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Torsion cohomology classes and algebraic cycles on

complex projective manifolds

C. Soulé, C. Voisin

Let X be a smooth complex projective manifold and Hn(X,Z) its singular cohomology
group of degree n, with integral coefficients. Given a torsion class α ∈ H2k(X,Z), can we
say that this class α is algebraic?

This is true when k = 1, and, apparently, Hodge thought that this would always be the
case [10]. However, Atiyah and Hirzebruch found counterexamples to Hodge’s assertion [2].
This is why the Hodge conjecture is now formulated for rational cohomology classes only.
Recently, Totaro gave a new interpretation of the Atiyah-Hirzebruch counterexamples, in
terms of the complex cobordism ring of X [17].

When looking at these examples, we noticed that the order of the non-algebraic torsion
class α can be divisible only by primes at most equal to the complex dimension of X (Th.
1). On the other hand, a construction of Kollár [12] provides examples of manifolds X as
above with a class α ∈ H4(X,Z) which is not algebraic, while a non-zero high multiple of
α is algebraic. Inspired by this construction, we give examples of a non-algebraic p-torsion
class in H6(X,Z), with dimC(X) = 5 and with p any prime bigger than 3 (Th. 3). In
particular, these classes could not be studied by the (topological) methods of [2] and [17].

In [17], Totaro gives examples of non trivial torsion classes in the Griffiths group of
homologically trivial algebraic cycles modulo those algebraically equivalent to zero. Such
examples were also constructed by Schoen [15], but Totaro’s construction provides non
trivial torsion cycles annihilated by the Abel-Jacobi map, while Schoen uses the Abel-Jacobi
invariant to conclude as in Griffiths [9] that his cycles are not algebraically equivalent to 0.
Note that for codimension 2 cycles, the Abel-Jacobi map is known to be injective on torsion
cycles homologous to 0 [8]. Theorem 4, again inspired by Kollár’s argument, gives new
example of such algebraic cycles, which furthermore cannot be detected Totaro’s method
(nor indeed by any locally constant invariant). More generally, we get non trivial algebraic
cycles in any level of the Hiroshi Saito filtration on Chow groups [14] (Theorem 5).

On the positive side, Bloch made the beautiful remark [4] that a conjecture of his and
Kato on the Milnor K-theory of fields [6] implies that any torsion class in Hn(X,Z), n > 0,
is supported in codimension one. We note in Theorem 7 that it implies also that the image
of this class by the Atiyah-Hirzebruch differentials are supported in codimension two.

Sections 1 and 5 (resp. 2, 3, 4) are due to the first (resp. second) author. This work
started at the Hodge’s Centennial Conference in Edinburgh, 2003. Both authors thank the
organizers of that meeting for their invitation. We also thank P. Guillot and B. Totaro for
useful comments, and J. Kollár for allowing us to reproduce his arguments in section 2.

1 On the counterexamples of Atiyah and Hirzebruch

Let X be a smooth projective complex manifold, Hn(X,Z) its codimension n singular coho-
mology with integral coefficients, and CHk(X) the group of codimension k algebraic cycles
on X modulo rational equivalence. Any codimension k cycle Z on X defines a cohomology
class [Z] ∈ H2k(X,Z), the image of which in H2k(X,C) has Hodge type (k, k). Hodge asked
whether, conversely, any class α ∈ H2k(X,Z) with image αC ∈ H2k(X,C) of type (k, k) is of
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the form α = [Z] for some cycle Z on X ([10], end of § 2). In particular, when α is a torsion
class, i.e. αC = 0, is it algebraic? This is true when k = 1, but Atiyah and Hirzebruch
found counterexamples when k ≥ 2 [2]. In these examples, to prove that α ∈ H2k(X,Z) is
not algebraic, they use the following criterion. Consider the spectral sequence of generalized
cohomology, with

Est
2 (X) =

{

Hs(X,Z) if t is even
0 if t is odd,

which converges to the topological K-groupsKs+t
top (X). If a class α ∈ H2k(X,Z) is algebraic,

its image by every differential dr, r ≥ 2, in that spectral sequence must vanish ([2], Th. 6.1).
Recently, Totaro revisited these examples of Atiyah and Hirzebruch. Let MU∗(X) be

the complex cobordism graded ring of X , and MU∗(X) ⊗
MU∗

Z its tensor product with Z

over MU∗ = MU∗(point) (which maps to Z = H0(point,Z)). Totaro proved that the cycle
map

CHk(X) → H2k(X,Z)

is the composite of two maps

CHk(X) → (MU∗(X) ⊗
MU∗

Z)2k → H2k(X,Z) . (1.1)

Therefore, a torsion class which is not in the image of (MU∗(X) ⊗
MU∗

Z)2k cannot be algebraic.

Our first remark is that, when one uses the Atiyah-Hirzebruch criterion or Totaro’s
factorization of the cycle map, the examples of non-algebraic torsion classes one gets must
be of small order compared to the dimension of X .

Theorem 1 Let p be a prime integer and α ∈ H2k(X,Z) a cohomology class such that
pα = 0. Assume that p is bigger than the complex dimension of X. Then, for every r ≥ 2,
dr(α) = 0. Furthermore, α lies in the image of

φk : (MU∗(X) ⊗
MU∗

Z)2k → H2k(X,Z) . (1.2)

Proof. The first assertion is rather standard. For any q > 1, the q-th Adams operation ψq

acts upon the Atiyah-Hirzebruch spectral sequence Est
r (X). When t = −2i, its action on

Est
2 (X) is the multiplication by qi. Since ψq commutes with dr, we get

(qk+r0 − qk) dr(α) = 0

when r = 2r0 + 1 (dr is zero when r is even). For the prime number p to divide qk+r0 − qk

for every q > 1, it is necessary that p − 1 divides r0. On the other hand, since pα = 0,
we must have k > 0 and dr(α) is not of top degree. Therefore r ≤ 2 dimC(X) − 2, hence
r0 < dimC(X). Since p > dimC(X), we get a contradiction.

Now consider the edge homomorphism

ek : K0
top(X) → H2k(X,Z)

in the Atiyah-Hirzebruch spectral sequence. Since dr(α) = 0 for every r ≥ 2, we have

α = ek(ξ) (1.3)

for some virtual bundle ξ ∈ K0
top(X). We want to show that α lies in the image of the map

φk : (MU∗(X) ⊗
MU∗

Z)2k → H2k(X,Z) .

First notice that, for every i ≥ 0, the Chern class ci(ξ) ∈ H2i(X,Z) is in the image of
φi. Indeed we have

ci(ξ) = φi(cfα(ξ) ⊗ 1) , (1.4)
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where cfα(ξ) ∈MU2i(X) is the i-th Connes-Floyd class of ξ, with α = (i, 0, 0, . . .) ([1], Th.
4.1). To check (1.4), by the splitting principle, we can assume that i = 1, in which case it
follows from the definitions (loc. cit.).

Since φ∗ is a ring homomorphism, any polynomial in the Chern classes ci(ξ) lies in its
image. Let Nk(c1, . . . , ck) be the k-th Newton polynomial. We claim that

k! ek(ξ) = Nk(c1(ξ), . . . , ck(ξ)) . (1.5)

To check (1.5), since ξ is the pull-back of a vector bundle on a Grassmannian, we can assume
that H∗(X,Z) is torsion free. Then it is enough to prove that the image of ek(ξ) in the
rational cohomology H2k(X,Q) is

chk(ξ) = Nk(c1(ξ), . . . , ck(ξ))/k! .

But this identity follows from the fact that the Chern character

ch : K∗
top(−) → H∗(−,Q)

is a morphism of extraordinary cohomology theories ([2], § 2).
Since pα = 0 with p > dimC(X) ≥ k, and since k! ek(ξ) lies in the image of φk by (1.4),

we deduce from (1.3) and (1.5) that α is also in the image of φk.

2 An argument due to Kollár

We start this section by describing a method due to Kollár [12], which produces examples of
smooth projective complex varieties X , together with an even degree integral cohomology
class α, which is not algebraic, that is, which is not the cohomology class of an algebraic cycle
of X , while a non-zero multiple of α is algebraic. This is another sort of counterexample
to the Hodge conjecture over the integers, since the class α is of course a Hodge class, the
other known examples being that of torsion classes [3] that we shall revisit in section 3.

The examples are as follows : consider a smooth hypersurface X ⊂ Pn+1 of degree D.
For l < n the Lefschetz theorem on hyperplane sections says that the restriction map

H l(Pn+1,Z) → H l(X,Z)

is an isomorphism. Since the left-hand side is isomorphic to ZHk for l = 2k < n, where H
is the cohomology class of a hyperplane, and 0 otherwise, we conclude by Poincaré duality
on X that for 2k > n, we have H2k(X,Z) = Zα, where α is determined by the condition
< α, hn−k >= 1, with the notation h = H|X = c1(OX(1)). Note that the class Dα is equal

to hk, (both have intersection number D with hn−k), hence is algebraic.
In the sequel, we consider for simplicity the case where n = 3, k = 2. Then Dα is the

class of a plane section of X .

Theorem 2 (Kollár, [12]) Assume that for some integer p coprime to 6, p3 divides D.
Then for general X, any curve C ⊂ X has degree divisible by p. Hence the class α is not
algebraic.

Recall that “general” means that the defining equation for X has to be chosen away from a
specified union of countably many Zariski closed proper subsets of the parameter space.

Proof. Let D = p3s, and let Y ⊂ P4 be a degree s smooth hypersurface. Let φ0, . . . , φ4 be
sections of OP4(p) without common zeroes. They provide a map

φ : Y → P4,

which for a generic choice of the φi’s satisfies the following properties :
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1. φ is generically of degree 1 onto its image, which is an hypersurface X0 ⊂ P4 of degree
p3s = D.

2. φ is two-to-one generically over a surface in X0, three-to-one generically over a curve
in X0, at most finitely many points of X0 have more than 3 preimages, and no point
has more than 4 preimages.

Let PN be the projective space of all polynomials of degree D on P4, and let X → PN be
the universal hypersurface. Introduce the relative Hilbert schemes (cf [11])

Hν → PN ,

parameterizing pairs {(Z,X), Z ⊂ X}, where Z is a 1-dimensional subscheme with Hilbert
polynomial ν. The Hilbert polynomials ν encode the degree and genus of the considered
subschemes, hence there are only countably many of them. The important points are the
following :

• The morphism ρν : Hν → PN is projective.

• There exists a universal subscheme

Zν ⊂ Hν ×PN X

which is flat over Hν .

Let U be the set
PN \

⋃

ν∈I

ρν(Hν),

where the set I is the set of Hilbert polynomials ν for which the map ρν is not dominating.
Let now X ⊂ P4 be a smooth hypersurface which is parameterized by a point x ∈ U (so X
is general). Let C ⊂ X be a curve. The reduced structure on C makes C into a subscheme
of X , which is parameterized by a point cx ∈ Hν over x, for some ν. By definition of U ,
since x = ρν(cx), the map ρν has to be dominating, hence surjective. Hence it follows that
there is a point c0 ∈ Hν over the point x0 parameterizing the hypersurface X0. The fiber
Z0 of the universal subscheme Hν over c0 provides a subscheme Z0 ⊂ X0, which by flatness
has the same degree as C. Let z0 be the associated cycle of X0. Recall the normalization
map

φ : Y → X0.

By property 2 above, there exists a 1-cycle z̃0 in Y such that φ∗(z̃0) = 6z0. It follows that

6deg z0 = deg φ∗(z̃0).

On the other hand, the right-hand side is equal to the degree of the line bundle φ∗OX0
(1)

computed on the cycle z̃0. Since φ∗OX0
(1) is equal to OY (p) (recall that Y ⊂ P4 was an

hypersurface of degree s), it follows that this degree is divisible by p. Hence we found that
6deg C is divisible by p, and since p is coprime to 6, it follows that deg C is also divisible by
p.

Remark 1 In contrast, one can show that there exists a countable union of proper alge-
braic subsets, which is dense in the parameter space PN , parameterizing hypersurfaces X
for which the class α is algebraic. It suffices for this to prove that the set of surfaces of
degree D carrying an algebraic class λ ∈ H2(S,Z) ∩ H1,1(S) satisfying the property that
< λ, c1(OS(1)) > is coprime to D, is dense in the space of all surfaces of degree D in P3.
Indeed, for any X containing such a surface, the class α is algebraic on X .

Now this fact follows from the density criterion for the Noether-Lefschetz locus explained
in [19] 5.3.4, and from the fact that rational classes λ ∈ H2(S,Q) such that a multiple bλ is
integral, and satisfies < bλ, c1(OS(1)) >= a with a coprime to D, are dense in H2(S,Q).
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Remark 2 The condition that p be coprime to 6 is not in fact essential, as shows the
argument from section 4, where a particular form of the map φ is used.

To conclude this section, we note that Kollár’s construction works only for high degree
hypersurfaces, and indeed hypersurfaces X of degree ≤ 2n− 1 in Pn+1 contain lines, whose
class is equal to the positive generator of H2n−2(X,Z). So the following question might still
have a positive answer :

Let X be a Fano variety or more generally a rationally connected variety of dimension
n. Is the Hodge conjecture true for the integral cohomology classes of degree 2n− 2 on X?

Note that all such classes are of type (n−1, n−1), sinceH2(X,OX) = 0 = Hn−2(X,KX)∗.
Since the rational Hodge conjecture is known to be true for degree 2n−2 classes, it is always
true that a multiple of such a class is algebraic. Note also that the question has a negative
answer for classes of degree 2n − 2k, n − 3 ≥ k ≥ 2, at least in the rationally connected
case. Indeed, it suffices to start with one of Kollár’s examples X ⊂ Pn+1 ⊂ Pn+l, l ≥ 2, and
to blow-up X in Pn+l. Since X has a degree 2n − 2 integral class which is of Hodge type
(n − 1, n− 1), but is not algebraic, the resulting variety Y , which is n+ l-dimensional and
rationally connected, has degree 2n+ 2s, l − 2 ≥ s ≥ 0 integral classes which are of Hodge
type (n+ s, n+ s), but are not algebraic.

One reason to ask this question is the fact that there is the following criterion for ratio-
nality :

Lemma 1 Let X be a variety which is birationally equivalent to Pn. Then any integral class
of degree 2n− 2 on X is algebraic. Furthermore, the Hodge conjecture is true for degree 4
integral Hodge classes on X.

Proof. In both cases, there is a variety Y which admits a morphism of degree 1, φ : Y → X ,
and is obtained from Pn by a sequence of blow-ups along smooth centers. Using the φ∗ map,
one concludes that if the statement is true for Y , it is true for X . Since the statement is true
for Pn, it suffices then to show that if the statement is true for a smooth projective variety
Z, it is true for the blowing-up ZW of Z along a smooth center W . But the supplementary
classes of degree 2n− 2 on ZW are generated by classes of curves contracted by the blown-
down map, hence they are algebraic. The supplementary integral Hodge classes of degree 4
on ZW come from integral Hodge classes of degree 2 or 0 onW , hence they are also algebraic.

3 Application to torsion classes

As said in the first section, examples of even degree torsion cohomology classes which are not
algebraic were first found by Atiyah and Hirzebruch [3]. They exhibited topological obstruc-
tions for a torsion class to be the cohomology class of an algebraic cycle. These obstructions
were reinterpreted by Totaro [17], who stated the following criterion for algebraicity :

(*) For a degree 2k class to be algebraic, it has to be in the image of the map φk of (1.2).
This leads to the construction of even degree torsion classes which are not algebraic. On

the other hand, as shown by Theorem 1, these examples must be of large dimension, and the
criterion above cannot be applied to provide for any prime p, examples of p-torsion classes
of a given degree on projective manifolds of given dimension, which are not algebraic.

In this section we apply Kollár’s argument to construct, for any prime p ≥ 5, examples
of p-torsion cohomology classes of degree 6 on smooth projective varieties X of dimension
5, which are not algebraic.

Furthermore, the fact that these classes are not algebraic cannot be detected by topo-
logical arguments. Indeed, any obstruction to algebraicity which is locally constant on the
parameter space of X must vanish on these classes, as we show that they become algebraic
on a dense subset of the parameter space of X . In particular, these classes are in the image
of the map φk, which shows that criterion (*) is not sufficient.
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The construction is as follows : let p ≥ 5 be a prime integer. Let S be a surface
which admits a copy of Z/pZ as a direct summand in H2(S,Z). Such a surface can be
constructed by a Godeaux type construction : namely one can take for S the quotient of a
degree p smooth surface Σ in P3, defined by an equation invariant under g, where g acts on
homogeneous coordinates by

g∗Xi = ζiXi, i = 0, . . . , 3.

Here ζ is a p-th root of unity, so that g has order p. As Σ is simply connected, one sees
easily that the torsion of H2(S,Z) is isomorphic to Z/pZ, generated by c := c1(L), where L
is any of the p-torsion line bundles on S corresponding to a non trivial character of Z/pZ.
Note that the class c is not divisible by p, since the torsion of H2(S,Z) is isomorphic to
Z/pZ.

We now consider an hypersurface X ⊂ P4 of degree p3. Recall from the previous section
that H4(X,Z) is generated by α, where α satisfies the condition

< α, h >= 1.

The class γ := pr∗1c ∪ pr
∗
2α is a degree 6 cohomology class on S ×X , which is of p-torsion.

Observe that, according to remark 1, this class is algebraic for a dense set of parameters for
X . Indeed, since c = c1(L) is algebraic, that is c = [D] for some divisor D of S, once α is
algebraic, say α = [Z], Z ∈ Z2(X), we also have

γ = [pr∗1D ∩ pr∗2Z].

We now have :

Theorem 3 For general X, the class γ is not algebraic. More precisely, for X general in
modulus, and for any surface T ⊂ S×X, the Künneth component [T ]2,4 of [T ] which lies in
H2(S,Z) ⊗H4(X,Z) is of the form t⊗ α, where t is divisible by p.

(Note that the Künneth decomposition is well defined for S×X , because the cohomology
of X has no torsion.)

Proof. For X, T as in the theorem, let the Künneth component [T ]2,4 of [T ] be of the
form t ⊗ α. If j is the natural inclusion map of X into P4, it follows that the Künneth
component of [(Id, j)(T )] which is of type (2, 6) is equal to t ⊗ j∗α. Since the class j∗α
generates H6(P4,Z), the statement is equivalent to the fact that [(Id, j)(T )]2,6 is divisible
by p.

We now apply the argument of section 2, except that instead of considering the relative
Hilbert schemes of 1-dimensional subschemes in hypersurfaces X , we consider the relative
Hilbert schemes of 2-dimensional subschemes in the products S ×X .

This provides us with a set U of parameters, which is the complementary set of a count-
able union of proper algebraic subsets in PN , and has the property that any surface T ⊂ S×X
admits a flat specialization T0 ⊂ S ×X0, for any specialization of X .

We will take for X0 the image of a generic morphism

φ : P3 → P4

given by a base-point free linear system of polynomials degree p.
Now, by property 2 (see section 2) of the morphism φ, there exists a 2-cycle t̃0 in S×P3,

such that, denoting by t0 the cycle associated to the subscheme T0, we have the following
equality of cycles in S ×X0 :

12t0 = (Id, φ0)∗t̃0,

where φ0 is the map φ viewed as a map from P3 to X0. It follows that we also have the
equality of 2-cycles in S × P4:

12(Id, j0)∗t0 = (Id, φ)∗ t̃0,
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where j0 is the inclusion of X0 in P4. This equality translates into an equality between cycle
classes :

12[(Id, j0)∗(t0)] = [(Id, φ)∗ t̃0],

and between their Künneth components of type (2, 6) :

12[(Id, j0)∗t0]
2,6 = [(Id, φ)∗ t̃0]

2,6. (3.6)

Now note that since T0 is a flat specialization of T , we have [(I, j0)(T0)] = [(Id, j)(T )] and
hence

[(Id, j0)∗t0]
2,6 = [(Id, j)(T )]2,6 = t⊗ j∗α.

So the left-hand side in (3.6) is equal to 12t⊗ j∗α. On the other hand, the right-hand side
in (3.6) is equal to (Id, φ)∗([t̃0]

2,4), where [t̃0]
2,4 is the Künneth component of type (2, 4) of

the class [t̃0]. Writing
[t̃0]

2,4 = t′ ⊗ β,

where β is the positive generator of H4(P3,Z), we have now

(Id, φ)∗([t̃0]
2,4) = t′ ⊗ φ∗β.

