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Université Paris-Sud,
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1 Introduction

We are interested in the exponentially small eigenvalues of the semiclassical
Witten Laplacian on 0-forms

∆
(0)
f,h = −h2∆ + |∇f(x)|2 − h∆f(x).

We shall consider this operator on Ω which is either a connected compact
Riemannian manifold or Rn. The function f will be a Morse function and
when Ω is a compact manifold for example it is known (see [Wit], [CFKS]
and [HelSj3]) that there are exactly m0 eigenvalues in some interval [0, e−α/h]
for h > 0 small enough, where m0 is the number of local minima. Moreover
the same result holds for Witten Laplacians on p-forms if mp denotes the
number of critical points of index p.

Our purpose is to derive accurate asymptotic formulas for the m0 first
eigenvalues of ∆

(0)
f,h. A similar problem was considered by many authors

via a probabilistic approach in [HolKusStr], [Mi], [Ko], and more recently in
[BEGK] and [BGKl], where A. Bovier, V. Gayrard and M. Klein obtained ac-
curate asymptotic forms of the exponentially small eigenvalues. The Witten
Laplacian being associated to the Dirichlet form

u 7→
∫

Ω

|∇u(x)|2 e−2f(x)/h dx,

they considered this problem via a probabilistic approach. They obtained the
following asymptotic behaviour for the first eigenvalues λk(h), k ∈ {1, . . . ,m0},
of ∆

(0)
f,h :

λk(h) =
h

π
|λ̂1(U

(1)
j(k))|

√√√√√
∣∣∣det(Hess f(U

(0)
k ))

∣∣∣∣∣∣det(Hess f(U
(1)
j(k)))

∣∣∣
× exp−2

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
× (1 +O(h

1
2 | lnh|)) , (1.1)

where the U
(0)
k denote the local minima of f ordered in some specific way, the

U
(1)
j(k) are “saddle points” attached in a specific way to the U

(0)
k (which appear

to be critical points of index 1) and λ̂1(U
(1)
j(k)) is the negative eigenvalue of
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Hess f(U
(1)
j(k)) (for k = 0 the convention f(U

(1)
j(1)) = +∞ corresponds to the

fact λ1(h) = 0).
Beside the fact that one would like to relate this result to the previous semi-
classical analysis by Helffer-Sjöstrand of the Witten complex in [HelSj3], our
aim is twofold :

1) Improve the remainder and replace the O(h1/2 lnh)-term by O(h) with a
possible higher order expansion.

2) Extend the results of Bovier-Gayrard-Klein to the cases when Ω is an
oriented Riemannian manifold or when Ω = Rn and e−f(x)/h does not
belong to L2, which cannot be handled easily via the probabilistic ap-
proach.

Although the present approach leads to more accurate and general results,
the probabilistic point of view presents other interests :

a) First of all, the probabilistic interpretation and its link with potential the-
ory gave to these authors the right intuition for the geometrical quan-
tities involved in the asymptotic behaviour of the exponentially small
eigenvalues. Indeed the numbering of local minima and the choice of
the critical point of index 1, U

(1)
j(k), associated with U

(0)
k , is given by or-

dering the exit times from a valley for the stochastic process associated
with the Dirichlet form. Moreover the quantities involved in (1.1) can
be expressed in terms of capacities.

b) Their method requires only f ∈ C3(Ω), while our analysis, although it
could be carried out with low regularity assumptions, is more efficiently
presented with f ∈ C∞(Ω).

Although it will require some estimates and constructions present in the
WKB analysis of Helffer-Sjöstrand in [HelSj3], our approach will follow a
slightly different strategy. We will use more extensively the complex structure
of the Witten Laplacian and the fact that we are looking at ∆

(0)
f,h. We recall

that
∆f,h = df,hd

∗
f,h + d∗f,hdf,h ,

where df,h is the distorted differential e−f(x)/h (hdx) e
f(x)/h and d∗f,h its adjoint

for the Riemannian structure. The restriction of df,h to p-forms is denoted

by d
(p)
f,h and we have

∆
(0)
f,h = d

(0)∗
f,h d

(0)
f,h.
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In the Witten-complex spirit, we will consider the singular values of the
restricted differential d

(0)
f,h : F (0) → F (1), which will be more shortly denoted

by β
(0)
f,h,

β
(0)
f,h := (d

(0)
f,h)/F (0) , (1.2)

where F (`) is the m`-dimensional spectral subspace of ∆
(`)
f,h, ` ∈ {0, 1},

F (`) = Ran 1[0,Ch3/2)(∆
(`)
f,h) , (1.3)

with the property

1[0,Ch3/2)(∆
(1)
f,h)d

(0)
f,h = d

(1)
f,h1[0,Ch3/2)(∆

(0)
f,h) . (1.4)

Because the value of C > 0 does not play any role (for h small enough), we
will choose from now on C = 1. More generally one could define a complex
β

(`)
f,h by restriction of d

(`)
f,h to the F (`) but one will mainly concentrate on the

cases ` = 0 and ` = 1.
Working with singular values of β

(0)
f,h happens to be more efficient than con-

sidering their squares as the eigenvalues of ∆
(0)
f,h, in order to exploit all the

information which can be extracted from well chosen quasimodes.

Finally we mention that this problem was presented and treated in a
particular case in [HelNi]. Application of quantitative accurate estimates for
the first non zero eigenvalue of the Witten Laplacian in connection with the
return to the equilibrium for the Fokker-Planck equation of kinetic theory
can be found in [HerNi] and [HelNi].

This article (introduction excluded) is now divided in five sections. In
Section 2, we specify our conditions on the function f in order to have self-
adjoint Witten Laplacians with good spectral properties. In Section 3, we
first specify the notion of “(strict) saddle point” in the different cases. Af-
ter this we are in a position to write the main assumption which excludes
degenerate eigenvalues. In Section 4, we introduce some specific cut-off func-
tions and the corresponding quasimodes for ∆

(0)
f,h and ∆

(1)
f,h. This is only in

Section 5 (Theorem 5.1) that we state accurately our result by making use
of the precise notions introduced before. