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Résumé

We consider the magneto-electric optical properties of the quantum vacuum and show that all the different

phenomenona are related by Lorentz invariance. As a model calculation we show how crossed fields properties

can be calculated starting from single field properties by using Lorentz transformations. Using this method

we have studied for the first time the case of a crossed static magnetic field and electric field applied with one

of these two fields parallel to the direction of light propagation. We also show that parallel field properties

can be found using general symmetry properties.
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Introduction

Several new magneto-electric optical phenomena in centrosymmetric media have recently been observed for
the first time [1] [2] [3]. When a static magnetic field B0 and electric field E0 are applied perpendicular to each
other and to the propagation vector of the light k, the existence of magneto-electric linear birefringence [2], and
the existence of a polarization-independent anisotropy, proportional to B0×E0 [3] have been proven. When, on
the other hand, B0 and E0 are parallel, the existence of magneto-electric Jones birefringence was demonstrated
for the first time [1].

The most elementary centrosymmetric medium is the quantum vacuum. Non-linear optical phenomena in
vacuum have been predicted since 1935 [4] in the framework of quantum electrodynamics [5] [6]. In particu-
lar, the existence in the vacuum of a linear birefringence induced by a transverse static magnetic field (the
Cotton-Mouton effect), or by a transverse static electric field (the Kerr effect), has been predicted [7], but
not yet observed. Recently, magneto-electric linear birefringence, magneto-electric Jones birefringence [8] and
polarization-independent magneto-electric anisotropy [9] have also been predicted for the quantum vacuum.

Here we perform a complete study of the magneto-electro-optical properties of the quantum vacuum using
Lorentz invariance. Using a suggestion by the authors of Ref. [3], we relate single field properties to crossed
field properties like magneto-electric anisotropy. This method is based on the magnetic (electric) field behavior
under Lorentz transformation that allows us to look for an appropriate reference frame in which the two crossed
fields are transformed into only one field. In this reference frame the only existing effect is a magnetic (electric)
linear birefringence whose characteristic values of index of refraction are known. These refractive index values
can be transformed back to the laboratory frame values by using the well-known result of the electrodynamics
of moving media, as e.g. used to describe Fizeau’s experiment [5]. This method is ideally suited for the quantum
vacuum since it is invariant under Lorentz transformation, and one can calculate the analytical value of the
refractive index in any reference frame.

Magneto-electro-optics of the quantum vacuum

With this method, we reproduce in a straightforward way the results, obtained in previous publications by
more elaborate calculations, concerning magneto-electric birefringences, and polarization-independent anisotropy,
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proportional to B0 × E0. The case where a static magnetic field B0 and a static electric field E0 are simulta-
neously applied perpendicular to each other but with one of these two static fields parallel to the direction of
propagation has never been treated before. Here we demonstrate for the first time that only the field perpendic-
ular to the direction of propagation gives an effect and that no bilinear phenomenon exists for this geometry. In
the same context we also examine the case of both fields parallel to the direction of propagation. By symmetry
arguments we relate parallel fields properties to crossed fields properties and show that no effect exists for this
geometry.

The starting point of any calculation of the propagation of light in the quantum vacuum [8], [9] is the
Heisenberg-Euler Lagrangian [10]. The form of the effective Lagrangian LHE of the electromagnetic interaction
is essentially determined by the fact that the Lagrangian has to be relativistic and CPT invariant and therefore
can only be a function of the Lorentz invariants [11] F, G that in Heaviside-Lorentz units can be written as

F = (E2 − B2) (1)

G = (E · B) (2)

Up to second order in the fields, LHE can be written as LHE = L0 + LEK where L0 is the usual Maxwell‘s
term 1

2
F and LEK is the first order non linear term first calculated by Euler and Kockel [4]. LEK is valid in the

approximation that the fields vary slowly over the Compton wavelength of the electron λ = ~/mec and during
a time te =λ/c . Moreover E and B have to be smaller than the critical field Ecr = m2

ec
3/e~ i.e. B ≪ 4.4× 109

T and E ≪ 1.3 × 1018 V/m. LHE can be written in Heaviside-Lorentz units as

LHE = L0 +
1

2
(aF 2 + bG2) (3)

A term proportional to FG is Lorentz invariant but not CPT invariant and therefore does not appear in the
expression of LEK . Higher order terms of LHE can be written in the same way by looking for combinations of
the two invariants F and G that also respect CPT. In the case of a plane wave in vacuum, both F and G are
equal to zero. The propagation of a plane wave in vacuum is thereby not affected by non linear interactions
since LHE = 0.