But since φ is given by polynomials of degree p, the class φ∗β is equal to p times the positive
generator of H6(P4,Z). Hence (Id, φ)∗([t̃0]

2,4) is divisible by p, and since p is coprime to 12,
so is t⊗ j∗α.

4 Application to torsion cycles

We apply in this section Kollár’s degeneration argument to construct interesting torsion
algebraic cycles on smooth projective complex varieties.

In [17], Totaro constructed examples of cycles which are homologous to 0 and annihilated
by the Abel-Jacobi map, but are not algebraically equivalent to 0. In fact they are not
divisible, while it is well-known that the groups CHk(X)alg of algebraically equivalent to 0
cycles are divisible. Totaro plays on the factorization of the map

CHk(X) → (MU∗(X) ⊗
MU∗

Z)2k

of (1.1) through algebraic equivalence. Denoting by

Griffk(X) = Zk(X)hom/Z
k(X)alg

the quotient of the group of cycles homologous to 0 by its subgroup Zk(X)alg, this provides
an invariant

Griffk(X) → (MU∗(X) ⊗
MU∗

Z)2k

with value in the kernel of the map φk : (MU∗(X) ⊗
MU∗

Z)2k → H2k(X,Z) of (1.2).

These are the invariants used by Totaro to detect non trivial torsion elements in the
Griffiths goup. The cycles constructed there turn out to be also annihilated by the Abel-
Jacobi map.

The construction we give here will provide torsion cycles annihilated by the Deligne cycle
class (i.e. cohomology class and Abel-Jacobi map) and also by the Totaro invariants, but
which are non divisible, hence non trivial modulo algebraic equivalence. A variant of this
construction (Theorem 5) also shows that one can construct such a cycle in any level of the
Hiroshi Saito filtration on the groups CH∗ (cf [14]).

We shall also construct non trivial torsion cycles, which are algebraically equivalent to 0
and annihilated by the Deligne cycle class map.
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The interesting point is that in all three cases, the cycles cannot be detected by any
locally constant invariant associated to a torsion cycle Z ∈ CH∗(X)tors in a smooth complex
projective variety X . By this, we mean an invariant which takes value in a locally constant
sheaf on the parameter space for X . Indeed, our construction provides torsion cycles on
smooth varieties which have parameters, and we shall see that for some special value of the
parameter, our cycles become rationally equivalent to 0. Hence any locally constant invariant
attached to them is 0. This is to our knowledge the first example of this phenomenon. Recall
that, in contrast, for fixed X , torsion cycles are known to be discrete, by the following lemma
(cf [13]):

Lemma 2 (Roitman) If X is projective, W is smooth and connected, and Γ ∈ CHk(W×X)
satisfies the property that for any w ∈ W , the cycle Γ∗w ∈ CHk(X) is of torsion, then Γ∗w
is in fact constant. Hence, if it vanishes at some point, it vanishes for any w.

Our examples show that the last statement is not true if X is allowed to deform, even
staying smooth.

Note finally that, while Bloch-Esnault’s [5] and Totaro’s non divisible cycles are defined
over number fields, ours might well not be, since we have to restrict to the general point of
a parameter space, which might exclude all the points defined over some number field.

The general idea of the construction is as follows : X will be again an hypersurface of
degree p3 in P4, but we assume that X contains a curve C of degree p. We arrange things
in such a way that the curve C is not divisible by p in CH2(X), as in the previous section.
This suggests that the cycle

pr∗1c · pr
∗
2C

on S ×X , where the notations are as in section 3), is non trivial, which is indeed what we
prove.

Let us now give the detailed construction : Fix a prime integer p. We will consider the
following morphism

φ : P3 → P4,

φ(x0, . . . , x3) = (xp
0, . . . , x

p
3, (

∑

i

xi)
p). (4.7)

So φ(P3) =: X0 is a hypersurface of P4 of degree p3. For any line l ⊂ P3, the image φ(l) is
a curve C0 of degree p, and if the line is conveniently chosen, this curve is smooth, hence is
contained in a smooth hypersurface X∞ of degree p3.

Consider the pencil (Xt)t∈P1 generated by X0 and X∞. For any t ∈ P1, let Ct ⊂ Xt be
the curve C0, viewed as a curve in Xt. Note that for smooth Xt, the cohomology class of
Ct is divisible by p : it is equal to pα where α was introduced in the previous section. It
follows that the Deligne cohomology invariant [Ct]D of Ct is also divisible by p, since there
is the exact sequence

0 → J3(Xt) → H4
D(Xt,Z(2)) → H4(Xt,Z) → 0,

and the intermediate Jacobian J3(Xt) is a divisible group.
Let now W be a smooth projective variety and L a p-torsion line bundle on W . In appli-

cations, W will be either a surface as in the previous section, and L will not be topologically
trivial, with c1(L) not divisible by p in H2(S,Z), or a curve of genus > 0, and L will be
topologically trivial, but not trivial. Let us denote c = cl(L) ∈ CH1(W ). Since L is of
p-torsion, so is the Deligne cohomology invariant [c]D ∈ H2

D(W,Z(1)).
The cycle we will consider is

c× Ct := pr∗1c · pr
∗
2Ct ∈ CH3(W ×Xt).

