equations (see [LM88, SV85]).
Diophantine estimates play naturally a key rôle in the analysis. Lemma 7 ensures that although
the Diophantine condition is not stable with respect to small perturbations, violations of the
condition only occur for large values of the indices, that are compensated by extra smoothness
assumptions (see [CCC+03] for a similar argument in another context).

The sequel of the article addresses the analysis of the limit process ε → 0 in this equation.
Section 6 is devoted to the case study according to the value of µ/p leading to Table 1 in the
finite dimensional case (finite number of levels) and to partial results in the infinite dimensional
case (see Table 2). The justification of the restriction to a finite number of levels is given in
Section 7: we show that there exists a number N such that considering only the N first levels
implies an additional error of order o(1). The number N a priori depends on ε, except when
resonances do not occur beyond some level.

Finally, we give in Section 8 the proofs of several lemmas, concerning continuity and non-
positiveness of the relaxation operators first, then about existence and uniqueness of the as-
sociated equilibrium state, and finally, we show the genericity of the Diophantine condition 1
(see below).

2 Functional setting

The choice for functional spaces is first guided by some physical properties of the density matrix.
Throughout this article the initial datum is taken such that

ρ(0, n,m) = 0, if n 6= m, ρ(0, n, n) ≥ 0 and
∑

n

ρ(0, n, n) < ∞. (4)

The energy levels are assumed to be bounded:

(ω(n))n∈N ∈ l∞ and (δ(n))n∈N ∈ l∞

(which is physically relevant, since these energies are bounded by the ionisation energy), as well
as the relaxation coefficients

(γ(n,m))n,m∈N ∈ l∞, inf
n 6=m

γ(n,m) := γ > 0.

We also suppose that the Pauli coefficients saisfy

‖W‖l∞
k
l1n∩l

∞

n l1
k
:= sup

k

∑

n

|W (n, k)|+ sup
n

∑

k

|W (n, k)| < ∞.

Matrix W describes the relaxation to a thermodynamic equilibrium. Entries W (n,m) and
W (m,n) are therefore related by the standard microreversibility relation (see e.g. [BBR01,
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Bid03])

W (n,m) = exp

(

ω(m,n)

T

)

W (m,n), (5)

where T is a normalized temperature. This specific form is of great importance when describing
the equilibrium states in Sections 6 and 8.1.

We recall that the interaction matrix V is Hermitian. Thus we simply assume that

‖V ‖l∞l1 := sup
k

∑

n

|V (n, k)| < ∞.

Classical ordinary differential equation arguments (see e.g. [Cas99]) allow to state the
existence and uniqueness of solutions to System (1) for initial data in l1. Indeed, since we
assumed that V(t, n,m) belongs to L∞(R+, l∞m l1n ∩ l∞n l1m), and also that W (n,m) ∈ l∞m l1n ∩ l∞n l1m,
we may use the estimate of Lemma 12. The operators involved in Eq. (1) are thus continuous
on L∞(R+, l1). This implies in a straightforward way that these solutions exist and have the
following regularity: ρ ∈ C0(R+, l1) and ∂tρ ∈ L∞(R+, l1), for each ε > 0.

A weaker result is the existence and uniqueness in l2 and we will have to restrict to this
case from Section 4 on.

The summation and positiveness properties are preserved through the time evolution if the
density matrix is solution to the Bloch equations (1). More precisely we have the following
lemma (points (ii), (iii), (iv) are addressed in [Lin76, BBR01, Cas01]).

Lemma 1. Let ρ(t = 0) satisfy conditions (4). Then, under the above assumptions, for all
t ∈ R,

(i) there exists a unique solution ρ ∈ C0(R+, l1) to Eq. (1).

(ii) ρ(t) is Hermitian: ρ(t, n,m) = ρ(t,m, n)∗,

(iii) the trace of ρ is conserved:

∑

n

ρ(t, n, n) =
∑

n

ρ(0, n, n) < ∞, (6)

(iv) positiveness of populations is conserved: ρ(t, n, n) ≥ 0.

We stress the importance of items (iii) and (iv), first established in [Lin76]. They give a
nontrivial l1 estimate for the diagonal part ρd. This proves to be crucial in Proposition 2 (see
also [Cas01] for a situation where the oscillations are much more difficult to handle).

The electromagnetic wave is real and bounded: φ(t) ∈ R and φ ∈ L∞(R). Although a
larger class of high frequency waves is addressed in [BFCD03], we have to restrict here to the
quasiperiodic case. The amplitude φ is characterized via its frequency vector ω ∈ R

r and its
Fourier coefficients φα:

φ(t) =
∑

α∈Zr

φα exp(iα · ωt) where φ∗
α = φ−α and

∑

α∈Zr

|φα|
2 < ∞. (7)
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Here we denote α · ω := α1ω1 + · · ·+ αrωr.

We need a certain number of assumptions on the wave and the interaction coefficients.
Those already stressed will be valid (and not recalled) in the whole article. However, in some
places, we will have to reinforce the decay assumptions and therefore we also label some specific
hypotheses.

As it is usual in the field of oscillations in ordinary differential equations and averaging
techniques (see [Arn89, SV85, LM88]), we introduce a Diophantine condition on the frequency
vector ω.

Hypothesis 1 (Diophantine condition). There exists a (small) number η > 0, and a constant
Cη > 0, such that

∀α = (α1, . . . , αr) ∈ Z
r \ {0}, ∀(n, k) ∈ N

2 such that α · ω + ω(n, k) 6= 0,

|α · ω + ω(n, k)| ≥
Cη

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η
, (8.a)

and similarly

∀α ∈ Z
r \ {0}, |α · ω| ≥

Cη

(1 + |α|)r−1+η
. (8.b)

Remark. Given once and for all a fixed η > 0, we can classically claim (see [Arn89]) that
there exists a constant Cη > 0, depending on ω(n,m) and on η, such that for almost all value of
the frequency vector ω = (ω1, . . . , ωr) Hypothesis 1 is satisfied. This is proved in Appendix 8.2.
This condition is therefore not much restrictive.

The same kind of estimate is also needed in the case when α = 0, which means that the
energies do not converge too fast towards the ionisation energy.

Hypothesis 2 (Convergence towards the ionisation energy). There exists a constant Cη > 0,
such that

∀(n, k) ∈ N
2, |ω(n, k)| ≥

Cη

(1 + n)1+η(1 + k)1+η
,

where η is the number occurring in the Diophantine assumption (Hypothesis 1).

From Section 4 on, we impose the following hypothesis in order to average transition rates
in time.

Hypothesis 3 (Smoothness assumption). The Fourier coefficients φα satisfy

∑

α

(1 + |α|)r−1+η|φα|
2 < ∞,

where η is the number occurring in the Diophantine assumption (Hypothesis 1).

From Section 5 on, we need the following two hypotheses to justify the sorting out of
resonant and non resonant contributions.
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Hypothesis 4 (Reinforced smoothness assumption). There exists Nη > 2µ/p such that the
Fourier coefficients φα satisfy

∑

α

(1 + |α|)(r−1+η)Nη |φα|
2 < ∞,

where η is the number occurring in the Diophantine assumption (Hypothesis 1).

Hypothesis 5 (”Far from continuum” assumption). The interaction coefficients satisfy

sup
n

∑

m

(

(1 + n)1+η(1 +m)1+η
)Nη

|V (n,m)|2 < ∞,

where η is the number occurring in the Diophantine assumption (Hypothesis 1) and Nη is given
by Hypothesis 4.

This last hypothesis means that only low levels (i.e. levels which are far from the continuous
spectrum or ionisation threshold) really interact with the wave with a significant contribution.
To restrict to a finite number of levels we also use an assumption on the interaction of low and
high levels via the relaxation operator.

Hypothesis 6 (Weak interaction of low and high energy levels). The longitudinal relaxation
coefficients satisfy

sup
n

∑

m

(1 + n)K(1 +m)K |W (n,m)| < ∞,

for some K > 0.

We introduce a last notation useful for describing approximations of ρ.

Notation 2. For s ≥ 0, and q ≥ 1, the symbol OL∞

loc(R,l
q) (ε

s) means that for all T > 0, there
exists a constant C > 0, that does not depend on ε, such that the corresponding term is bounded:

‖OL∞([0,T ],lq)(ε
s)‖L∞([0,T ],lq) ≤ Cεs.

In the whole article C denotes constants which do not depend on the (small) parameter ε.
It however possibly depends on all the coefficients of the problem and on the initial data, but
we will never make this dependence explicit.