The values of a and b are provided by QED. The calculation by Heisenberg and Euler gives a = e4
~/45πm4c7 =

2.67 10−32 G−2 and b = 7a. Based on this Lagrangian, in the case of crossed static fields E0 and B0, we showed
in Ref. [8] the existence of a Cotton-Mouton birefringence ∆nCM ∝ B2

0 , a Kerr birefringence ∆nK ∝ E2
0 and a

magneto-electric linear birefringence ∆nMELB ∝ E0B0. In Ref. [9] we also showed the existence of a magneto-
electric anisotropy, independent of polarization, ∆nMEA which is also proportional to E0B0. In the case of
parallel static fields we also showed in Ref. [8] the existence of a magneto-electric Jones birefringence corre-
sponding to a ∆nJ ∝ E0B0. Faraday and Pockel effects are not permitted in vacuum since no terms containing
three electromagnetic fields exist in the Heisenberg-Euler Lagrangian. As far as we know, the case of crossed
electric and magnetic fields with one of the two parallel to the direction of propagation of light has never been
treated, neither in vacuum, nor in any other medium. All the effects predicted for the quantum vacuum have
been observed in centrosymmetric media. The quantum vacuum behaves exactly like any other centrosymmetric
medium. The predicted values for all these effects in vacuum are unfortunately so small that observation has
not yet been possible.

For our purpose, we just need to suppose that when a static magnetic field B0 is present in a vacuum,
perpendicular to the direction of light propagation, the light velocity changes in such a way that

n‖ = 1 + η‖B
2

0
(4)

and
n⊥ = 1 + η⊥B2

0
(5)

where n‖ and n⊥ are the index of refraction for light polarized parallel and orthogonal to the static magnetic
field, respectively. Since the velocity of light has to be smaller than c, η‖ and η⊥ are positive.

E and B fields under Lorentz transformations

The case of two crossed fields E0 and B0 can be completely solved by an appropriate Lorentz transformation
thanks to the Lorentz invariance of the quantum vacuum. Using Lorentz transformations one can express the
fields E and B in an inertial frame K

′

in terms of the values in another inertial frame K. For a general Lorentz
transformation from frame K to a frame K

′

moving with velocity β= v/c relative to K, the transformation of
the fields can be written [12]

E
′ = γ(E + β × B) −

γ2

γ + 1
β(β ·E) (6)
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B
′ = γ(B − β × E) −

γ2

γ + 1
β (β ·B) (7)

where E and B are the electric and magnetic fields in the frame K, E
′ and B

′ are the electric and magnetic

fields in the frame K
′

and γ ≡
(

1 − β2
)−1/2

as usual. Let’s suppose that E and B are perpendicular with

E > B. It is possible to choose the velocity v so that in the corresponding frame K
′

only the electric field E
′

exists. To calculate v it is sufficient to put B
′

= 0 in Eq. 7 and to remark that a solution can be found only if
v is perpendicular to E and B. The result is that

v = c
E× B

E2
(8)

and therefore β = B/E. It is evident that this solution is only valid if E > B. In the case when B > E, one can
find a velocity v so that in the corresponding frame K

′

only the magnetic field B
′ exists. In this case

v = c
E× B

B2
(9)

and therefore β = E/B. The value of E
′ for E > B (resp. of B

′ for B > E) can be calculated by inserting the
corresponding value of v in Eq. 6 (resp. Eq. 7). One obtains

E
′ =

√

1 − β2E (10)

and
B

′ =
√

1 − β2B (11)

respectively.

Light propagation in a moving medium

The basic formulas to study the propagation of light in a moving frame are the ones that give the magnitude
and the direction of a velocity u obtained by adding relativistically two velocities u

′ and v [12]. In particular,
one finds that

u2 =
u

′
2 + v2 + 2u

′

v cos(θ
′

) − (u
′

v
c )2 sin(θ

′

)2

(1 + u′v
c2 cos(θ′))2

(12)

and

tan(θ) =
u

′

sin(θ
′

)
√

1 − β2

u′ cos(θ′ ) + v
(13)

where θ
′

is the angle between u
′

and v and θ the angle between u and v. To apply these formulas to our
calculation, let’s write u

′

= c/n′ and u = c/n, v being the moving frame velocity. In particular, if θ
′

= 0, θ = 0
and moreover if β << 1, one obtains the well-known Fizeau formula

u =
c

n′
+ v(1 −

1

n′2
) (14)

For the quantum vacuum n and n
′

can be written as n = 1 + δn with δn << 1 and n
′

= 1 + δn
′

with δn
′

<< 1.
If u and v are parallel, θ = 0 and θ

′

= 0 so that Eq. 12 can be written, up to first order with respect to δn and
δn

′

, as

δn = δn
′ 1 − β

1 + β
(15)

If u and v are antiparallel, one has simply to change the sign of β. If u is perpendicular to v, θ = π
2
. From

Eq. 13, we can infer that cos(θ
′

) = −v/u
′
and sin(θ

′

) =
√

1 − (v/u
′
)2. This obviously means that in K

′

, the

direction of propagation of light is no longer perpendicular to the frame velocity. Upon inserting the values of
cos(θ

′

) and sin(θ
′

) into Eq. 12, one obtains

δn = δn
′ 1

1 − β2
(16)
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Light polarization in a moving medium

We are interested in effects that depend on the polarization of light. We therefore have to study how the
polarization of light is transformed going from frame K to frame K

′

. We first consider the case of a plane wave
in K when no external fields are present and recall that the quantities E2 − B2 and E · B are invariant under
Lorentz transformation. For a plane wave in vacuum Eω = Bω and Eω · Bω = 0 where Eω,Bω are the optical
fields. Since E2

ω − B2

ω and Eω · Bω are equal to zero in K, they are also equal to zero in K
′

. This means that
in K

′

we still have a plane wave. If in addition, static E0 and B0 fields are also present, the total fields can be
written as E = E0 + Eω and B = B0 + Bω. Using the linearity of Eqs. 6 and 7 with respect to the fields, it is
straightforward to show that

E
′ = E

′
0

+ E
′
ω (17)

B
′ = B

′
0

+ B
′
ω (18)

where E
′
ω and B

′
ω are the transformations of the optical fields alone. We can therefore conclude that the optical

fields transform as if no external field were present and thus a plane wave in K remains a plane wave in K
′

.
Let’s now investigate how the orientation of Eω and Bω with respect to E0 and B0 changes in the K

′

frame.
We know that

E2 − B2 = E′2 − B′2 (19)

E
′ ·B′ = E · B (20)

We also have that E2

0
− B2

0
= E

′
2

0
− B′2

0
and E

′
0
· B′

0
= E0 · B0 (actually in our specific case B

′

0
= 0 (resp.

E
′

0
= 0)). We finally derive from Eq. 19 that

Eω · E0 − Bω · B0 = E
′
ω · E′

0
(resp. B

′
ω · B′

0
) (21)

and, from Eq. 20 that
Eω · B0 + E0 ·Bω = E

′
0
· B′

ω (resp. E
′
ω · B′

0
) (22)

If for example Eω ‖ E0 and Bω ‖ B0 Eq. 22 gives that E
′
0
· B′

ω = 0 i.e. E
′
ω ‖ E

′
0
. If vice versa Eω ‖ B0 and

Bω ‖ E0 Eq. 21 gives that E
′
0 · E′

ω = 0 i.e. B
′
ω ‖ E

′
0. Summarizing, the orientation of the polarization of the

wave with respect to the only existing static field in the K
′

frame is the same with respect to that static field
in the K frame.

Results

Let’s finally calculate the value of n using the expressions derived in the previous paragraphs. We consider
the situation when E0⊥B0 and assume for the moment that E0 < B0 and that k is parallel to E0 × B0 and
therefore parallel to v. In the frame K

′

, the only existing effect is a Cotton-Mouton effect proportional to the
square of B′

0
i.e. δn′ depends on the polarization of light. Thanks to eqs. 4, 5, we can write that

δn′
‖ = η‖B

′2
0 = η‖(1 − β2)B2

0 (23)

and, using Eq. 15,
δn‖ = η‖(1 − β)2B2

0
= η‖(B

2

0
− 2E0B0 + E2

0
) (24)

since E0 and B0 are perpendicular. For the same reason, we can write

δn⊥ = η⊥(1 − β)2B2

0 = η⊥(B2

0 − 2E0B0 + E2

0) (25)

So if η‖ 6= η⊥ i.e. if the Cotton-Mouton effect exists, we have demonstrated that the Kerr effect and the
magneto-electric birefringence proportional to E0B0 must also exist. Moreover, because of Lorentz invariance,
Kerr birefringence has to be of opposite sign compared to the Cotton-Mouton one since light retardation is
equal for light polarized parallel to the B0 field and orthogonal to the E0 field and vice versa. As for magneto-
electric birefringence, the coefficient that multiplies the fields is twice the one of the Cotton-Mouton or Kerr
birefringence.

Let’s now come to the polarization-independent magneto-electric anisotropy. If we write η‖ = η⊥ + ∆ we
find that light is retarded by the existence of the static fields independently of the polarization by a quantity
corresponding to

δn0(k) = η⊥(B2

0
− 2E0B0 + E2

0
) (26)
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If we change k into −k, we have to change the sign of β and therefore the previous equation becomes

δn0(−k) = η⊥(B2

0 + 2E0B0 + E2

0 ) (27)

and finally we find for the anisotropy

δn0(k) − δn0(−k) = −4η⊥E0B0 (28)

For the case when B0 < E0, one obtains exactly the same results and they are identical to those that we
have obtained in ref. [8] and that we have complemented in ref. [9] where we have used for η‖ and η⊥ the
accepted values. We stress that the existence of the magneto-electric anisotropy is only related to the fact
that η⊥ is different from zero. This effect could exist even if the Cotton-Mouton effect would not exist, as the
Cotton-Mouton effect exists only if ∆ is different from zero, independent of the value of η⊥.

