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Off-equilibrium fluctuation-dissipation relation in a spi n glass
An experimental test for mean-field predictions
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Abstract. We report new experimental results obtained on the insulating spin glassCdCr1.7In0.3S4. Our experi-
mental setup allows a quantitative comparison between the thermo-remanent magnetisation and the autocorrelation
of spontaneous fluctuations of magnetisation, yielding a complete determination of the fluctuation-dissipation relation.
The dynamics can be studied both in the quasi-equilibrium regime, where the fluctuation-dissipation theorem holds, and
in the deeply ageing regime. The limit of separation of time-scales, as used in analytical calculations, can be approached
by use of a scaling procedure.

PACS. 05.70.Ln Non-equilibrium and irreversible thermodynamics – 75.50.Lk Spin glasses and other random mag-
nets – 07.20.Dt Thermometers – 07.55.Jg Magnetometers for susceptibility, magnetic moment, and magnetisation
measurements

1 Introduction

Despite their large diversity, glassy systems have many dynam-
ical properties in common. In particular, a similar ageing be-
haviour can be observed in polymers, gelatins, or spin glasses
[1,2]. Stationarity cannot be reached in these systems in ex-
perimental, or even in geological times: they always remain
out-of-equilibrium, even when not submitted to any external
perturbation.

During a long period, the theoretical activity was concen-
trated on the study of the statics of glassy models. With the
nineties, began the time of theoretical dynamical studies,first
by numerical simulations, and then by analytical results on
specific mean-field models [3,4,5]. From these studies, new
concepts appeared, generalising the well known Fluctuation-
Dissipation Theorem (FDT), which holds for equilibrated sys-
tems [6,7].

In equilibrated systems with time translational invariance
(TTI), FDT can be used to measure the temperature in an abso-
lute way:

kBT =
∂tw

C(t − tw)

R(t − tw)
(1)

In this relationC(t − tw) is the autocorrelation function of an
observable (for instance the magnetisationM(t)) between two
times,t andtw, andR(t− tw) the response function associated
with a pulse of the conjugate field at timetw, h(t) = δ(t− tw).
These quantities are two times quantities, but, as the system is
TTI, they depend only on the time differencet − tw .
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Spin glasses never reach equilibrium, and the time autocor-
relation and the response function can not be reduced to one-
time quantities. Therefore, the temperature cannot be defined
on the basis of usual concepts. Nevertheless, it has been shown
that, in specific models with low rate of entropy production,
and using a generalisation of the FDT relation, a quantity that
behaves like a temperature could be defined [5], the “effective
temperature”. The effective temperature for one given value of
C(tw, t) = C can be defined as:

kBTeff = lim
tw→∞

C(tw,t)=C

∂tw
C(tw, t)

R(tw, t)
(2)

The only difference between relations 1 and 2 concerns the do-
mains of validity. The generalised fluctuation-dissipation rela-
tion is valid for stationary systems (simply,C andR depend
only on t − tw andTeff = T ), and it is also valid for every
systems in the limit of small rate of entropy production. Glassy
systems, in the limit of long waiting time are such systems.
Some experiments have been set up to measure this effective
temperature using frequency measurements in glassy systems
[8,9,10].

To understand the meaning of the time limit in equation 2, it
is helpful to refer to the so-called “Weak Ergodicity Breaking”
(WEB) concept [11]. WEB was introduced first in the study of
the dynamics of a random trap model very similar to the Ran-
dom Energy Model (REM) [12]. According to WEB scenario,
two different contributions can be identified in the dynamics:
a stationary one, corresponding to usual equilibrium dynamics
in a metastable state (and then not relevant for ageing studies),
and a second one, describing the long term evolution between
many metastable states, which features the ageing properties.
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This approach agrees well with an experimental fact: in
glassy systems, the relaxation function can be decomposed in
two distinct contributions [13]:

– The first one is independent of the age of the system (it de-
pends only on the observation timet − tw), and governs
the dynamics for the shorter observation times. Many re-
sults in spin glasses showed that the most appropriate form
for the decay is a power law with a small exponent,α ≈
0.1. This behaviour is consistent with the quasi-equilibrium
noise power spectrum, which varies as1/f1−α. As this part
is stationary, it should behave as in the equilibrated system:
FDT should hold between the stationary part of the relax-
ation and the corresponding part of the autocorrelation, as
shown in the section 4.1.

– The second one is non-stationary and decays approxi-
mately as a stretched exponential of the ratiot/tw. This
means that iftw → 0, this part tends to be instantaneous,
and if tw → ∞, it becomes infinitely slow. This contribu-
tion can be rescaled using a re-parametrised (effective) time
λ(t). When plotted versus the effective time difference, all
the non-stationary contributions measured with different
waiting times merge very satisfactorily in one curve [13],
showing that the same kind of dynamics persists along the
whole experimental time range, as in Fig. 6. Here, FDT
cannot be of any help to link response and stationary parts.

The limit in the definition of the effective temperature
(equation 2) means that the two contributions must be well
separated,i.e., the stationary dynamics must become negligi-
ble before the ageing one starts to be effective. This situation is
referred as the “time-scale separation limit”, and the evolution
of any dynamic quantity should present aplateau(in log-scale
of time) separating the stationary dynamics at short times from
the ageing one. Experimentally, this clear separation of the two
contributions is not observed.

In section 2, a setup allowing the measurement of magnetic
fluctuations and the response to the conjugate field will be de-
scribed, and it will be shown that it allows an absolute mea-
surement of the temperature, following Eq. 1. In section 3, the
experimental procedure to study the ageing regime of a spin-
glass using this tool is described. The results allow to check the
validity of the effective temperature concept, following Eq. 2,
and analysed according to various models in section 4.

2 An FDT-based thermometer

In this section, a new experimental setup, designed to measure
quantitatively the relations between fluctuation and response in
magnetic systems will be described. It will be shown that this
setup works in fact as an absolute thermometer.