Note that this cycle has vanishing Deligne invariant, since

[c× Ct]D = pr∗1 [c]D ·D pr∗2 [Ct]D,
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where ·D is the product in Deligne cohomology, and the left factor is p-torsion while the
right factor is divisible by p. This cycle is of p-torsion, since c is, and it is algebraically
equivalent to 0 when c is, for example in the case where W is a curve.

We have now the following :

Theorem 4 1) For a general point t ∈ P1, the cycle c× Ct ∈ CH3(W ×Xt) is non 0.
2) If c is not divisible by p in CH1(W ), so is c × Ct in CH3(W × Xt) for general t,

hence in particular c× Ct is non trivial in Griff3(W ×Xt).

Proof. Let
X := {(x, t) ∈ P4 × P1/x ∈ Xt}.

X contains the 2-cycle Γ := C0 × P1, and W ×X contains the cycle

c× Γ := pr∗1c · pr
∗
2Γ.

Each W ×Xt
jt

→֒ W ×X is the fiber of the natural composite map

W ×X
pr2

→ X
f
→ P1,

where f is the map to P1 given by the pencil. The restrictions j∗t : CHl(W × X ) →
CHl−1(W ×Xt) are well defined even if W ×X is singular, because jt is the inclusion of a
Cartier divisor. We have j∗t (c× Γ) = c× Ct in CHi(W ×Xt), where i = dimW .

Lemma 3 1) Assume that for a general complex point t ∈ P1, the restriction j∗t (c × Γ) is
equal to 0 in CHi(W ×Xt). Then for any t ∈ P1, the restriction j∗t (c × Γ) is equal to 0 in
CHi(W ×Xt).

2) Similarly, if for a general complex point t ∈ P1, the restriction j∗t (c× Γ) is equal to 0
in CHi(W ×Xt) ⊗ Z/pZ, then the same is true for any t ∈ P1.

Proof. Indeed, the assumption in 1) implies that there exist a smooth projective curve D
and a finite morphism r : D → P1, such that denoting by

XD
f̃
→ D, XD

r̃
→ X

the fibered product X ×P1 D, the cycle

(Id, r̃)∗(c× Γ) ∈ CHi+1(W ×XD)

vanishes on some dense open set W ×XU , where XU := f̃−1(U) for some dense Zariski open
set U ⊂ D.

Similarly in case 2), the cycle

(Id, r̃)∗(c× Γ) ∈ CHi+1(W ×XD)

will vanish modulo p on some dense open set W ×XU .
This implies that the cycle (Id, r̃)∗(c × Γ) is supported on fibers of the map f̃ ◦ pr2 :

W ×XD → D, that is

(Id, r̃)∗(c× Γ) =
∑

d

j̃d∗γd in CHi+1(W ×XD), (4.8)

where j̃d is the inclusion of W × f̃−1(d) ∼= W × f−1(r(d)) in W × XD, and the sum on the
right is finite. Similarly in case 2), we will get the same equation as in (4.8), but modulo p.

For any t ∈ P1, let t′ ∈ D be such that r(t′) = t. Then we have

j̃∗t′((Id, r̃)
∗(c× Γ)) = j∗t (c× Γ) in CHi(W ×Xt). (4.9)
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But for any d ∈ D, the cycle
j̃∗t′(j̃d∗(γd))

vanishes in CHi(W × Xt) since either t′ 6= d and the two fibers do not meet, or t′ = d,
and then j̃∗t′ ◦ j̃d∗ is by definition the intersection with the class of the Cartier divisor
cl(OW×XD

(W ×Xt′)|W×X
t′
), which is trivial.

Combining this with (4.8) and (4.9), we have shown that j∗t (c×Γ) = 0 in CHi(W ×Xt)
in case 1) and j∗t (c× Γ) = 0 in CHi(W ×Xt) ⊗ Z/pZ in case 2).

We now conclude the proof of Theorem 4 by contradiction. Assuming the conclusion
of 1) or 2) in the theorem is wrong, we conclude using Lemma 3 that for t = 0, the cycle
c × C0 ∈ CHi(W ×X) is trivial (resp. is trivial mod. p in case 2) ). This means that we
can write

c× C0 =
∑

i

τi∗div φi in Zi(W ×X0), (4.10)

where Wi is normal irreducible of dimension i+ 1, φi is a non zero rational function on Wi,
and τi : Wi →W ×X is proper. In case 2), this equality will be true in Zi(W ×X0) mod p.

We observe now that the map φ : P3 → X0 has the following property :

Lemma 4 For any irreducible closed algebraic subset Z ⊂ P3, the restriction φ|Z has generic
degree 1 onto its image.

It follows that the τi : Wi → W × X0 lift to τ̃i : Wi → W × P3, so that equation (4.10)
provides

c× l =
∑

i

τ̃i∗div φi + z in Zi(W × P3), (4.11)

where we recall that l is the line such that φ(l) = C0 and where z is a cycle which satisfies :

(Id, φ)∗z = 0 in Zi(W ×X0). (4.12)

In case 2), this equation becomes :

c× l =
∑

i

τ̃i∗div φi + z + pz′ in Zi(W × P3), (4.13)

for some cycle z′, where z satisfies property (4.12). Let H = cl(OP3(1)) ∈ CH1(P3). We
have a map

q : CHi(W × P3) → CHi−1(W ) = CH1(W ),

defined by
q(γ) = pr1∗(γ · pr∗2H).

We observe that, because < l,H >= 1, we have

q(c× l) = c.

Applying q to the right-hand sides in equations (4.11) and (4.13) gives now

c = q(z) in CH1(W ), resp. c = q(z) in CH1(W ) ⊗ Z/pZ in case 2), (4.14)

where z satisfies property (4.12). We have now the following lemma :

Lemma 5 If z ∈ Zi(W × P3) satisfies property (4.12), then z = 0 in CHi(W × P3).
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Proof. The kernel of the map (Id, φ)∗ defined on cycles is generated by cycles z1 − z2,
where zi’s are effective and (Id, φ)∗(z1) = (Id, φ)∗(z2). By Lemma 4, this is equivalent to
(Id, φ)(z1) = (Id, φ)(z2), and looking at the form of the map φ given in (4.7), we see that
this is equivalent to the following :

There exist λ· = (λ0, . . . , λ3) and λ, where λi, λ are p-th roots of unity, such that on z1
the equality

∑

i λixi = λ
∑

i xi is satisfied, and we have

z2 = (Id, λ·)(z1),

where the action of λ· on P3 is given by λ·(x0, . . . , x3) = (λ0x0, . . . , λ3x3).
But the map (Id, λ·) acts as the identity on CH(W ×P3), because its graph is rationally

equivalent to the graph of the identity. Hence z2 is rationally equivalent to z1.

It follows from this lemma that equation (4.14) becomes in fact :

c = 0 in CH1(W ), resp. c = 0 in CH1(W ) ⊗ Z/pZ in case 2), (4.15)

which contradicts the fact that c 6= 0, resp. c 6= 0 mod. p in case 2). This concludes the
proof of the theorem.

Theorem 4, applied to the case where L is topologically trivial, hence c is algebraically
equivalent to 0, provides non trivial torsion cycles algebraically equivalent to 0 and anni-
hilated by the Abel-Jacobi map. Since cycles algebraically equivalent to 0 are images via
correspondences of 0-cycles homologous to 0, this is to be put in contrast with Roitman’s
theorem [13], which says that the Albanese map is injective on the torsion part of the groups
CH0.

Next, in the case where W = S is a surface and L is as in section 3, so that c1(L) is a
non divisible class in H2(S,Z), Theorem 4 shows that for general t, the cycle c× Ct is not
algebraically equivalent to 0.

On the other hand, note that we can arrange things so that for some flat deformation of
the pair (Ct, Xt) to a pair (C′

t, X
′
t), with X ′

t smooth, c × C′
t becomes rationally equivalent

to 0 on W ×X ′
t.

Indeed, in the above construction, we may assume that the initial curve C0 is a (singular)
plane curve of degree p. Such a plane curve deforms in a flat way to a multiple line Z of
multiplicity p in a plane, and one can then construct a deformation of the pair (Ct, Xt) to
a pair (Z,X ′

t). One verifies that it is possible to do so with a smooth X ′
t. The cycle z

associated to Z is divisible by p, and it follows that c× z = 0 in CH3(W ×X ′
t).

It follows in particular from this that the cycle c×Ct has vanishing associated Totaro’s
invariant, since these are locally constant under deformation of the pair (X , torsion-cycle
on X), and more generally any locally constant invariant of a torsion cycle must vanish on
it.

To conclude, let us note that the same proof can be used to construct p-torsion cycles
which are not trivial modulo algebraic equivalence, (in fact non divisible) and which are in
the k-th level of the Hiroshi Saito filtration F l

HSaito on Chow groups, where k can be taken
arbitrarily large. Recall that this filtration is smaller than any existing Bloch-Beilinson
filtration, and is defined as follows : F l

HSaitoCH
m(X) is the subgroup of CHm(X) which is

generated via correspondences by products z1 · . . . · zl of l cycles homologous to 0.
Namely, with the same notations as above, consider the case where W = S and c is not

divisible by p. Consider the cycle

ck × Ck
t = (c× Ct)

k = Πipr
∗
i (c× Ct) ∈ CH3k(Sk ×Xk

t ).

It is a p-torsion cycle which lies in F k
HSaitoCH

3k(Sk × Xk), since each factor c × Ct is
homologous to 0. Now we have
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Theorem 5 For general t, the cycle ck ×Ck
t is non 0 in CH3k(Sk ×Xk)⊗Z/pZ, hence in

particular it is not algebraically equivalent to 0.

Proof. We introduce as before the whole family

X k
/P1 := X ×P1 . . .×P1 X .

On Sk ×X k
/P1 , we have the cycle

ck × Γk,

where Γ was introduced at the beginning of the proof of Theorem 4, and Γk := Πlpr
∗
i Γ ∈

CH2k(X k
/P1).

The cycle ck × Γk restricts to ck × Ck
t on Sk ×Xk

t , and hence, applying Lemma 3, 2),
we conclude that it suffices to show that the restriction of ck ×Γk to the fiber Sk ×Xk

0 over
0 is non trivial modulo p.