3 A first closed equation for populations

3.1 Populations and coherences

In the same way as we defined the populations ρd(t, n), we define the coherences as the off-
diagonal part of the density matrix

ρod(t, n,m) = ρ(t, n,m)1[n 6= m].
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Set
Ωε(n,m) := −iω(n,m)− iεpδ(n,m)− εµγ(n,m),

where we stress that Ωε(n, n) = 0. With these notations, Eq. (1) reads for the populations:

∂tρd(t, n) =
i

ε

∑

k

[

V

(

t

ε2
, n, k

)

ρod(t, k, n)− V

(

t

ε2
, k, n

)

ρod(t, n, k)

]

(9.a)

+
∑

k

[W (k, n)ρd(t, k)−W (n, k)ρd(t, n)],

and for the coherences:

∂tρod(t, n,m) =
1

ε2
Ωε(n,m)ρod(t, n,m) (9.b)

+
i

ε
V

(

t

ε2
, n,m

)

[ρd(t,m)− ρd(t, n)]

+
i

ε

∑

k

[

V

(

t

ε2
, n, k

)

ρod(t, k,m)− V

(

t

ε2
, k,m

)

ρod(t, n, k)

]

.

As a consequence of the Hermitian properties of Eq. (1) recalled in Lemma 1, Eq. (9.a) can
also be cast as

∂tρd(t, n) = −
2

ε
Im
∑

k

[

V

(

t

ε2
, n, k

)

ρod(t, k, n)

]

(10)

+
∑

k

[W (k, n)ρd(t, k)−W (n, k)ρd(t, n)].

3.2 An equation for populations only

In this section, we transform the coupled system (9.a)-(9.b) into one equation governing the
populations ρd(t, n) only. More precisely, we show the following proposition.

Proposition 2. Define the time dependent transition rate

Ψε

(

t

ε2
, k, n

)

:= 2|V (n, k)|2Re

∫ t/ε2

0

ds exp (Ωε(k, n)s)φ

(

t

ε2

)

φ

(

t

ε2
− s

)

.

Then, for all T > 0, the vector ρd satisfies

∂tρd(t) =

(

Ψε

(

t

ε2

)

+W

)

♯

ρd(t) +OL∞([0,T ],l1)

(

ε1−2µ
)

. (11)

Remark. Eq. (11) is a linear Boltzmann type equation with a time dependent transition rate.
This is our first description of the behavior of the populations at leading order in ε.

We could likewise obtain approximations of ρd at each order (in ε), thus providing a hier-
archy of Boltzmann type equations for the successive orders.
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Remark. Using Lemma 11 and since ReΩε(n,m) ≤ −εµγ, uniformly in n and m, n 6= m,
operator Ψε is a priori of order ε−µ on l2 or l1. More precisely we have the following estimates.

∥

∥Ψε(t/ε
2)♯ρd

∥

∥

l1
≤ Cε−µ‖V (n, k)‖2l∞n l1

k
∩l∞

k
l1n
‖φ‖2L∞(R)‖ρd‖l1 , (12.a)

∥

∥Ψε(t/ε
2)♯ρd

∥

∥

l2
≤ Cε−µ‖V (n, k)‖2l∞n l1

k
∩l∞

k
l1n
‖φ‖2L∞(R)‖ρd‖l2 . (12.b)

Proof. Proposition 2 is proved in three steps that follow [BFCD03]. First, coherences ρod(t, n, k)
are computed at leading order in ε. These leading order terms are expressed in terms of
populations ρd(t, n) only as stated in Lemma 3 below. Next, we plug this result into Eq. (10)
governing populations. The closed equation for populations (14) which is thus obtained is a
linear Boltzmann equation with a time-delay term. To show this delay is indeed small and
can be removed to obtain the delay-free equation (11) we then use calculations inspired by
[Cas99, Cas02, Cas01].

First step: computation of coherences
Since the initial data for coherences is ρod(t = 0, n,m) ≡ 0, the integral form for Eq. (9.b) reads

ρod(t, n,m) = iε

∫ t/ε2

0

ds exp (Ωε(n,m)s)V

(

t

ε2
− s, n,m

)

[ρd(t− ε2s,m)− ρd(t− ε2s, n)]

+(Aερod)(t, n,m), (13)

where

(Aερod)(t, n,m) := iε

∫ t/ε2

0

ds exp (Ωε(n,m)s)×

×
∑

k

[

V

(

t

ε2
− s, n, k

)

ρod(t− ε2s, k,m)− V

(

t

ε2
− s, k,m

)

ρod(t− ε2s, n, k)

]

.

We are only interested in the first term in the expansion of ρod. Indeed, we only use leading
order terms in ε. From the integral equation (13), we would however be able to express ρod
as a complete expansion in powers of ε, in terms of ρd. The following lemma states that the
remainder of the expansion is indeed small.

Lemma 3. Set

ρ
(0)
od (t, n,m) := iε

∫ t/ε2

0

ds exp (Ωε(n,m)s)V

(

t

ε2
− s, n,m

)

[ρd(t− ε2s,m)− ρd(t− ε2s, n)].

Then, for any given time T ≥ 0, there exists a constant C, that does not depend on ε, such
that we have the estimates

∥

∥

∥
ρod − ρ

(0)
od

∥

∥

∥

L∞([0,T ],l1)
≤ Cε2(1−µ),

∥

∥

∥
ρod

∥

∥

∥

L∞([0,T ],l1)
≤ Cε1−µ.

12



Proof. (Lemma 3).
Let T ≥ 0 be given. Because ReΩε(n,m) ≤ −εµγ < 0, uniformly in n and m, n 6= m, we have
the estimate

‖Aερod‖L∞([0,T ],l1) ≤ 2ε

∥

∥

∥

∥

∫ +∞

0

ds |exp (Ωε(n,m)s)|

∥

∥

∥

∥

l∞n,m

‖V‖L∞(R+,l∞n l1m∩l∞m l1n)‖ρod‖L∞([0,T ],l1)

≤ Cε1−µ‖ρod‖L∞([0,T ],l1).

According to the definition of ρ
(0)
od (t, n,m), Eq. (13)

ρod(t, n,m) = ρ
(0)
od (t, n,m) + (Aερod)(t, n,m),

and we can estimate the difference

‖ρod − ρ
(0)
od ‖L∞([0,T ],l1) ≤ Cε1−µ‖ρod‖L∞([0,T ],l1)

≤ Cε1−µ ‖ρod − ρ
(0)
od ‖L∞([0,T ],l1) + Cε1−µ‖ρ

(0)
od ‖L∞([0,T ],l1).

Hence, if ε is small enough, we have

‖ρod − ρ
(0)
od ‖L∞([0,T ],l1) ≤ Cε1−µ‖ρ

(0)
od ‖L∞([0,T ],l1).

According to the definition of ρ
(0)
od (t, n,m), and using the same type of estimates,

‖ρ
(0)
od ‖L∞([0,T ],l1) ≤ Cε1−µ‖V‖L∞(R;l∞n l1k∩l

∞

k l1n)
‖ρd‖L∞([0,T ],l1).

Now the crucial estimate stems from the trace conservation property (6) which also reads
‖ρd‖L∞([0,T ],l1) = ‖ρd(t = 0)‖l1. This l

1-estimate on the diagonal terms of the density matrix is
therefore sufficient to control all the off-diagonal terms in turn, and Lemma 3 follows.

Second step: the time-delayed differential equation for the populations
Lemma 3 together with Eq. (10) governing ρd implies that

∂tρd(t, n) =
∑

k

[W (k, n)ρd(t, k)−W (n, k)ρd(t, n)] (14)

+
∑

k

∫ t/ε2

0

ds[ρd(t− ε2s, k)− ρd(t− ε2s, n)]×

×2Re

{

exp(Ωε(k, n)s)V

(

t

ε2
, n, k

)

V

(

t

ε2
− s, k, n

)}

+OL∞([0,T ],l1)

(

ε1−2µ
)

.

13



Third step: convergence to a delay-free equation
From now on we will only deal with Boltzmann type equations and use extensively the shorter
expressions defined in Notation 1. Hence Eq. (11) can be cast as

∂tρd(t, n) =
(

Ψε(t/ε
2)♯ρd

)

(t, n) + (W♯ρd)(t, n) +OL∞([0,T ],l1)

(

ε1−2µ
)

.

Moreover, if T ≥ 0 is given, the delayed terms ρd(t− ε2s) in Eq. (14) read

ρd(t− ε2s, n) = ρd(t, n) +O
(

ε2s‖∂tρd(·, n)‖L∞([0,T ])

)

.

Thus, Eq. (14) yields

∂tρd(t, n) =
(

Ψε(t/ε
2)♯ρd

)

(t, n) + (W♯ρd)(t, n) +OL∞([0,T ],l1)

(

ε1−2µ
)

+ rε(t, n), (15)

where the remainder rε can be estimated by

‖rε‖L∞([0,T ],l1) ≤ C‖∂tρd‖L∞([0,T ],l1)

∥

∥

∥

∥

ε2
∫ +∞

0

ds s exp(Ωε(n,m)s)

∥

∥

∥

∥

l∞n,m

≤ Cε2−2µ‖∂tρd‖L∞([0,T ],l1)

≤ Cε2−2µε−µ‖ρd‖L∞([0,T ],l1) thanks to Eqs (15) and (12.a)

≤ Cε2−3µ thanks to Eq. (6),

for some constant C, that does not depend on ε, if ε is small enough. Including this new
estimate in Eq. (15), we have

∂tρd(t, n) = ((Ψε)♯ρd) (t, n) + (W♯ρd)(t, n) +OL∞([0,T ],l1)

(

ε1−2µ + ε2−3µ
)

.

We recall that µ < 1/2 therefore 1− 2µ < 2− 3µ and Proposition 2 follows.

4 Time-averaging of transition rates

Proposition 2 reduces the problem to the asymptotic analysis of a leading order equation,
namely Eq. (11). As ε goes to zero, the rapid oscillations of the time-dependent coefficient
Ψε(t/ε

2) are naturally smeared out, so that only the time average of Ψε plays a significant rôle.
The corresponding rigorous mathematical statement is proven here, as in [BFCD03], upon using
averaging techniques (see e.g. [SV85]). This leads to substitute Eq. (11) by a new Boltzmann
equation, with time-independent rates.

The result of these averaging procedures strongly depends on the specific form of the wave.
In the present article, we need explicit forms for the averaged transition rates and therefore
restrict to the case of a quasiperiodic wave, as described in Section 2. The small divisor
problems that stem from this analysis are handled assuming strong decay properties on the
Fourier coefficients, namely Hypothesis 3.

The averaged transitions rates we obtain in this section still depend on ε. Besides we do
not discriminate dominant and negligible (with respect to ε) contributions. We postpone this

14



sorting out to Section 5 where negligible contributions will be pointed out as non-resonant
contributions.

Using the explicit value of the wave φ(t) given by Eq. (7), we compute from Eq. (11) the
time-dependent transition rate Ψε:

Ψε

(

t

ε2
, k, n

)

= 2|V (n, k)|2Re
∑

α,β∈Zr

φαφβ exp

(

i(α + β) · ω
t

ε2

)

×

×
1− exp ([−εµγ(k, n)− i(ω(k, n) + β · ω + εpδ(k, n))]t/ε2)

εµγ(k, n) + i(ω(k, n) + β · ω + εpδ(k, n))
. (16)

The goal of this section is to prove the following result.

Proposition 4. Define the averaged transition rate

〈Ψε〉(k, n) := lim
s→+∞

1

s

∫ s

0

dsΨε(s).

Its explicit value is

〈Ψε〉(k, n) = 2|V (n, k)|2
∑

β∈Zr

εµγ(k, n)

ε2µγ(k, n)2 + |ω(n, k) + β · ω + εpδ(k, n)|2
|φβ|

2. (17)

Define ρ
(1)
d as the vector solution to

∂tρ
(1)
d = (〈Ψε〉+W )♯ρ

(1)
d (18)

with initial data ρ
(1)
d (0, n) = ρd(0, n). Under Hypotheses 1 and 3, for all T > 0, there exists

C > 0 such that
‖ρd − ρ

(1)
d ‖L∞([0,T ],l2) ≤ Cε1−2µ.

Remark. In the transition rate 〈Ψε〉(k, n) there are still contributions of non-resonant waves,
i.e. thoses such that ω(n, k) + β · ω 6= 0. They are removed in the next section. However, we
gained in defining a time-indepedent transition rate, in that we filtered oscillations.

The simple but crucial remark that leads from Proposition 2 to Proposition 4 is the fact
that 〈Ψε〉 ∈ l∞n l1k ∩ l∞k l1n and its entries are non-negative. We can therefore apply Lemma 11
directly.

Lemma 5. For any ε > 0, operator 〈Ψε〉♯ is a bounded non-positive operator on the Hilbert
space l2. In particular, the exponential exp(t〈Ψε〉♯) is well defined as an operator on l2 for t ≥ 0,
and its norm is less than 1, for all t ≥ 0.

(Proof: see Appendix 8.1, Lemma 11)

Remark. This property proves to be crucial in the sequel, and therefore the asymptotic result
in Proposition 4 and Theorem 6 may not hold when the transition rate has no sign. This is
why we restrict the analysis to the case of a quasiperiodic wave when relaxations tend to zero
with ε. The asymptotic result may also be false if applied to the time-dependent transition rate
Ψε(t/ε

2), which clearly changes signs.

Proof. We follow [BFCD03] to prove Proposition 4.
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First step: splitting of Ψε

Proposition 4 amounts to estimating the difference

∆(t) := ρd(t)− ρ
(1)
d (t).

To this aim, we first give shorter forms for the equations governing ρd and ρ
(1)
d respectively.

Namely Eq. (11) can be cast as

∂tρd(t) =

(

Ψε

(

t

ε2

)

♯

ρd

)

(t) + (W♯ρd)(t) +O
(

ε1−2µ
)

.

where the transition rate Ψε(t/ε
2) is given by Eq. (16), and Eq. (18) also reads

∂tρ
(1)
d (t) =

(

〈Ψε〉♯ρ
(1)
d

)

(t) +
(

W♯ρ
(1)
d

)

(t).

Hence the difference ∆(t) satisfies the equation

∂t∆(t) = (〈Ψε〉♯∆)(t) +

(

Ψosc
ε

(

t

ε2

)

♯

ρd

)

(t) + (W♯∆)(t) +O(ε1−2µ), (19)

where

Ψosc
ε

(

t

ε2
, k, n

)

:= Ψε

(

t

ε2
, k, n

)

− 〈Ψε〉(k, n)

contains the oscillatory contribution to the transition rate, which we want to prove to be
negligible. Gathering the terms for which α + β = 0, this contribution is equal to

Ψosc
ε

(

t

ε2
, k, n

)

= 2|V (n, k)|2Re

(

−
∑

β∈Zr

|φβ|
2

εµγ(k, n) + i(ω(k, n) + β · ω + εpδ(k, n))
×

× exp([−εµγ(k, n)− i(ω(k, n) + β · ω + εpδ(k, n))]
t

ε2
)

+
∑

α6=−β∈Zr

φαφβ exp(i(α + β) · ωt/ε2)

[εµγ(k, n) + i(ω(k, n) + β · ω + εpδ(k, n))]
×

× [1− exp([−εµγ(k, n)− i(ω(k, n) + β · ω + εpδ(k, n))]
t

ε2
)]

)

.

(20)

This expression carries “time-oscillations” (at frequency ε−2+µ at least), which kill the possibly
diverging factors ε−µ (due to the denominators), and make them of size ε2−2µ.

Second step: preliminary bounds
Since V ∈ l∞n l1k ∩ l∞k l1n and

∑

β |φβ|
2 < ∞, we first find that

sup
n

∑

k

|〈Ψε〉(k, n)| ≤ Cε−µ, sup
n

∑

k

|Ψosc
ε (t/ε2, k, n)| ≤ Cε−µ,

sup
k

∑

n

|〈Ψε〉(k, n)| ≤ Cε−µ, sup
k

∑

n

|Ψosc
ε (t/ε2, k, n)| ≤ Cε−µ,
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for some C > 0 that does not depend on t and ε. Lemma 11 yields the operator estimates

‖〈Ψε〉♯u‖l2 ≤ Cε−µ‖u‖l2,
∥

∥

∥
Ψosc

ε ♯u
∥

∥

∥

l2
≤ Cε−µ‖u‖l2. (21)

Besides, we have the upper bound

sup
0≤t≤T

∥

∥

∥

∥

∥

∫ t/ε2

0

dsΨosc
ε (s, k, n)

∥

∥

∥

∥

∥

l∞n l1k∩l
∞

k l1n

≤ Cε−2µ. (22)

Now, according to Eq. (20), Ψosc
ε (t, k, n) is a sum of two different terms. We use the decay

assumptions V ∈ l∞n l1k ∩ l∞k l1n and φα ∈ l2 to estimate the contribution of the first term to the
integral by

C

∥

∥

∥

∥

∥

∑

β

|V (n, k)|2
|φβ|

2

|εµγ(k, n) + i(ω(k, n) + β · ω + εpδ(k, n)|2

∥

∥

∥

∥

∥

l∞n l1
k
∩l∞

k
l1n

≤ Cε−2µ.

The second contribution is estimated by

C

∥

∥

∥

∥

∥

∑

α+β 6=0

|V (n, k)|2|φα||φβ|

|εµγ(k, n) + i(ω(k, n) + β · ω + εpδ(k, n))|
·

1

|(α+ β) · ω|

∥

∥

∥

∥

∥

l∞n l1
k
∩l∞

k
l1n

+C

∥

∥

∥

∥

∥

∑

α+β 6=0

|V (n, k)|2|φα||φβ|

|εµγ(k, n) + i((α + β) · ω + εpδ(k, n))|2

∥

∥

∥

∥

∥

l∞n l1k∩l
∞

k l1n

≤ Cε−µ
∑

α,β

|φα||φβ||α + β|r−1+η + Cε−2µ
∑

α,β

|φα||φβ|

≤ Cε−2µ,

thanks to the Diophantine estimate (Hypothesis 1), together with Hypothesis 3. This yields
inequality (22).

Third step: integral form of the equations
Since ∆(0) = 0, the integral form for Eq. (19) governing ∆(t) reads

∆(t) := ∆(1)(t) + ∆(2)(t),

where

∆(1)(t) =

∫ t

0

ds exp([t− s]〈Ψε〉)Ψ
osc
ε

( s

ε2

)

♯
ρd(s),

∆(2)(t) =

∫ t

0

ds exp([t− s]〈Ψε〉)
(

(W♯∆)(s) +O(ε1−2µ)
)

.
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Fourth step: estimating ∆(1)(t) and ∆(2)(t)
Here Lemma 5 proves crucial, in that we use the exponential of the bounded operator 〈Ψε〉.
This together with Lemma 11 applied to operator W yields an estimate for ∆(2):

‖∆(2)(t)‖l2 ≤ C

(

ε1−2µ +

∫ t

0

ds‖∆(s)‖l2

)

. (23)

On the other hand, to take advantage of the time oscillations of the operator Ψosc
ε (t/ε2), we

carry out a natural integration by parts in the expression for ∆(1):

∆(1)(t) = ε2

(

∫ t/ε2

0

duΨosc
ε (u)

)

♯

ρd(t)

+ ε2
∫ t

0

ds exp([t− s]〈Ψε〉)〈Ψε〉

(

∫ s/ε2

0

duΨosc
ε (u)

)

♯

ρd(s)

− ε2
∫ t

0

ds exp([t− s]〈Ψε〉)

(

∫ s/ε2

0

duΨosc
ε (u)

)

×

×
(

〈Ψε〉+Ψosc
ε

( s

ε2

)

+W +O(ε1−2µ)
)

♯
ρd(s),

where we have used Eq. (11) to express ∂tρd(s). Estimates (21) on the operators 〈Ψε〉 and
Ψosc

ε (t) together with Lemma 11 and Lemma 5 (non-positiveness of 〈Ψε〉) lead to

‖∆(1)‖L∞([0,T ],l2) ≤ Cε2−µ sup
0≤t≤T

∥

∥

∥

∥

∥

∫ t/ε2

0

dsΨosc
ε (s)

∥

∥

∥

∥

∥

L(l2)

‖ρd‖L∞([0,T ],l2).

Besides we have ‖ρd‖L∞([0,T ],l2) ≤ ‖ρd‖L∞([0,T ],l1) ≤ C, and it follows that, for ε small enough,
we have

‖∆(1)‖L∞([0,T ],l2) ≤ Cε2−µ sup
0≤t≤T

∥

∥

∥

∥

∥

∫ t/ε2

0

dsΨosc
ε (s)

∥

∥

∥

∥

∥

L(l2)

≤ Cε2−µ sup
0≤t≤T

∥

∥

∥

∥

∥

∫ t/ε2

0

dsΨosc
ε (s, k, n)

∥

∥

∥

∥

∥

l∞n l1k∩l
∞

k l1n

≤ Cε2−3µ.

This, together with estimate (23), and Gronwall lemma, yields

‖∆(t)‖L∞([0,T ],l2) ≤ Cε1−2µ.

and Proposition 4 is proved.
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5 Keeping only resonant contributions in transition

rates: the main theorem

In this section we prove that the non-resonant contributions, which correspond to the triples
(n, k, β) such that ω(n, k) + β · ω 6= 0 in the transition rate (17), are negligible in the limit
ε → 0. We therefore replace the transition rate 〈Ψε〉 by a purely resonant transition rate
〈Ψε〉

dom, which however still depends on ε. To get rid of this last dependence, we will have to
specify the value of p/µ, which is the goal of the next section.

Still due to small denominator problems, we need to reinforce the decay assumptions on the
coefficients and assume Hypothesis 4 and 5 hold.

Theorem 6. Define the transition rate

〈Ψε〉
dom(k, n) := 2|V (n, k)|2

εµγ(k, n)

ε2µγ(k, n)2 + ε2pδ(k, n)2

∑

β∈Zr ; ω(k,n)+β·ω=0

|φβ|
2. (24)

Let also ρ
(2)
d be solution to

∂tρ
(2)
d =

(

〈Ψε〉
dom +W

)

♯
ρ
(2)
d (25)

with initial data ρ
(2)
d (0, n) = ρd(0, n). We assume that µ < 1/2. Then, under Hypotheses 1, 2,

4 and 5, for all T > 0, there exists C > 0 such that

‖ρd − ρ
(2)
d ‖L∞([0,T ],l2) ≤ C(εµ + ε1−2µ).

Remark. When µ = 0, Theorem 6 does not give a good approximation of ρd, and we do not have
a better description than the one from Proposition 4, where all (resonant and non-resonant)
frequencies have a contribution to the transition rates.

The proof of Theorem 6 follows closely that of Proposition 4. However, we notice that the
resonant values that play a rôle here satisfy ω(n, k)+β ·ω = 0 and not ω(n, k)+β ·ω+εpδ(n, k) =
0. Therefore we need to understand the effect of a perturbation on Diophantine estimates.
Lemma 7 below answers this problem.

5.1 Perturbed Diophantine estimates

Lemma 7. If ω and ω(n, k) satisfy the Diophantine condition (8.a) and Hypothesis 2 with
constants η and Cη, then the following assertion holds.

If (n, k, β) ∈ N× N× Zd satisfies

|β · ω + ω(n, k) + εpδ(n, k)| ≤
1

2

Cη

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
,

then

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η ≥
Cηε

−p

2|δ|l∞
.

19



Remark. The Diophantine condition (8.a) is not stable with respect to small perturbations:
coefficients ω(n, k) + εpδ(n, k), that can be arbitrarily close to ω(n, k), are capable of violating
the Diophantine condition (8.a). Indeed, for ε small, the condition

|β · ω + ω(n, k) + εpδ(n, k)| ≥
1

2

Cη

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η

does therefore not necessarily hold, only assuming that the left hand-side is non-zero. Neverthe-
less, Lemma 7 claims that this condition may only be violated for values of the triple (n, k, β)
which are very large when ε → 0. See [CCC+03] for a similar argument.

Proof. Set K = Cη/2 and take (n, k, β) such that

|β · ω + ω(n, k) + εpδ(n, k)| ≤
K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
.

Then

|β · ω + ω(n, k)| − εp|δ(n, k)| ≤
K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
,

and according to condition (8.a) (or Hypothesis 2, when β = 0)

2K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
− εp|δ(n, k)| ≤

K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
.

Hence
K

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
≤ εp|δ(n, k)|,

which ends the proof of Lemma 7.

5.2 Proof of the main theorem

First step: Integral formulation
To deduce Theorem 6 from Proposition 4 only amounts to estimate the difference

∆(t) = ρ
(2)
d (t)− ρ

(1)
d (t),

where we use once again the notation ∆. Now ρ
(2)
d (t) and ρ

(1)
d (t) are respectively solution to

∂tρ
(2)
d (t) =

(

〈Ψε〉
dom
♯ ρ

(2)
d

)

(t) +
(

W♯ρ
(2)
d

)

(t),

and
∂tρ

(1)
d (t) =

(

〈Ψε〉♯ρ
(1)
d

)

(t) +
(

W♯ρ
(1)
d

)

(t).

Hence
∂t∆(t) = (〈Ψε〉♯∆)(t) +

(

〈Ψε〉
neg
♯ ρ

(2)
d

)

(t) + (W♯∆)(t). (26)
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where
〈Ψε〉

neg(k, n) = 〈Ψε〉
dom(k, n)− 〈Ψε〉(k, n)

contains the contributions to the transition rate, that we want to prove to be negligible. Since
∆(0) = 0 the integral form for (26) reads

∆(t) =

∫ t

0

ds exp([t− s]〈Ψε〉)
(

〈Ψε〉
neg
♯ ρ

(2)
d

)

(s) +

∫ t

0

ds exp([t− s]〈Ψε〉)(W♯∆)(s).

Second step: Estimating 〈Ψε〉
neg

In view of Eqs (17) and (24), we have

‖〈Ψε〉
neg‖l∞n l1k∩l

∞

k l1n
= sup

n

∑

k,β; ω(n,k)+β·ω 6=0

2|V (n, k)|2εµγ(k, n)|φβ|
2

ε2µγ(k, n)2 + |ω(k, n) + β · ω + εpδ(k, n)|2
.

We split this expression into two contributions according to the fact that

|β · ω + ω(n, k) + εpδ(n, k)| ≥
1

2

Cη

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
,

or not. Using Lemma 7 for the second contribution, we obtain

‖〈Ψε〉
neg‖l∞n l1k∩l

∞

k l1n

≤ sup
n

{

∑

k,β; ω(n,k)+β·ω 6=0

4|V (n, k)|2εµγ(k, n)|φβ|
2

Cη
(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η

+
∑

k,β; ω(n,k)+β·ω 6=0

1
[

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η ≥ Cε−p
]2|V (n, k)|2ε−µ|φβ|

2

γ

}

.

The first sum is estimated using Hypotheses 4, 2 and 5. The second term is first multiplied
and divided by the quantity [(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η]Nη . Therefore we get

‖〈Ψε〉
neg‖l∞n l1

k
∩l∞

k
l1n

≤ Cεµ

+ CεNηp−µ
∑

n,k,β

(

(1 + |β|)r−1+η(1 + n)1+η(1 + k)1+η
)Nη

|V (n, k)|2|φβ|
2.

Since we assumed that Nη > 2µ/p, we finally have

‖〈Ψε〉
neg‖l∞n l1

k
∩l∞

k
l1n
≤ Cεµ.

Third step: Conclusion
Using Lemma 5 (non-positiveness of 〈Ψε〉) leads to

‖∆(t)‖l2 ≤ C‖〈Ψε〉
neg‖L(l2)‖ρ

(2)
d ‖L∞([0,T ],l2) + C

∫ t

0

ds‖∆(s)‖l2

≤ C‖〈Ψε〉
neg(n, k)‖l∞n l1

k
∩l∞

k
l1n

[

‖∆‖L∞([0,T ],l2) + ‖ρ
(1)
d ‖L∞([0,T ],l2)

]

+ C

∫ t

0

ds‖∆(s)‖l2.
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A by-product of Proposition 4 is that the quantity ‖ρ
(1)
d ‖L∞([0,T ],l2) can be estimated by a

constant. Therefore

‖∆(t)‖l2 ≤ C‖〈Ψε〉
neg(n, k)‖l∞n l1k∩l

∞

k l1n
(1 + ‖∆‖L∞([0,T ],l2)) + C

∫ t

0

ds‖∆(s)‖l2

≤ Cεµ(1 + ‖∆‖L∞([0,T ],l2)) + C

∫ t

0

ds‖∆(s)‖l2.

Thanks to the Gronwall lemma
‖∆‖L∞([0,T ],l2) ≤ Cεµ,

which proves Theorem 6.

6 Time-layers and equilibrium states in the ε → 0 limit

In the previous sections we have derived the rate equation (25), with the transition rates

Wmod
ε (n,m) = 〈Ψε〉

dom(n,m) +W (n,m),

which may be considered as modified rates, via the interaction with the wave. We now turn to
the study of the dynamics of the solution to Eq. (25).

For a fixed ε, this dynamics is described in Appendix 8.1. However, in most cases, the
coefficients prove to be singular in ε. Therefore the time evolution of the solution obeys two
different regimes as ε goes to zero: first a time-layer, and then relaxation to an ”equilibrium”
(if it exists, see Appendix 8.1). The duration of the time-layer is always less than O(1), thus
the Bloch equation (1) and the rate equation (25) behave in the same way on this time-range
(as Theorem 6 asserts). On the contrary, the relaxation towards an equilibrium state, as time
goes to infinity, is a priori specific for the rate equation, since Theorem 6 only applies on the
fixed time-interval [0, T ].

In this section, we split the rate operator (Wmod
ε )♯ into three contributions.

1. Some levels are decoupled from all other levels. The corresponding columns (and subse-
quently lines) in the matrix (Wmod

ε )♯ are identically zero. These levels have a constant
population for all time (exactly for the rate equation, and at leading order for the Bloch
equation). They are excluded from the sequel of the argument. We call Σ0 the subspace
spanned by these levels in l2 (this subspace does not depend on ε). The projection onto the
levels which have a non trivial time evolution is denoted by Π0. Therefore Σ0 = KerΠ0.

2. We split 〈Ψε〉
dom into two contributions: 〈Ψε〉

sing collects the singular coefficients, which
go to infinity as ε → 0. Then, 〈Ψε〉

nonsing gathers the non-singular coefficients, which
are O(1). The corresponding case study according to the value of µ/p is performed in
Section 6.1.

3. Finally we define the l2-orthogonal projection Π onto the space l2-orthogonal to Σ0 in
Ker〈Ψε〉

sing. It does not depend on ε either. The quantity (1 − Π)ρd will be proved
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to vanish in time O(εσ), where σ depends on the ratio µ/p (see Table 1). After this
time, i.e. past the initial time-layer, a polarized solution ρpold persists. It is given by the
ε-independent system

Πρpold = ρpold , ∂tρ
pol
d = ΠW pol

♯ Πρpold ,

where W pol = W +Ψnonsing
0 .

This section is organized as follows: in Section 6.1 we set some notations and explain why
the transition rates are in general splitted into three types of terms. Their respective sizes are
given by powers of ε. Under the assumption that the number N of quantum levels is finite, a
precise description of the time layer is given according to the value of µ/p in Section 6.3. The
key lemma for this analysis is given in Section 6.2. Section 6.4 is devoted to the particular
case µ = 0. In Section 6.5, we discuss the few cases (in terms of values of µ/p) when we may
conclude for an infinite number of levels. A rigorous framework for the justification of the
restriction to a finite number of levels is given in Section 7.

6.1 Setting for the time-layer

We first split 〈Ψε〉
dom(n,m) into two contributions according to whether δ(n,m) = 0 or not.

We restrict the discussion to the case when µ > 0 since the form of the transition rates in
Section 5 does not apply when µ = 0. This case is treated separately in Section 6.4. To
simplify notations, we set

C(n,m) = 2|V (n,m)|2
∑

β∈Zr ; ω(n,m)+β·ω=0

|φβ|
2,

and 〈Ψε〉
dom(n,m) = Aε(n,m) +Bε(n,m), where

Aε(n,m) := C(n,m)
εµγ(n,m)

ε2µγ(n,m)2 + ε2pδ(n,m)2
1(δ(n,m) = 0), (27.a)

Bε(n,m) := C(n,m)
εµγ(n,m)

ε2µγ(n,m)2 + ε2pδ(n,m)2
1(δ(n,m) 6= 0). (27.b)

Of course Eq. (27.a) also reads

Aε(n,m) = ε−µC(n,m)
1

γ(n,m)
1(δ(n,m) = 0) =: ε−µA(n,m).

In a similar way we rewrite Eq. (27.b) as

Bε(n,m) =: ε−νBε(n,m),

where ν is chosen such that Bε → B0 in l∞l1, as ε → 0, and therefore also as an operator on
l2. To this aim we consider two cases, namely µ ≤ p and µ ≥ p. We set

ν = µ and Bε(n,m) := C(n,m)
γ(n,m)

γ(n,m)2 + ε2(p−µ)δ(n,m)2
1(δ(n,m) 6= 0) if µ ≤ p,

ν = 2p− µ and Bε(n,m) := C(n,m)
γ(n,m)

ε2(µ−p)γ(n,m)2 + δ(n,m)2
1(δ(n,m) 6= 0) if µ ≥ p.
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With the above notations, we have cast Eq. (25) governing y = ρ
(2)
d as

∂ty = (ε−µA+ ε−νBε +W )♯y. (28)

Using the block decomposition described in Appendix 8.1, we notice that Ker(Bε) = Ker(B0)
is constant with respect to ε ≥ 0. This is a priori only true if all the minimal stable eigenspaces
are finite-dimensional.

Now, sorting between singular and non-singular contribution yields the different cases in
Table 1. In the framework of [BFCD03] Bε is identically zero. If µ ≤ p then Bε contributes to
singular terms at the same order ε−µ as A. If p < µ < 2p, there are two orders of magnitude
ε−µ and ε−ν in the singular term. Finally if 2p ≤ µ, the effect of Bε is of order O(1) and
must be associated to that of W . In other words, if µ < 2p, the non-zero entries in A and Bε

contribute to 〈Ψε〉
sing, and 〈Ψε〉

nonsing = 0. If µ ≥ 2p, only the non-zero entries in A contribute
to 〈Ψε〉

sing: 〈Ψε〉
nonsing = Bε, which has a non-vanishing value Ψnonsing

0 only if µ = 2p.

6.2 A finite dimensional lemma

Lemma 8. Let 0 ≤ ν ≤ µ. Let A and Bε ∈ MN(R) be symmetric non-positive matrices
such that Bε → B0, and assume that Ker(Bε) is constant for ε ≥ 0. Let Π be the orthogonal
projection onto KerA ∩KerB0. Then there exists a constant c > 0, namely

c = min
‖x‖≤1,Πx=0

−((A+B0)x, x),

such that any non-zero eigenvalue λε of (1− Π)(ε−µA+ ε−νBε)(1− Π) satisfies

λε ≤ −cε−ν .

Proof. Since µ ≥ ν, we write

(1−Π)(ε−µA + ε−νB)(1− Π) = ε−ν(1−Π)(B + εν−µA)(1−Π).

Let κε be a non-zero eigenvalue of (1−Π)(Bε+εν−µA)(1−Π). Since A and Bε are non-positive
matrices, we have κε < 0. We therefore want to prove that for the constant c defined in the
lemma, κε ≤ −c. Let xε ∈ Range(1 − Π) be an eigenvector associated with the eigenvalue κε

and such that ‖xε‖ = 1. We have (1 − Π)(Bε + εν−µA)(1 − Π)xε = κεxε. Taking the scalar
product with xε, we obtain

κε‖xε‖2 = ((Bε + εν−µA)xε, xε) = (Bεxε, xε) + εν−µ(Axε, xε).