Using FDT, expressed as in Eq. 1 for instance, any sys-
tem allowing a quantitative comparison between thermal spon-
taneous fluctuations of an observable and the response to its
conjugate field allows an absolute determination of the temper-
ature. The new experimental setup developed for the studies
of spin-glasses is first of all an absolute thermometer, which
should allow a determination of thethermodynamic temper-
ature of any equilibrated magnetic system down to very low

Fig. 1. Schematic of the basic circuit for noise measurement. In order
to maximise the coupling factor between the sample and the Pick Up
coil, a long cylinder (4 cm long,4mm wide) is used. The third order
gradiometer being2.2 cm long5.5 mm wide, this size insures almost
the best possible coupling factor, as any contact between the PU-coil
and the sample must be avoid to allow the temperature regulation.

temperature. In a setup completely dedicated to low temper-
ature measurements, the lowest temperature to be measurable
should be below the milliKelvin range.

2.1 Noise measurements

The protocol of spontaneous magnetic fluctuations measure-
ments is quite simple: a thermalised sample is introduced in
a pick-up coil (PU), itself part of a superconductive circuit
involving the input coil of a SQUID-based flux detector (see
Fig. 1).

Materially, the sample of cylindrical shape with diameter
and length5 mm and 40 mm respectively is contained in a
cylindrical vacuum jacket, part of a4He cryogenic equipment.
The PU is wound on the jacket. The sample itself is contained
in a cylinder made of copper coil-foil whose upper part is
a copper sink with thermometer resistor and heater resistor,
thermally connected to the4He bath by a flexible copper link,
thus allowing temperature regulation above4.2 K. The vacuum
system involves a charcoal pump thermally connected to the
4He through a thermal impedance. When cold, it insures good
thermal insulation; if heated, it allows to inject4He exchange
gas thus thermally connecting the whole sample to the helium
bath temperature.

The difficulties of the measurement lie in the extreme
weakness of the signal of the fluctuations and the strong re-
sponse to external excitations: the typical amplitude of mag-
netic fluctuations in our macroscopicCdCr1.7In0.3S4 sample
corresponds to the response to a magnetic field about10−7 G.
Several magnetic shields (µ-metal and superconductive) are
used in order to decrease the residual field at a level of order
1 mG, and to stabilise it. Furthermore, the PU is built with
a third order gradiometer geometry, which strongly reduces
the sensitivity to the time variations of the ambient fields.
In such conditions, and because of the extreme sensibility of
SQUID measurements, a satisfactory signal/noise ratio canbe
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easily obtained at short time-scales, corresponding to corre-
lation measurements with time differences of few seconds. In
order to study a glassy system in the deep ageing regime, such
time-scales are not enough: one needs to measure the time
autocorrelation with time differences up to several thousand
seconds. To suppress spurious drifts of the measuring chain,
further precautions are then needed: stabilisation of the helium
bath to avoid drifts of the SQUIDS sensor, stabilisation of the
room temperature to avoid drifts in the ambient temperature
electronics, etc.

It should be emphasised that the use of the third order gra-
diometer in this experiment is quite different from the most
common use. Usually, gradiometers are used in magnetome-
ters where the sample is small compared to the gradiometer
size, and is placed in a non-symmetric position; an homoge-
neous field is established, and the unbalanced flux due to the
magnetisation of the sample is recorded.

2.2 Response measurements

Already several years ago, a comparative study of the mag-
netic fluctuations and the conventional magnetic response was
done using a setup similar to the one schematically described in
figure 1 [14]. This comparison could not be made quantitative
with a satisfactory accuracy: the coupling factor of the sam-
ple to the detection system depends on the PU geometry and
is quite different in the noise setup and in a classical magne-
tometer with homogeneous field. In order to be able to compare
quantitativelythe results of both kinds of experiment, one has
to eliminate the effect of this geometrical factor in the compar-
ison. This can be done only if the coupling factor is the same
in both experiments. The way to achieve this can be illustrated
very simply. The fluctuations of the magnetisation are recorded
through a PU coil with a given geometry. According to the reci-
procity theorem, the flux fluctuations induced in the coil arethe
fluctuations of the scalar product of local magnetisationMdV
by the local fieldh produced by a unit of current flowing in the
PU coil:

Φ =

∫

sample

M.hdV

In our setup, the measured fluctuating observable is the flux
in the PU-coil. The conjugate quantity of this flux is the current
flowing through the coil, and thus, the magnetic field conju-
gate of the sample magnetic moment is the field produced by
the PU-coil itself. If this field is used as exciting field, then
the fluctuation-dissipation relation should remain the same for
the macroscopic quantities as for the microscopic ones. This is
strongly different from the situation where one tries to compare
the results of noise measurements to the results of classical re-
sponse measurements done in an homogeneous field: then the
coupling factor in both measurements has to be evaluated. A
way to use the PU-coil as field generator is the following. A
small coil coupled to an excitation winding with mutual induc-
tanceM is inserted in the basic superconductive circuit (see
Fig. 2.a).

Fig. 2. Schematic of the FDT circuits. TOP : Basic FDT circuit. BOT-
TOM : The bridge configuration used.

2.3 Absolute thermometer

2.3.1 Fluctuation Dissipation relation

Here we will show that, for any given equilibrated system, the
validity of FDT on microscopic quantities results in the validity
of an “effective FDT” on measured quantities. The factorK
which appears is setup dependent, but sample independent.