We finally study the case when E0 = B0. If k is parallel to E0 × B0, δn‖ = δn⊥ = 0. This result is somewhat
obvious since this case corresponds to the propagation of a plane wave in the field of a co-propagating plane
wave. If k is antiparallel to E0 × B0, the effect is not zero. This means that two counterpropagating plane waves
can affect each other.

We note that η‖ and η⊥ are directly related to the coefficients of the invariants F 2 and G2 in the Lagrangian

LEK [13]. Actually, η‖ = b
2

and η⊥ = 2a and, for the Cotton Mouton effect, we have

∆n = n‖ − n⊥ =
1

2
(b − 4a)B2

0 (29)

i.e. ∆n = 3

2
aB2

0 since b = 7a. The existence of the Cotton-Mouton effect in vacuum therefore depends on the
ratio b/a. If for example b/a would be equal to 4, ∆n would be zero and no Cotton-Mouton effect would exist.
Nor would the Kerr effect, the magneto-electric birefringence or the magneto-electric Jones birefringence exist.
The only existing effect would be the polarization-independent magneto-electric anisotropy. This fact is not
without importance at least from a historical point of view, since Born and Infeld have developed around 1934
a QED theory [14] in which the value predicted for the ratio b/a was exactly 4.

The case of E0 perpendicular to B0 with E0 or B0 parallel to k has not been treated before and we will
show in the following how we can solve it using our method. Let’s assume that E0 < B0 and consider B0‖k.
The velocity v is perpendicular to k in frame K. In the frame K

′

, the B
′
0

field lies in the plane containing k
′

and v and it is perpendicular to v. The k
′ vector is no more perpendicular to v and therefore B

′
0

is no more
collinear with the direction of propagation of light. In this frame, only the Cotton-Mouton effect can exist, and
to calculate δn′, one has therefore only to consider the component of B

′
0

perpendicular to k
′. Using the result

for cos(θ
′

), this component B′
0,⊥ is equal to

B′
0,⊥ = −βB′

0 (30)

and
δn

′

∝ (1 − β2)B2

0β2 (31)

and finally, using Eq. 16,
δn ∝ B2

0
β2 = E2

0
(32)

Therefore only the Kerr effect exists for this case. Let’s now consider the case E0 > B0. The resulting E
′
0

is still
perpendicular to v and k

′. This means that in K
′

, the only existing effect is a Kerr effect given by the entire
electric field.

δn
′

∝ (1 − β2)E2

0 (33)

and finally by Eq. 16,

δn ∝ E2

0 (34)

Again, the B0 field gives no contribution. It is straightforward to show that in order to solve the case when the
E0 field is parallel to k, it is sufficient to permute E0 with B0 in the previous formulas. Therefore, in general,
the static field parallel to k does not contribute to a bilinear optical effect.
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Parallel fields geometry

To complete our analysis, we consider the geometry where the two fields B0 and E0 are parallel to each
other. The case in which the two fields are perpendicular to the k vector of light has been studied in detail
by Ross, Sherborne and Stedman in ref. [15]. These authors proved by symmetry considerations that in this
configuration, magneto-electric Jones birefringence should exist and that it should have the same magnitude as
the magneto-electric linear birefringence in crossed fields. The two effects are actually two different facets of the
same phenomenon.

What has not been studied yet is the case where the two parallel fields are parallel to the k vector. We will
show that no bilinear effect exists for this geometry. First assume that such an effect exists i.e.

δn = ηE0B0

Let’s regard the two fields in a K ′ reference frame moving at a velocity β in the direction of k. Using equations
6 and 7, one can show that

E
′
0

= E0 (35)

and
B

′
0

= B0 (36)

In K ′ therefore
δn′ = ηE0B0

Using equation 15 we must then conclude that

δn = ηE0B0

1 − β

1 + β
(37)

Since β can take any value between 0 and 1,this is in disagreement with our starting assumption, unless η is
equal to zero. Thus the two parallel fields in the direction of k give no bilinear effect.

Conclusion

We have shown that the magneto–electric optical properties of the quantum vacuum can be deduced from
the principle of Lorentz invariance. We have reproduced in a straightforward manner theoretical results obtained
by much more elaborate methods, and have also considered new geometries, never treated before. In particular
we have found the new result that in crossed static electric and magnetic fields, a static component parallel
to the propagation of light does not give rise to an optical effect. Although our method could also be applied
to material media, it is less convenient there, as one also has to take into account the transformations of the
induced material responses.
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