But this restriction is equal to ck × Ck
0 , where C0 is the image of a line l in P3 via the

map φ. We have now an analogue of Lemma 5 which works for the map φk : P3 → Xk
0 ,

and allows to conclude that it suffices to show that the cycle ck × lk is not divisible by p
in CH3k(Sk × (P3)k). But the cycle ck is not divisible by p in Sk, because its cohomology
class is not divisible by p, and it follows by applying the map

CH3k(Sk × (P3)k) → CHk(Sk),

γ 7→ pr1∗(γ · pr∗2H
k),

that ck × lk is not divisible by p in CH3k(Sk × (P3)k).

One may wonder whether a similar construction might allow to construct examples of
non zero torsion cycles in Fn+1

HSaitoCH
n(X) for some n and some smooth complex projective

variety X . (Note that it is conjectured by Bloch and Beilinson that Fn+1
HsaitoCH

n(X)Q = 0.)

5 Consequences of the Bloch-Kato conjecture

When F is a field and n ≥ 0 an integer, we denote by KM
n (F ) the n-th Milnor K-group of

F . If a prime p is invertible in F there is a symbol map

KM
n (F )/p→ Hn(F, µ⊗n

p )

from the Milnor K-theory of F modulo p to the Galois cohomology of F with coefficients in
the n-th power of the Galois group of p-th roots of unity. We shall say that the Bloch-Kato
conjecture is true at the prime p when this symbol map is an isomorphism for every n ≥ 0
and any F of characteristic different from p [6]. Vœvodsky proved that the Bloch-Kato
conjecture is true at the prime 2 [18]. He and Rost are close to the proof of the Bloch-Kato
conjecture at every prime.

Bloch noticed the following striking consequence of the Bloch-Kato conjecture. Let X
be a smooth quasi-projective complex manifold, and α ∈ Hn(X,Z) an integral cohomology
class. We say that α is supported in codimension q when there exists a Zariski closed subset
Y ⊂ X of codimension q such that the restriction of α to X − Y vanishes.

Theorem 6 (Bloch [4], end of Lecture 5) Assume that the Bloch-Kato conjecture is true at
the prime p and that α ∈ Hn(X,Z) is killed by p. Then α is supported in codimension one.

The Bloch-Kato conjecture gives also some information on the Atiyah-Hirzebruch spec-
tral sequence computing the topological K-theory (this fact was first noticed for function
fields by Thomason).

Theorem 7 Under the same assumption as in Theorem 6, the image of α by every differ-
ential dr, r ≥ 2, is supported in codimension two.
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Proof. We consider the Atiyah-Hirzebruch spectral sequence with Z/p coefficients:

Est
2 (X ; Z/p) =

{

Hs(X,Z/p) when t is even
0 when t is odd,

which converges to Ks+t
top (X,Z/p). If the Bloch-Kato conjecture is true at p, it is known

[16] that the algebraic K-theory of X with Z/p coefficients is the abutment of a spectral
sequence

′Est
2 (X,Z/p) =

{

Hs
Zar(X, τ≤iRε∗ µ

⊗i
p ) if t = −2i ≤ 0

0 otherwise,

where ε : Xét → XZar is the natural morphism from the big étale site of X to its big Zariski
site, and τ≤i is the good truncation. There is a morphism of spectral sequences

′Est
r (X,Z/p) → Est

r (X,Z/p) .

Consider the differential

dr : En,−2n
r (X,Z/p) → En+r,−2n−r+1

r (X,Z/p) .

The group

′En,−2n
2 (X,Z/p) = Hn

Zar(X, τ≤nRε∗ µ
⊗n
p ) = Hn

Zar(X,Rε∗ µ
⊗n
p ) = Hn

ét
(X,µ⊗n

p )

maps isomorphically to
En,−2n

r (X,Z/p) = Hn(X,Z/p) .

On the other hand, if i = n + r−1
2

, the spectral sequence computing the hypercohomology
of τ≤i Rε∗ µ

⊗i
p is

′′Est
2 =

{

Hs
Zar(X,R

t ε∗ µ
⊗i
p ) when 0 ≤ t ≤ i

0 otherwise,

with abutment Hs+t
Zar (X, τ≤iRε∗ µ

⊗i
p ). When s+t = n+r we find ′′Est

2 = 0 unless n+r−s ≤

i = n+ r−1
2

, i.e.
r ≤ 2 s− 1 .

According to Bloch-Ogus [7], any class in ′′Est
2 is supported in codimension s. Therefore,

any class in Hn+r
Zar (X, τ≤i Rε∗ µ

⊗i
p ) is supported in codimension r+1

2
≥ 2.

Therefore, given x ∈ Hn(X,Z/p) ≃ ′En,−2n
2 (X,Z/p), we can find a Zariski closed

subset Y ⊂ X , codim (Y ) ≥ 2, such that, for every r ≥ 2, the restriction of ′dr(x) ∈
′En+r,−2n−r+1

2 (X,Z/p) to X − Y vanishes. Therefore the same is true for dr(x).
If α ∈ Hn(X,Z) is such that pα = 0, it lies in the image of the Bockstein homomorphism

β : Hn−1(X,Z/p) → Hn(X,Z) .

Therefore α = β(x), and dr(α) = β(dr(x)) is supported in codimension two.
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