When a magnetic sample is inserted into the PU coil, by the
reciprocity theorem, a momentmi at positionri induces in the
coil a flux δΦ = mihi . Therefore, the flux in the coil due to
the sample is given by

Φ =
∑

i

∑

µ

mµ
i hµ

i , (3)

where µ indexes the spin components:µ = {x, y, z} for
Heisenberg spins,µ = {z} for Ising ones, etc. We suppose that
the medium is homogeneous, the components of the fluctua-
tions are statistically independent and their spatial correlations
are much smaller than the scale of the PU:

〈

mµ
i (t′)mν

j (t)
〉

= 〈m(t′)m(t)〉 δijδµν . (4)

Then, the flux autocorrelation is given by

〈Φ(t′)Φ(t)〉 =
∑

µ

∑

i

hµ
i

2 〈m(t′)m(t)〉 = QC(t′, t). (5)

The flux autocorrelation in the PU is thus the averaged one site
moment autocorrelation per degree of freedomC(t′, t), multi-
plied by the coupling factorQ determined by the geometries of
the PU field and of the sample.
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On the other hand, the impulse response function of one
moment in the sample is given by

Rµν
ij (t′, t) =

∂mν
j

∂hµ
i

= R(t′, t)δijδµν , (6)

whereR(t′, t) is the averaged one site response function of the
sample. If a currenti is flowing in the coil, the flux on the coil
due to the polarisation of the sample reads

Φ(t) =
∑

i

∑

µ

hµ
i

2
∫ t

R(t′, t)i(t′)dt′. (7)

Thus, the response function of the flux due to the sample in the
PU circuit is

RΦ(t′, t) = QR(t′, t). (8)

The same coupling factorQ =
∑

i

∑

µ hµ
i

2 determines the val-
ues of correlation and response of the flux due to the sample.

Note that the termh is the value of the internal field in the
sample, due to a unit of current flowing in the coil. Therefore,
Q corresponds to the same demagnetising field conditions in
both measurements. Actually,Q is time dependent, since the
internal field ish = h0µ(t′, t) whereh0 is the field term gen-
erated by the coil in vacuum andµ(t′, t) is the time dependent
sample permeability, but the important point is thatQ(t′, t) is
exactly the same in both experiments.

The above derivation is done in the context of a magnetic
system, showing that the measured quantities represent those
used in theoretical work, in which the single-site autocorrela-
tion and response functions are computed, and averaged over
the sample. Incidentally, an equivalent derivation could be done
for any system with magnetic response, for instance the eddy
currents in a conductor, with the same result: the coupling fac-
tors are the same in the fluctuations and the response measure-
ments.

In the basic measurement circuit, Fig. 2.a, the total flux im-
pulse response of the circuit to the currenti(t′) flowing in it
is

RL(t′, t) =
∑

Lδ(t − t′) + Q(t′, t)R(t′, t), (9)

where
∑

L is the total self inductance of the circuit. Flux con-
servation in the (SC) PU circuit leads to

Φexc(t) +

∫ t

−∞

RL(t′, t)i(t′)dt′ = 0, (10)

whereΦexc(t) = MI(t) is obtained by injecting a currentI(t)
in the excitation winding. The conjugate variable of the circuit
currenti is the fluxΦexc injected by the excitation coil. In the
case of an ergodic sample, it is easy to show that, once FDT
applies to the fluctuations and response of the flux induced in
the PU, it applies also to the fluctuations and response of the
current flowing in the circuit. Thus,

σi(t − t′) =
1

kBT
Ci(t − t′). (11)

The SQUID gain isG = VS/i. Thus, if a currentI(t) =
I0(1 − θ(t)) is injected in the excitation coil, the relaxation

of the SQUID output voltage is related to the autocorrelation
function of its fluctuations by:

VS(t) =
1

KT
〈VS(0)VS(t)〉 . (12)

whereK = G
MI0

kB . The system is an absolute (primary) ther-
mometer since, by measuring both the response voltage to an
excitation current step and the autocorrelation of the voltage
free fluctuations, it allows a determination of the temperature
whose precision (once a sample with large signal is chosen)
depends only on the precision of the determination of the ex-
perimental parametersI0, G andM .

The main drawback of the elementary measuring circuit de-
picted above is that the response to an excitation step involves
the instantaneous response of the total self inductance of the
circuit (first term in the right hand side —R.H.S— of Eq. 9). In
our case, both the susceptibility of the sample and the coupling
factorQ are weak. The quantity to be measured,— the second
term in the R.H.S of Eq. 9—, represents a few percent of the
first one. Thus, a bridge configuration as depicted in Fig. 2.b
has been adopted. Now, the main branch involving the sam-
ple is balanced by an equivalent one without sample. This sec-
ond branch is excited oppositely, in such a way that when the
sample is extracted from the PU, there is no response of the
SQUID to an excitation step. When the sample is placed into
the PU, the response of the SQUID is determined only by the
response of the sample. Nevertheless, now, the loop coupling
factor of the sample to the SQUID involves different self in-
ductance terms in both measurements, and one gets

K =
G

MI0

L0 + 2LS

L0
kB (13)

whereL0 andLS are the self inductances of the PU and of
the SQUID input respectively, and the effect of the sample has
been neglected in the value ofL0. This adds sources of error
on the calibration since the self inductance values are difficult
to determine precisely.

2.3.2 Calibration.

The circuit as described above is a thermometer, allowing
the determination of the temperature,kBT . Nevertheless, it
involves several home-made coils whose self-inductances can-
not be determined in their experimental environment without
large errors. This dramatically limits the precision on thede-
termination of the temperature. A calibration was thus needed.
For this, the fluctuations and response of a high conductivity
copper sample were measured in the setup. This high purity
(99, 999%) sample has a very low residual resistivity at low
temperature, obtained by annealing at high temperature in oxy-
gen atmosphere, thus reducing the density of magnetic residual
impurities. The sample has a cylinder shape,5 mm wide and
4 cm long. It was thermalised at the temperature of the boiling
4He at normal pressure (4.215 K).

Since this equilibrated system is stationary, one can use
standard Fast Fourier Transform algorithms in order to com-
pute the autocorrelation function from a single record. The
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Fig. 3. Measured relaxation (a) and autocorrelation (b) function for
the copper sample at4.2 K. (c) FD-plot, relaxation versus response,
the observation timeτ = t−tw being used as parameter: the observed
linear behaviour allows calibration of the system as thermometer, this
slope being proportional to1/T , independently of the sample. The
observed deviation from the linear behaviour at the shortertimes is
due to the effect of the low-pass filtering of the excitation—which
does not affect the correlation measurement.

average of the obtained autocorrelation function over many
successive records allows to reduce the noise level.

The relaxation function is obtained as the response to a field
step attw, and is only a function oft− tw. As the system does
not have remanent magnetisation (the eddy currents vanish in
a finite time, a few tenth of a second), the limit value of the
response function is zero.

The measured relaxation and autocorrelation of SQUID
voltage are plotted in figure 3(a) and (b) versus the observation
time. The fluctuation-dissipation diagram (FD-plot) is obtained
by plotting the relaxation versus autocorrelation, using the ob-
servation time as parameter, in figure 3(c) . The observed
linear behaviour is consistent with the FDT. As previously
shown, the slope between the relaxation and the response is
sample-independent, and proportional to1/KT . The measure-
ment on the copper sample, at a well known temperature allows
thus to determine the factorK. From it, we can determine the
temperature of any sample placed in the gradiometer from the
value of the slope of the measured relaxation versus correla-
tion curve. This can be applied to any equilibrated system. For
glassy systems, it should allow an experimental determination
of the effective temperature.

3 Fluctuation-dissipation relations in a
spin-glass sample

The aim of this work is the study of the fluctuation-dissipation
relation in a spin glass. In this section, we will emphasise the
peculiarities of this measurement, and then describe the proce-
dure used to make the analysis quantitative as well as the limits
of this procedure.

3.1 Sample

The knowledge acquired in previous magnetic noise investiga-
tions on spin glasses was very helpful to choose a good candi-
date for the present study. First, eddy currents in metallicsam-
ples produce noise, as in the copper sample used for calibration.
This noise can be measured, but not directly related to the spin
dynamics. In order to avoid this drawback, an insulating spin
glass sample was chosen.

Measurements onCsNiFeF6 have shown that this com-
pound has a stronger signal, and then a better signal to noise
ratio than any other insulating spin glass [15]. Nevertheless it
has a very strong ferromagnetic value of the average interac-
tion and its behaviour is far from the “standard” spin glass be-
haviour.

CdCr2−2xIn2xS4 was also extensively studied experimen-
tally, by classical susceptibility, magnetic noise, neutron scat-
tering [16,17,18,19]. In this series of compounds, the magnetic
ions areCr3+, with low anisotropy. The coupling is ferromag-
netic between first neighbours, and anti-ferromagnetic between
the second ones. The substitution ofCr3+ by the non-magnetic
In3+ increases the relative importance of anti-ferromagnetic
coupling as compared to the ferromagnetic one. The random
dilution introduces disorder and frustration, the basic ingre-
dients leading to spin-glasses. In the studies of the spin glass
state,CdCr1.7In0.3S4 is the preferred compound in this fam-
ily. The high concentration ofCr3+ allows this sample to have
a strong signal, but it is not high enough to reach the percola-
tion of the ferromagnetic order. With decreasing temperature,
finite sized ferromagnetic cluster formation is observed. Close
to Tg, these clusters are rigid, and the interaction between
them is random, with a weak anti-ferromagnetic average. This
clustering greatly increases the signal, as the noise powerof
N = N0/n ferromagnetic clusters ofn spins is

√
n times

stronger than the one ofN0 individuals spins.

3.2 Experimental details

Glassy systems are not stationary; their dynamics depends on
two times, both referred to a crucial event, the “birth” of the
system. In spin glasses, the birth time is best defined by the
time at which the final temperature is reached, as soon as the
end of the cooling procedure is fast enough [20]. A cooling pro-
cedure based only on driving the sample holder sink tempera-
ture would introduces non-negligible temperature gradients if
the cooling or heating rate is too high. This would lead to a
distribution of ages over the sample. In order to obtain a more
homogeneous temperature, the cooling procedure is as follows:

– first, the temperature is slowly decreased from a reference
temperatureTref aboveTg to a temperatureT1 ≈ Tm +
3 K, whereTm is the working temperature;

– then, by heating the charcoal pump, a small amount of He
gas is introduced, allowing aquickandhomogeneouscool-
ing;

– finally, the charcoal pump heating is switched off and the
vacuum surrounding the sample is restored, allowing the
temperature regulation atTm.
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Fig. 4. A typical thermal history of the sample for a4, 500 srecord at
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The first step (slow cooling, approx.0.25 K.min−1) does not
introduce severe temperature gradients, as the cooling is slow
enough. This step cannot be avoided, as the fast cooling by
exchange gas can only be used to decrease the sample temper-
ature by few Kelvin without introducing too strong perturba-
tions in the helium bath. Previous studies onCdCr2−2xIn2xS4

show that the dynamics is governed by the second, fast, cooling
step, at least on timescales shorter than20, 000 s [20]. This sec-
ond step is obtained by heating the charcoal pump during few
seconds. As the gas surrounds the sample, the resulting cool-
ing is homogeneous. When the heating is stopped, the charcoal
absorbs the gas back, allowing the regulation of temperature.
The amount of gas used and the duration of heating are ad-
justed in order to lower the temperature exactly down to the
working temperature. This allows to cool the sample by3 K in
less than30 s, keeping the temperature gradient negligible. The
birth time is taken as the instant when the sample temperature
reachesTm + 15 mK. This allows a precise, and reproducible
determination of it.

The measurement of the relaxation is straightforward. A
DC current is applied to the excitation coils at high tempera-
ture, before the beginning of the quench procedure, and switched
off at t = tw. The relaxation is then recorded fort > tw. The
signal is measured before applying the excitation: this deter-
mines the zero baseline of the measurement. After relaxation,
the sample is re-heated to the start temperature in order to
check the stability of the baseline. Thus, in the measurement,
both the zero and field cooled (FC) levels are known.

Recording the fluctuations is even simpler, at least in princi-
ple: no field is applied, the spontaneous fluctuations of the sig-
nal are just recorded from the end of the quench procedure and
during a long enough time to be able to compute all the desired
C(tw, t). However, as the system is not ergodic in the ageing
regime, the autocorrelation of the signalcannotbe evaluated
from a single record, as for an equilibrated sample. In order
to compute the autocorrelation function, an ensemble average
has to be done on successive equivalent records, each one initi-
ated by a quench. This does not only increase dramatically the

length of the experiment, but also the difficulties of the acqui-
sition, the ideal acquisition conditions having to be kept during
months instead of hours. This complication has nevertheless
an advantage: by averaging, it allows to make the separation
between a systematic spurious signal and the signal of the fluc-
tuations. In our results, the systematic signal is of the same or-
der of magnitude as the fluctuations themselves. It corresponds
to the drift of the SQUID due to the continuous decrease of
the He-level, and to the global response of the sample to the
residual field during the cooling procedure. The average of the
signal over records gives the zero, and the sample fluctuations
signal is then given by:

m(t) = M(t) − 〈M(t)〉 (14)

The autocorrelation is then evaluated from its definition:

C1(t, tw) = 〈m(tw)m(t)〉 (15)

In order to obtain a small statistical error, a very huge number
of records is needed. As each record length is about few hours,
the number of records is limited to about 300, and the aver-
age over the records is not enough to obtain a satisfactory ratio
between the statistical error and the signal. As the autocorre-
lation function should evolves smoothly for both variables, tw
andt, the autocorrelation function computed following eq. 15
is averaged over small time intervals of both variables :

Cavg(t0, tw0
) = C1(t, tw)|tw∈[tw0

±ǫtw0
], t∈[t0±ǫt0

] (16)

with
ǫt = 0.05t ≪ t. (17)

The criterion used (Eq. 17) is a compromise between the need
of statistics in order to obtain a low enough statistical noise,
and the requirement to keepǫ as small as possible to be able to
capture as precisely as possible the non-equilibrium dynamics.

3.3 Correlation offset.

In principle, our experimental procedure, involving many reali-
sations of the same experiment, allows to compute the autocor-
relation function of the magnetisation following its exactdefi-
nition, and thus exactly. Nevertheless, in reality, this would be
the case only if external sources of noise were negligible, not
only in the correlation time-scale under study, but also in the
time-scale of one complete record. This means that the external
noise should be controlled not down to1 mHz as in our experi-
ment, but at least down to frequencies as low as few0.01 mHz,
which is quite impossible. The result is that the computed cor-
relationC(tw, t−tw) contains an offset practically independent
on t − tw but randomly dependent ontw.

As the setup is a calibrated thermometer, the temperature
can be extracted from the derivative of theχ(C) curves in
experimental units. In order to obtain the FD-plot, this is not
enough. For a normalisation of the data, one needs to know
the zero reference level of the response and of the correla-
tion. In the case of the copper sample data, where the eddy
currents producing the signal have a finite and experimentally
accessible lifetime, this calibration is trivial: relaxation and
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autocorrelation functions decrease to zero after a few seconds.
In the spin glass case, normalisation of the relaxation is simple
since the zero level and the FC level are determined during the
measurement. For the correlation, things are not so easy.

As seen above, at a given temperature, the correlation
curves for differenttw are shifted between each other by a ran-
dom unknown offset. Nevertheless, it is possible to normalise
the data by taking as the origin of each curve the square of
the measured value of the first point,Cavg(tw, tw). Due to the
elementary measurement time constant, this term corresponds
to an average overt− t′ about10−2 s, i.e., a range of(t− t′)/t′

corresponding to the stationary regime where all curves must
merge. Thus, the following quantity is computed:

C(t, tw) − C0 = Cavg(t, tw) − Cavg(tw, tw)

The “individual” offset is now replaced by a “global” one,C0,
which should apply simultaneously to any measurement done
at a given temperature.

Then, the best way to normalise our data could be to ex-
tract C(t, t) from some other measurement, and to be able
to convert it in the “experimental units”. Neutron diffraction
experiments are now under way in order to measure this quan-
tity. C(t, t) can also be extrapolated from high temperature
measurements (aboveTg) to low temperatures (belowTg), or
deduced from some other quantities. Then a complete —but
model-dependent— determination of the autocorrelation can
be obtained, allowing to obtain the FD-plot. Anyway, even if
the hypothesis used to obtain this complete determination of
the autocorrelation were not realistic, some characteristics of
the FD-plot would not be affected. The temperatures, effective
or not, are measured from the slope between relaxation and
correlation in the experimental units. They will not be mod-
ified by the normalisation procedure, whose effect is just to
suppress an offset.

4 Discussion

In this section, the results of the measurements done at several
temperatures inCdCr1.7In0.3S4 will be analysed following
the line of the method described above.

4.1 Raw measurement

Figure 5 displays the values ofχ(tw, t)/χFC = 1−σ(tw, t)/χFC

plotted versusC(tw , t) for several values oftw and usingt−tw
as parameter. The three graphs correspond to the three temper-
atures 10, 13.3 and15 K. A first observation is that a linear
regime exists between relaxation and correlation for all the
temperatures and waiting-time investigated. This regime cor-
responds to the shorter observation times. In the figures, the
straight lines represent the FDT slope as calculated from the
values of calibration factorK and of the temperature: in this
regime, the relation between relaxation and correlation fol-
lows the FDT. Thus, this regime can be extrapolated from
the shorter experimental observation-time down to the mi-
croscopic time-scale. This extrapolation at short time should
reach the starting point of the FD-plot:C(tw, tw) corresponds

to χ(tw, tw) = 0. As no long term memory is observed in spin-
glasses,C(tw , +∞) = 0 should also correspond toχ(tw, +∞) =
χFC , but the extrapolation to this point is not obvious at all, as
the (unknown) ageing regime should be extrapolated.