Since ε ∈ [0, 1], ν−µ ≤ 0 and (Axε, xε) ≤ 0, we have εν−µ(Axε, xε) ≤ (Axε, xε). A subsequence
of xε converges to x0 and therefore

sup
ε≥0

κε‖xε‖2 ≤ ((A+B0)x0, x0) ≤ −c‖x0‖2.

Finally, if c were zero, then ((A + B0)x, x) = 0 that is (Ax, x) = 0 and (B0x, x) = 0 and
therefore x ∈ KerA ∩KerB0. Thus (1− Π)x = 0 and x = 0 which is impossible.
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Remark.

(i) The above proof is restricted to the finite dimensional case for two reasons. First, in the
infinite dimensional case the convergence of xε to x0 would only be weak. Second, the
maximum of ((A+B0)x, x) on vectors x such that ‖x‖ = 1 could be zero.

(ii) To avoid such limitations we could think about replacing Bε by the leading order terms
(those which are not vanishing as ε → 0) in the series expansion of Bε (Lemma 8 can
clearly be extended to a finite number of matrices) extending the computations of Sec-
tion 6.5 to sums of several powers of ε. This is not possible since such a procedure would
not ensure the non-positiveness of the resulting operators, which is crucial in the proof.

Lemma 8 allows to split the solution y to Eq. (28) into two parts: (1 − Π)y vanishes
exponentially and a solution z associated with the initial data Πy(0) survives.

Corollary 9. Let 0 < ν ≤ µ. Let A,Bε ∈ MN(R) be two symmetric non-positive matrices
such that Bε → B0, and assume that Ker(Bε) is constant for ε ≥ 0. Let W ∈ MN(R), and let
Π be the orthogonal projection onto KerA♯ ∩KerBε

♯ . If y is solution to

∂ty = (ε−µA + ε−νBε +W )♯y

and if z is solution to
∂tz = ΠW♯Πz, z(0) = Πy(0), (29)

then

‖(1−Π)y‖ ≤ C(εν + exp(−ctε−ν)), (30.a)

‖Π(y − z)‖ ≤ C(εν + exp(−ctε−ν)), (30.b)

where C depends on W , y(0), T and c (the constant of the previous lemma). In particular,
limε→0(1−Π)y = 0.

Proof. The proof is standard. We reproduce it for the sake of completeness. We first prove
estimate (30.a). Since Π is the orthogonal projection onto KerA ∩ KerBε, we have ΠA♯ =
ΠBε

♯ = A♯Π = Bε
♯Π = 0, and therefore

∂t(1− Π)y = (1− Π)∂ty = (1− Π)(ε−µA+ ε−νBε)♯y + (1− Π)W♯y

= (ε−µA + ε−νBε)♯y + (1−Π)W♯y,

= (ε−µA + ε−νBε)♯(1−Π)y + (1− Π)W♯y.

The solution to this equation reads

(1−Π)y(t) = exp(t(ε−µA+ ε−νBε)♯)(1− Π)y(0)

+

∫ t

0

ds exp((t− s)(ε−µA+ ε−νBε)♯)(1− Π)W♯y(s).
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Lemma 8 yields a bound for the spectrum of (ε−µA + ε−νBε)♯, namely Sp(ε−µA + ε−νBε)♯ ≤
−cε−ν and we also have ‖1− Π‖ ≤ 1, therefore

‖(1− Π)y‖ ≤ exp(−ctε−ν)‖y(0)‖+ C

∫ t

0

ds exp(−(t− s)cε−ν).

Finally ‖(1− Π)y‖ ≤ C(εν + exp(−ctε−ν)) which is estimate (30.a).
We now prove estimate (30.b). We write y − z = Π(y − z) + (1 − Π)y − (1 − Π)z. By

definition Πz = z and we already have estimated (1−Π)y. Thus there remains to estimate the
quantity Π(y − z), which is solution to

∂tΠ(y − z) = ∂tΠy − ∂tΠz = Π∂ty − ∂tz

= Π(ε−µA+ ε−νB)♯y +ΠW♯y − ΠW♯Πz

= ΠW♯y −ΠW♯Πz

= ΠW♯Πy +ΠW♯(1−Π)y −ΠW♯Πz

= ΠW♯Π Π(y − z) + ΠW♯(1−Π)y.

The solution to this equation may be estimated by

‖Π(y − z)‖ ≤

∫ t

0

ds‖ exp((t− s)ΠW♯Π)‖ × ‖ΠW♯(1−Π)y(s)‖

because Πy(0) = z(0) = Πz(0). Since ΠW♯Π ≤ 0 we finally have

‖Π(y − z)‖ ≤ C(εν + exp(−ctε−ν))

and estimate (30.b) follows.

Remark. If ΠW♯Π = 0 then z′ = 0 and y is constant at leading order.

6.3 Finite dimensional case study

We now discuss the implications of Lemma 8 for the different values of µ/p. We have already
seen that a transition occurs in the definition of Bε when p = µ. Another transition happens
when ν = 0, i.e. µ = 2p. The main results of this part are summarized in Table 1.

Case when 0 < µ < p. If 0 < µ < p, we may apply Corollary 9 with ν = µ and the limit
operator B0 is

B0(n,m) = C(n,m)
1

γ(n,m)
1(δ(n,m) 6= 0).

In this circumstance there is no need to separate the cases when δ(n,m) 6= 0, since

(ε−µA+ ε−νBε)(n,m) = ε−µ

(

C(n,m)

γ(n,m)
+ o(1)

)

.
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Hence for large values of p compared to µ, the dynamics is the same for almost degenerate
levels and for exactly degenerate levels. After a time-layer of size O(εµ) the system is driven
by Eq. (29), namely

∂tz = ΠW♯Πz, z(0) = Πy(0),

where Π the orthogonal projection onto KerA♯ ∩KerB0
♯ = Ker〈Ψε〉

dom
♯ .

Case when µ = p. If µ = p, we again apply Corollary 9 with ν = µ, but the form of B0 is
slightly different, and now δ(n,m) plays a rôle, namely

Bε(n,m) = B0(n,m) = C(n,m)
γ(n,m)

γ(n,m)2 + δ(n,m)2
1(δ(n,m) 6= 0).

The limit equation is as in the previous case.

Case when p < µ < 2p. If p < µ < 2p, we really have three different orders of magnitude in
Eq. (28). The form for B0 is now

B0(n,m) = C(n,m)
γ(n,m)

δ(n,m)2
1(δ(n,m) 6= 0),

and the size of the time-layer is O(ε2p−µ). The limit equation is still unchanged.

Case when µ = 2p. If µ = 2p, then ν = 0 and the contribution of B0 competes with that of
W . Therefore the projector mentioned in Corollary 9 is here ΠA, the orthogonal projection on
KerA♯, and the limit equation is

∂tz = ΠA(B
0 +W )♯ΠAz, z(0) = ΠAy(0),

where

B0(n,m) = C(n,m)
γ(n,m)

δ(n,m)2
1(δ(n,m) 6= 0),

after a time-layer of size O(εµ). In this case, and in the following one, the projection only
depends on A (and not on B0). The constant c is simply c = min‖x‖≤1,ΠAx=0−(A♯x, x).

Case when µ > 2p or Bε ≡ 0. If µ > 2p, then ν < 0 and Bε → 0. This case is therefore
treated in the same way as when Bε ≡ 0. In both cases, the limit equation is

∂tz = ΠAW♯ΠAz, z(0) = ΠAy(0),

after a time-layer of size O(εµ). Hence for small values of p compared to µ, two almost de-
generate levels n and m for which δ(n,m) 6= 0 are already too far apart to resonate with the
wave.
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6.4 Case when µ = 0.

In the case when µ = 0, Section 5 does not yield an interesting result since ρd − ρ
(2)
d is of order

O(1). Therefore we have to use the transition rates obtained in Section 4, namely

〈Ψε〉(n,m) = 2|V (n,m)|2
∑

β∈Zr

γ(n,m)

γ(n,m)2 + |ω(m,n) + β · ω + εpδ(n,m)|2
|φβ|

2.

For a finite or an infinite number of energy levels, we have at leading order ρd = ρappd , where

∂tρ
app
d = (〈Ψ0〉+W )♯ρ

app
d

and

〈Ψ0〉(n,m) = 2|V (n,m)|2
∑

β∈Zr

γ(n,m)

γ(n,m)2 + |ω(m,n) + β · ω|
|φβ|

2.

The discussion of the long time behavior and equilibrium state for such an equation is the same
as for Eq. (25) (see Appendix 8.1).

6.5 Infinite dimensional case study

In the infinite dimensional case the convergence of Bε towards B0 is not sufficient to conclude.
However, we can use series expansions when they only include one non-positive order in ε, i.e.

〈Ψε〉
dom +W = ε−σÃ+ o(1).

In this case, we consider at leading order the solution ρappd of

∂tρ
app
d = ε−σΨapp

♯ ρappd (31)

where Ψapp is homogeneous of order O(1). In this case, time has to be changed into t′ = ε−νt.
With this time scale, the equation is not singular any more. There remains to list the cases
when such an homogeneous rate operator occurs, restricting the discussion to µ > 0. As for a
finite number of levels, the value of the ratio µ/p is crucial. We once more have to consider the
two cases µ ≤ p and µ ≥ p. The main results of this section are summarized in Table 2.