4.2 Scaling procedure

The raw results show a waiting time dependence which can be
easily explained. The main theoretical predictions correspond
to the approach of the limittw → ∞, C(tw, t) = C (WEB).
In this case, the stationary and the ageing parts of the dynam-
ics evolve on distinct time-scales, yielding a separation of both
dynamics. Experimentally, such a separation is not accessible
since the waiting times are finite. In order to separate both part
of the dynamics, the entanglement between both part should
be described. The simplest way to combine these two contri-
butions is to add them. For instance, if one considers the relax-
ationσ observed after a unitary field step at timetw:

σ(tw , t) = (1 − ∆).σstat(t − tw) +

∆.σageing (λ(t) − λ(tw)) (18)

In this equation, all the differentσ are normalised to unity.
This relation is obviously valid in the limit of separation of
time-scales, and is the most commonly used in theoretical ap-
proaches, but it is counter-intuitive as shown by the following
two thought-experiments:

– In the first one, a glassy system is quenched at a temper-
ature belowTg at time t = 0, and att = 0+, a field is
applied. This experiment is usually though as being equiv-
alent to the “Field-cooled” procedure, in which the field
is applied before the quench. Experimentally, the Field
Cooled magnetisation is strikingly stable. In the additive
formulation, the predicted behaviour is the following: first,
an instantaneous variation due to the ageing part, and then a
slow variation up to the FC value, as the system approaches
equilibrium. Thus, the field-cooled magnetisation should
not be as stable in time, as what is observed experimentally.

– The second problem arises when thinking about some fi-
nite tw experiments, but with (very) huge time differences,
t → ∞. Ageing and stationary parts are usually described
as stretched exponential (with characteristic time of order
tw) and power-law with small exponent respectively. For fi-
nite tw, after a finite time, the only remaining contribution
to the dynamics would come from the stationary part, and
FDT would be recovered.

If the time-scales are not well separated, it seems intu-
itively that the two different contributions must be more en-
tangled than the result of a simple addition. Another (more
realistic) way to mix the two parts together is to consider a
“multiplicative” combination, which can be written as:

σ(tw , t) = [(1 − ∆).σstat(t − tw) + ∆] ×
σageing (λ(t) − λ(tw)) (19)

In the limit of time-scales separation, equations 18 and 19
are equivalent. Moreover, it is easy to show that the problems
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measurements reported on the same graph, the smooth curve corresponds to equation 26, with an exponentB = 0.47.

raised in the two cases discussed above disappear. Thus, as this
formulation is at least as justified as the “additive” one, and
seems less counter-intuitive to the authors, it will be preferred
in the following.

Experimentally, separation of timescales is not accessible
since the waiting times are finite. In order to separate both part
of the dynamics, a scaling analysis, as described by equation
19 and illustrated by Fig. 6 is applied on both relaxation and
correlation measurements, within the following constraints:

(i) In the relaxation, the stationary part is described by a
power-law decay; its exponentα is extracted from the
decay of the noise power-spectra measured on the same
sample, at the same temperature, in the quasi-equilibrium
regime obtained after a very long waiting at the working
temperature (typically 15 days) [21].

(ii) In the non-stationary regime, the effective time is given by
λ = t1−µ

1−µ
. The value of the sub-ageing exponent,i.e., µ is

in the range0.85 − 0.9 [16]. µ and the relative amplitude
of the ageing part,i.e., ∆, are chosen to obtain the best
rescaling of the relaxation curves once the stationary part
has been subtracted.

(iii) The stationary part of the autocorrelation function is then
evaluated using FDT and the stationary part of the relax-
ation. The ageing part of the autocorrelation can then be
deduced from equation 18 or 19.

The resulting FD-plots are displayed in open symbols in the
diagrams of figure 5 for the ageing part (by construction, the
stationary part follows the FDT line). For all the investigated
temperatures, the ageing part starts with a slope very closeto
the FDT one. This may reflect the imperfections of our decom-
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position between the stationary and the ageing parts. Usingthe
additive scaling, this effect is even more pronounced.

The multiplicative scaling has a main drawback: it can
not be used without the knowledge of the amplitude of the
concerned physical quantity. As previously discussed in sec-
tion 3.3, for the correlation this value must be determined
indirectly, and is model dependent; thus the scaling is also
model-dependent. The additive form of the scaling can be
applied without any amplitude parameter. However, the de-
pendence of the scaling on this parameter is weak, the results
obtained from different models are indistinguishable fromeach
other.

The ageing part of the correlation function is found to fol-
low remarkably the scaling-law used for the ageing part of the
response, resulting in a very weak systematictw-dependence of
the FD-plots. Thus, the equation 18 (or 19) can be written for
the correlation, with the amplitude parameter∆ replaced by
qEA, the usual Edwards-Anderson order parameter [22], which
is defined as the remaining part of the autocorrelation for an
equilibrated spin glass after an infinite waiting time. As a con-
sequence, the FD-plots are determined by a single parameter,
the effective time difference: the limit FD-plots, corresponding
to the ideal separation of the stationary and ageing regime is in-
dependent of the age of the system, as supposed in theoretical
works.

4.3 Comparisons with some models predictions

Depending on the models, some remarkable features of the FD-
diagrams are predicted. The analysis of the FD-diagrams may
help to check the validity of the models used to interpret the
glassy behaviour found inCdCr1.7In0.3S4.