Case when µ < p. If µ < p, series expansions yield that

〈Ψε〉
dom(n,m) = C(n,m)

ε−µ

γ(n,m)
+O(ε2p−3µ).

If 2p− 3µ > 0, i.e. µ < 2p/3

〈Ψε〉
dom(n,m) =: ε−µΨapp(n,m) + o(1).

Since ν > 0, σ = µ and rates are homogeneous only if W = 0.
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Case when µ = p. In the case when µ = p no series expansion is needed and we have exactly

〈Ψε〉
dom(n,m) = C(n,m)

ε−µγ(n,m)

γ(n,m)2 + δ(n,m)2
=: ε−µΨapp(n,m).

Once more, we can only conclude if W = 0.

Case when µ > p. If µ < p, series expansions lead to

〈Ψε〉
dom(n,m) = C(n,m)

ε−µ

γ(n,m)
1(δ(n,m) = 0)

+ C(n,m)
ε−(2p−µ)γ(n,m)

δ(n,m)2
1(δ(n,m) 6= 0) +O(ε3µ−4p).

Two cases lead to only one term ε−σÃ + o(1), either δ(n,m) is always nonzero, µ > 4
3
p and

W = 0. In this case σ = 2p − µ. Or µ > 2p and σ = µ. We once more need to assume that
W = 0.

In all the above cases, using the same type of estimates and integral formulations as in the
proofs in Section 4 and 5, we define an approximate solution ρappd to Eq. (31) such that

‖ρd − ρappd ‖L∞([0,T ],l2) = o(1),

and Ψapp has the properties described in Section 8.1.

µ/p σ
Ψapp(n,m)

2|V (n,m)|2
∑

β |φβ|2

0 (µ = 0, p > 0) µ
1

γ(n,m)
(see caption)

0 < µ/p < 2/3 µ
1

γ(n,m)

µ/p = 1 µ
γ(n,m)

γ(n,m)2 + δ(n,m)2

4/3 < µ/p < 2 2p− µ
γ(n,m)

δ(n,m)2

µ/p = 2 0
γ(n,m)

δ(n,m)2

2 < µ/p < ∞ 0 0

Table 2: Cases when the transition rates are single powers of ε, for an infinite number of levels.
The sum over β’s includes only resonant contributions in general, except when µ = 0 where
β ∈ Zr.
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7 Restriction to a finite number of levels

It is important to show that we can restrict the study to a finite number of levels since we have
seen in Section 6 that we are able to give precise results on the time evolution of rate equations
only in this case. Another perspective is numerical simulations, which in any case can only
treat finite data.

Consider a solution ρ to Bloch equations (1) with initial datum ρ(0), and infinitely many
quantum levels. In this section, we show how ρ may be approximated by ρN , solution to Eq. (1)
with only a finite number N of levels.

For this purpose, for all N ∈ N, we define πN , the projection of the space CN2
of infinite

matrices onto the space of N ×N matrices, by

(πNu)(n,m) := u(n,m)1[n,m < N ].

Then, the N -level truncated system (1N) is defined from Eq. (1) by

ε2∂tρ
N (t, n,m) = −iωε(n,m)ρN (t, n,m) + (πNQε)(ρ

N )(n,m)

+ iε
∑

k<N

[

V

(

t

ε2
, n, k

)

ρN(t, k,m)− V

(

t

ε2
, k,m

)

ρN (t, n, k)

]

.
(1N)

The initial datum ρN (0) is also naturally defined as

ρN (0) := πNρ(0).

The analysis of the previous sections shows that, in the limit ε → 0, ρ is approximated by
the diagonal solution ρ

(2)
d to rate equations (25). Theorem 6 also gives an approximation of ρN

by ρ
N,(2)
d , which turns out to be solution to the truncated system obtained from Eq. (25):

∂tρ
N,(2)
d = (πN〈Ψε〉

dom + πNW )♯ρ
N,(2)
d , ρ

N,(2)
d (0) = πNρ(0). (25N)

To apply Theorem 6, we need Hypotheses 1 to 5. Under the additional condition that
longitudinal relaxation coefficients are decaying enough at infinity (Hypothesis 6), we show
that this truncation procedure is compatible with the evolution according to Bloch equations
and rate equations:

Lemma 10. Under Hypotheses 1 to 6, for all ν, T, ε > 0, there exists an integer N such that,

if ‖(1− πN )ρ(0)‖l2 ≤ ν, then ‖ρ− ρN‖L∞([0,T ],l2) ≤ 2ν + C(εµ + ε1−2µ),

where C = C(T ) is the constant from Theorem 6, and N has the form

N = N0(ν, T )ε
− µ

(1+η)Nη ,

with η and Nη given by Hypotheses 1 and 4.
If, in addition, no resonance occurs between the wave and high energy levels (i.e. there exists

M ∈ N such that, when min(n, k) > M , the set {β ∈ Zr; ω(n, k) + β · ω = 0} is empty), then
N has the form N = N0(ν, T ), uniformly with respect to ε.

30



Proof. Theorem 6 applies for both the infinite and the finite number of levels problems, therefore

‖ρ− ρ
(2)
d ‖L∞([0,T ],l2) ≤ C(εµ + ε1−2µ)

and
‖ρN − ρ

N,(2)
d ‖L∞([0,T ],l2) ≤ C(εµ + ε1−2µ),

and we only need to estimate the difference ∆ := ρ
(2)
d − ρ

N,(2)
d , which is solution to

∂t∆ =
(

〈Ψε〉
dom +W

)

♯
∆+

(

〈Ψε〉
dom − 〈Ψε〉

dom,N
)

♯
ρ
N,(2)
d +

(

W − πNW
)

♯
ρ
N,(2)
d .

Thanks to the non-positiveness property of the operators associated with 〈Ψε〉
dom and W , an

integral formulation leads to

‖∆‖L∞([0,T ],l2) ≤ C
(

‖(1− πN )ρ(0)‖l2 + ‖
(

〈Ψε〉
dom − πN 〈Ψε〉

dom
)

♯
ρ
N,(2)
d ‖L∞([0,T ],l2)

+‖
(

W − πNW
)

♯
ρ
N,(2)
d ‖L∞([0,T ],l2)

)

≤ C
(

‖(1− πN )ρ(0)‖l2 + ‖〈Ψε〉
dom − πN〈Ψε〉

dom‖l∞k l1n∩l
∞

n l1k

+‖W − πNW‖l∞
k
l1n∩l

∞

n l1
k

)

.

The first term goes to zero as N goes to infinity simply because the initial datum ρ(0) is in
l2. The third one reads

sup
n>N

∑

k

|W (n, k)|+ sup
n

∑

k>N

|W (n, k)|+ sup
k>N

∑

n

|W (n, k)|+ sup
k

∑

n>N

|W (n, k)|

≤ C

(

sup
n>N

∑

k

|W (n, k)|+ sup
n

∑

k>N

|W (n, k)|

)

≤ CN−K

(

sup
n>N

∑

k

(1 + n)K |W (n, k)|+ sup
n

∑

k>N

(1 + k)K |W (n, k)|

)

≤ CN−K ,

thanks to Hypothesis 6. Thus, this term is also o(1) uniformly with respect to ε as N goes to
infinity.

Finally, taking into account the fact that 〈Ψε〉
dom is symmetric, the second term is

2

(

sup
n>N

∑

k

|〈Ψε〉
dom(n, k)|+ sup

n

∑

k>N

|〈Ψε〉
dom(n, k)|

)

≤ Cε−µ sup
n>N

∑

k

∑

β; ω(n,k)+β·ω=0

|φβ|
2|V (n, k)|2

≤ Cε−µN−(1+η)Nη sup
n>N

∑

k

(1 + n)(1+η)Nη

∑

β; ω(n,k)+β·ω=0

|φβ|
2|V (n, k)|2

≤ Cε−µN−(1+η)Nη ,

31



which vanishes in fact when no resonance occurs between the wave and high energy levels. Else,
we obtain a o(1) as ε goes to zero under the condition

N ≫ ε−µ/Nη(1+η).

8 Appendix

In this section, we give the lemmas concerning the modified relaxation operator from Eq. (3),
in order to describe the dynamics of the solution. We also give a proof of the genericity of the
small divisor estimates of Hypothesis 1.

8.1 Relaxation operators

We first prove some non-positiveness properties of (Wmod
ε )♯.

8.1.1 Continuity and non-positiveness

Lemma 11. Let A(n,m) ∈ l∞n l1m ∩ l∞m l1n.
(i) Its associated operator A♯ is bounded on the spaces lq, 1 ≤ q ≤ ∞, and

‖A♯u‖lq ≤ ‖A(n,m)‖l∞n l1m∩l∞m l1n‖u‖lq .

(ii) If in addition A(n,m) ≥ 0, then for all positive integer N , the spectrum of the restriction
of A♯ to RN is contained in {Reλ < 0} ∪ {0}.

(iii) If A(n,m) ≥ 0 is symmetric, A♯ is non-positive on l2, and the exponential exp(tA♯) is
well defined as an operator on l2 when t ≥ 0. Its norm is 1.

Proof. (i) For q = ∞ or q = 1, the result is immediate. The remaining cases are obtained by
interpolation.

(ii) The localization of the eigenvalues of A♯ is obtained via the Hadamard-Gerschgorin
method applied to M := tA♯ =

tA♯, whose eigenvalues are the conjugates of those of A♯: if λ is
an eigenvalue of M , there exists an index n such that

|λ−M(n, n)| ≤
∑

m6=n

|M(n,m)|.

Remarking that for m 6= n, M(n,m) = A♯(m,n) ≥ 0, and M(n, n) = −
∑

m6=n M(n,m), the
conclusion is straightforward.

(iii) In the symmetric case, compute for all u ∈ l2,

(A♯u, u) =
∑

n

∑

m6=n

A♯(n,m)u(m)u(n) +
∑

n

A♯(n, n)u(n)
2

≤
1

2

∑

n

∑

m6=n

A♯(n,m)(|u(m)|2 + |u(n)|2)−
∑

n

∑

m6=n

A♯(m,n)u(n)2 = 0.

The norm of exp(tA♯) is 1 on l2 for t > 0 because A♯ has a non-trivial kernel (see below).
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In the same way as for item (i) of Lemma 11, we have the estimate usually called Schur’s
lemma.

Lemma 12. Let A ∈ l∞n l1k ∩ l∞k l1n and 1 ≤ q ≤ ∞. Then, if u ∈ lqn,m(N× N),

∥

∥

∥

∥

∥

∑

k

A(n, k)u(k,m)− A(k,m)u(n, k)

∥

∥

∥

∥

∥

lqn,m

≤ ‖A(n,m)‖l∞n l1m∩l∞m l1n‖u(n,m)‖lqn,m
.

8.1.2 Asymptotic states of the rate equation

We define the asymptotic state ρ associated with Eq. (3) and with the initial datum ρ(0), the
limit (in l1), if it exists, of the solution ρd(t) to Eq. (3) with the initial value ρ(0) as t goes
to infinity. Such an asymptotic state is necessarily an equilibrium state (i.e. it belongs to the
kernel of (Wmod

ε )♯). As an example, the usual thermodynamic equilibrium ρtherm (corresponding

to Wmod
ε = W satisfying Eq. (5)) for the N -level Bloch model is given by

ρtherm(n) =
exp

(

−ωn

T

)

∑N
k=1 exp

(

−ωk

T

) .

We study the kernel of operators A♯ modelled on (Wmod
ε )♯: the –finite or infinite– matrix

A, written in the eigenstates basis e = (e1, e2, . . . ), has the property (P).

A(m,n) = 0 ⇔ A(n,m) = 0. (P)

In particular, thanks to this property, a vanishing column in A♯ corresponds to a vanishing line,
and conversely.

The kernel of A♯ is linked to the spaces generated by elements of the basis e,

EL := Span{em; m ∈ L},

when L is a finite subset of indices.

Proposition 13. Let A(m,n) ∈ l∞m l1n ∩ l∞n l1m satisfy property (P), and A(m,n) ≥ 0 when
m 6= n. In addition, suppose that there exists a decomposition of l1 into A♯-stable subspaces of
the form EL (each with finite dimension).
Then, the restriction of A♯ to any such non-zero subspace with minimal size has a one-dimensional
kernel.

Such a minimal subset can be one dimensional, i.e. generated by a single en. This corre-
sponds exactly to the case when the n-th line (or column) of A♯ vanishes. When the cardinality
of L is greater or equal to two, EL is characterized by:

m ≤ n ∈ L ⇔ ∃m =: m1 ≤ · · · ≤ ms := n, such that

mj ∈ L for all j = 1, . . . , s

and A♯(mj , mj+1) 6= 0 for all j = 1, . . . , s− 1.
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Proof. When the dimension of EL is one, the result is trivial. Now, suppose that the cardinality
of L is at least 2.

Denote by AL
♯ the restriction of A♯ to EL. Since the dimension of EL is finite, the dimension

of the kernel of AL
♯ is the same as the dimension of the kernel of the transposed matrix, tAL

♯ .
Let u belong to this kernel. Written relatively to the basis {en; n ∈ L}, the relation tAL

♯ u = 0
reads





∑

k∈L\{n}

A(n, k)



 u(n) =
∑

k∈L\{n}

A(n, k)u(k)

for all n ∈ L. Each coefficient A(n, k) is non-negative, and thanks to the property (P), the sum
∑

k∈L\{n}A(n, k) is positive. Therefore, u(n) belongs to the convex hull of the other coordinates.

Since this is valid for all n ∈ L, all the coordinates must be equal, and the kernel of tAL
♯ is

generated by
∑

n∈L en.

Corollary 14. Under the assumptions of Proposition 13, for each initial datum ρ(0) ∈ l1

satisfying Eq. (2), there is a unique ρ ∈ l1∩KerA♯ such that for all minimal A♯-stable subspace
EL,

∑

n∈L

ρ(n) =
∑

n∈L

ρ(0, n).

Since the decomposition of l1 into A♯-stable finite dimensional subspaces corresponds to the
splitting of Eq. (3) into a countable set of decoupled finite dimensional systems which have
bounded solutions (thanks to the results of Lemma 11 on the spectrum of A♯), a diagonal
argument allows to extract a converging subsequence of ρd(t). Finally, the normalization of the
trace on each minimal subspace ensures the uniqueness of the limit. This shows that the whole
sequence (ρd(t))t≥0 converges to ρ, which is actually an asymptotic state.

In the purely infinite dimensional case, i.e. when no decomposition into finite dimensional
A♯-stable subspaces exists, the results above may break down.

Proposition 15. Consider A(m,n) ∈ l∞m l1n ∩ l∞n l1m satisfying property (P), A(m,n) ≥ 0 when
m 6= n, and either symmetric, or in Pauli form (relation (5)). Suppose that there exists a
minimal A♯-stable subspace E of l1 generated by an infinite number of eigenstates en.

Then, the kernel of A♯|E
(the restriction to E of the operator on l1) is {0}.

Proof. Denoting AE
♯ the restriction of A♯ to E, we have a one-to-one relation between elements

of the kernel of AE
♯ and elements of the kernel of tAE

♯ :

u ∈ KerAE
♯ ⇔ tu ∈ Ker tAE

♯ in the symmetric case,

⇔

(

u(n) exp

(

ω(n)

T

)

; n ∈ L

)

∈ Ker tAE
♯ in the “Pauli” case.

Since we have the bounds

0 < exp

(

ω(1)

T

)

≤ exp

(

ω(n)

T

)

≤ exp
(ωionisation

T

)
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for all n, this correspondence preserves the summability property.
Finally, the proof of Proposition 13 shows that the kernel of tAE

♯ (in l1) is {0}, and this
gives the result.

Corollary 16. Under the assumptions of Proposition 15, for any initial datum ρ(0) with non-
vanishing component in E, there is no equilibrium state ρ ∈ l1 ∩KerA♯ with the same trace as
ρ(0) in E.

Remark. In the symmetric case (when 〈Ψε〉
dom = 0, Wmod

ε = W ), according to Lemma 11,
the l2-norm of the solution ρd to Eq. (3) is decreasing in time; thus, it tends to a certain value
r ≥ 0. This means that ρd approaches a limit cycle in l2 belonging the intersection of the sphere
‖ρd‖l2 = r and the hyperplane where the l1-norm is one (assuming for simplicity that there is
no strict A♯-stable subspace of l1). In this case, only weak convergence (to zero) can occur.

8.2 Diophantine estimates

We show the genericity of Hypothesis 1.

Lemma 17. For all η > 0 and all real sequence ω(n,m), there exists a constant Cη > 0, such
that for almost all value of the frequency vector ω = (ω1, . . . , ωr),

∀α = (α1, . . . , αr) ∈ Z
r \ {0}, ∀(n, k) ∈ N

2 such that α · ω + ω(n, k) 6= 0,

|α · ω + ω(n, k)| ≥
Cη

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η
.

Proof. We follow the standard approach (see e.g. [AG91]). Restricting ω to a ball B in Rr, we
show that the measure of the set of “bad frequencies” violating the inequality for all constant
C is zero.

For η, c > 0, α ∈ Zr \ {0} and (n, k) ∈ N2 fixed, set

Bη,c
α,n,k :=

{

ω ∈ B; |α · ω + ω(n, k)| ≤
c

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η

}

.

This limitates ω in the direction of α. Introducing a constant K which depends on the size of
B only, we obtain

meas
(

Bη,c
α,n,k

)

≤
Kc

(1 + |α|)r−1+η(1 + n)1+η(1 + k)1+η
.

Now, with η, c > 0 fixed, the measure of the set of frequencies for which the inequality is false
at least for some (α, n, k) is less than the sum (over α, n and k) of the ones above, and thus is
O(c).
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