4.3.1 Domain growth

In domain growth models, as in any replica symmetric mod-
els, the FD-plot should be quite simple in the limit of time-
scale separation. For an infinite waiting timetw, the quasi-
equilibrium relaxation should go down to zero. A FDT-behaviour
should then describe all the response, governed by the single-
domain response and the scaling approach used in this paper
should give(qEA 6= 0, ∆ = 0). Thus, the remaining part of
the diagram, an horizontal line, should correspond to an infi-
nite effective temperature [23,24]. This description doesnot
coincide with the FD-diagram shown in figure 5, even after the
separation of time-scales obtained by scaling.

Anyway, a more refined approach as in [25] is not excluded,
in which dynamics is described introducing a crossover region
in between the quasi-equilibrium region (C > qEA) and a
purely ageing region characterised “dynamical order parame-
ter” qD for C < qD < qEA. This approach could explain the
“early” departure from the FDT regime. This departure should
be tw-dependent, but this dependence may be hidden by a too
small range of waiting times explored (as well as a too weak
exploration of the ageing regime).

4.3.2 1-step replica symmetry breaking

In CdCr1.7In0.3S4, one of the best realisation of an Heisen-
berg spin-glass, it has been shown that the scenario of the chi-
ral spin glass could be relevant [26,27]. Such model belongsto
the 1-step replica symmetry breaking (1-RSB) models family
[28,29,30].

In 1-RSB case, the ageing regime is described by a unique
effective temperature, finite and strictly greater than thether-
malisation temperature. By considering a normalised FD-plot,
it is easy to show that the value ofqEA can be deduced from the
value ofT , Teff andγ = 1−∆

∆
, the ratio between the stationary

and the ageing part of the relaxation, which is experimentally
accessible:

qEA =
1

1 + γ. T
Teff

(20)

As the experimental setup is a calibrated thermometer, it
allows an absolute determination of the temperatures. The de-
termination ofT andTeff extracted from the slope of the sta-
tionary and the ageing part respectively allows the complete de-
termination of the offsetCo. The obtained values ofTeff and
qEA are reported in table 1. The separation by scaling between
stationary and ageing part being far from perfect, the uncer-
tainty on the determination ofTeff , and consequently onqEA

is quite large. The choice of a scaling procedure also influences
the results (the previously reported value forTeff ≈ 30 K for
a thermalisation temperature of13.3 K was obtained by an ad-
ditive scaling analysis of the data [31]). The results of table
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T [ K] Teff [ K] q1−step
EA qPaT

EA

10 28 ± 6 0.65 ± 0.05 0.63
13.3 50 ± 10 0.45 ± 0.05 0.37
15 80 ± 20 0.36 ± 0.07 0.21

Table 1. Values ofTeff as obtained in an 1-step replica symmetry
breaking scenario and the corresponding Edwards-Andersonorder pa-
rameterq1−step

EA (cf section 4.3.2). The values ofqPaT
EA are deduced

from the PaTansatz(cf. section 4.3.3).

1 can be compared with the results of simulations done on a
weakly anisotropic spin glass model by Kawamura [32]. In this
work, it was found thatχ depends linearly onC in the ageing
regime. The effective temperature was found to be indepen-
dent of the temperature of the thermalisation bath. This inde-
pendence does not appear in our data, but, maybe, it can be
due to the extremely low anisotropy used in the simulations.
CdCr1.7In0.3S4 is known to be an Heisenberg spin glass with a
non negligible anisotropy, which as been found to be five times
stronger than in the canonicalAgMn spin glass.

4.3.3 Continuous replica symmetry breaking

In continuous replica symmetry breaking (∞-RSB) models,
as the Sherrington-Kirkpatrick (SK) model [33,34], the Parisi
order parameter is a continuous function between 0 andqEA

[35,36]. Links between statics and dynamics imply that the
corresponding effective temperature is a smooth and not trivial
function of the autocorrelation :

1

Teff

(C ) =
1

T

∫ C

0

P (q)dq (21)

Then there is no trivial relationship betweenqEA and the
measured quantities. It is nevertheless possible to to progress
further if the studied compound is a canonical spin-glass. In
these systems, the FC susceptibility is purely paramagnetic
at high temperature, following equation 22, and belowTg, its
value is temperature independent:

χFC(T > Tg) = C(t, t)/kBT (22)

χFC(T < Tg) = C(t, t)/kBTg (23)

The lower the concentration of magnetic ions in the canon-
ical sample, the smaller the probability of spins clustering
and the better the validity of the above relations [37]. Thus,
the value ofC(t, t) can be straightforwardly derived from
susceptibility data. The canonical behaviour is also observed
or imposed in theoretical models, and known as the Parisi-
Toulouse Hypothesis [38]. This “PaT” hypothesis implies that
the FC response is temperature independent, as observed in
diluted spin glasses.

In samples with high concentration in magnetic sites, de-
viations from the simple canonical behaviour are observed,
as well as the formation of clusters of spins. At low tempera-
tures,the response of single spins is no more observed, but the
response of some rigidly coupled groups of spins. For macro-
scopic quantities, this is equivalent to the response of fewer

renormalised spins. InCdCr1.7In0.3S4, which has a mean cou-
pling constant strongly ferromagnetic (Θ = 100 K [17,39]),
this clustering may explain that at low temperature, but above
Tg, the compound behaves as a compound with antiferro-
magnetic average of couplings. A standard Curie-Weiss law
description around30 K gives a mean coupling characterised
by Θ ≈ −9 K [40]. Such a description, with a non-trivial
Θ(T ) variation, should be associated with a non-trivial, but
still smooth, functionC(t, t; T ). As informations on the vari-
ations ofC(t, t; T ) are lacking we propose to consider that
relations 22 and 23 are still valid in the general case. This is a
strong hypothesis since it amounts to consider that the temper-
ature variation ofχFC is due only to the temperature variation
of C(t, t; T ). One can write:

C(t, t; T )

kBT
= χFC(T < Tg)

T ∗
g

T
(24)

A smooth behaviour ofC(t, t; T )/kBT aroundTg can be
obtained usingT ∗

g = 17.2 K in the formula .
This ansatzgives an access to the unknown offset of the

autocorrelation: i) the starting point of the FD-plot, corre-
sponding to[C(tw , tw; T ); σ(tw , tw)] is completely defined,
ii) C(tw,∞; T ) corresponds to the point where the FDT line

reaches the level given byχFC(T < Tg)
T∗

g

T
. Then the FD-

graph can be plotted in reduced units as displayed in figure 5d.
In this plot, the starting point (C = 1) and the end point
(C = 0) are temperature independent. Furthermore, it has been
shown (for some mean field models, and approximately for the
SK model) that not only these points but also all the ageing part
of the plot is temperature independent [41]. It is conjectured
that this can be still valid in short range models [42,43,44].
This property is particularly interesting: it allows, by measure-
ments at several temperatures, to obtain the whole “master”
curve describing the ageing behaviour, even if each set of data
spans a limited portion of the correlation. This feature hasbeen
already used to obtain the master curve from response data,
assuming that the separation of time-scales is reached in usual
susceptibility measurements [45,46].

In the SK model at smallC, it can be shown that the master
curve should behave as [43]:

χ(C) =
√

1 − C (25)

For correlations close to zero, the slope of the FD-plot,
X(C) =

∫ C

0
P (q)dq, should asymptotically reach zero, as

P (0) is known to have a finite value in the continuous RSB
case.

Equation 25 can be generalised by allowing any exponent
different from0.5:

χ(C) = (1 − C)B (26)

Such a curve can be easily superimposed to our experimen-
tal results. Using a coefficientB = 0.47, a single curve can
describe the ageing regime at all the investigated temperatures
and for the data close toqEA(T ). Both the value ofqEA(T )
and the effective temperature close toqEA seem to be well de-
scribed by Eq. 26.



D. Hérisson, M. Ocio: Off-equilibrium fluctuation-dissipation relation in a spin glass 11

ForC ≪ qEA, at each temperature, the experimental points
deviate from relation 26. This cannot be due only to the smaller
signal to noise ratio at the longest timescales, since the effect
seems to be more pronounced at the highest temperature, where
the sample signal is the strongest.

A possible explanation is that the scenario with continuous
replica symmetry breaking should be associated with a contin-
uous distribution of timescales describing the system. As the
limit of separation of timescales is not reached in our results,
the ageing regime itself is a combination of many timescales.
The scaling procedure allows to extract the stationary part,
but not to reach the limit where a full time-scale separationis
achieved.

A way to reach the limit could be to iterate the scaling pro-
cedure on the ageing data to separate the “ageing timescales”.
The ageing regime can be considered as a pseudo-FDT one,
with a temperature equal toTeff (qEA). Such a work on the
available data is however hopeless, as the separation between
stationary and ageing part seems obviously already far from
perfect.

A scaling can be deduced from equation 26 [43], which,
usingΦ = 1

1−B
, can be written as, :

χ.T 1−φ =

{

A[(1 − C)T−Φ]B for C ≤ qEA(T ) ,
(1 − C)T−Φ for C > qEA(T ) .

(27)

If a power-law can describe the ageing dynamics, then all
the scaled data should merge along a single line. The best result
is obtained forB = 0.5, but the cloud of points remains very
broad, and is not well described by the predicted straight-line
in thelog(T 1−Φχ) vs log

(

T−Φ(1 − C)
)

diagram.
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Fig. 7.Scaling of the ageing parts of the FDT-diagram following equa-
tion 27. The straight line shows the result predicted by thisequation.

5 Conclusion

In this paper, it has been shown that the experimental setup
developed in this work can be considered as an absolute mag-
netic thermometer. However, to get rid of uncertainties on the

value of several elements of the setup, the setup was calibrated
by measuring the magnetic fluctuations and response of a high
conductivity copper sample thermalised at helium tempera-
ture. This calibrated thermometer was used to determine the
out-of-equilibrium properties of a spin-glass below the glass
transition. The autocorrelation function of the spontaneous
magnetic fluctuations of a well characterised insulating spin-
glass was investigated in the deeply non-stationary regime.
Its waiting time dependence can be described by using the
same scaling as for the response function. The FD-plots clearly
confirm that the stationary dynamics observed at the shorter
timescales can be considered as a quasi-equilibrium once, as
the fluctuation-dissipation relation between autocorrelation
and relaxation obeys the fluctuation-dissipation theorem.The
results show clearly that the asymptotic regime, with full sep-
aration of timescale is not reached. Certain Hypotheses on the
dynamics are made in order to compare the results with model
predictions. The deduced scaling analysis allows to extrapolate
the experimental results to the limit used in theoretical studies
of weak-ergodicity breaking models.

The experimental results obtained onCdCr1.7In0.3S4 dif-
fer qualitatively from the predictions of any domain-growth
model.

The experimental data allow interpretations that are rather
consistent with predictions from the two replica symmetry
breaking models under study. As long as the autocorrelation
cannot be determined completely, both models can be relevant,
giving slightly different results concerning the value ofqEA.
An independent determination of the characteristic magnetic
moment of the clusters as a function of temperature is needed
in order to resolve this ambiguity .

The possibility of analysing the experimental results on
the basis of 1-step replica symmetry breaking confirms that,
at first sight, the chiral model developed by Kawamura could
be the more relevant one for theCdCr1.7In0.3S4compound
with low anisotropy, supporting the conclusion from D. Petit
and I. Campbell on this sample [26]. However, the scatter of
the data is such that one cannot reject definitely an interpre-
tation inspired by the mean-field models developed for Ising
spin-glasses.
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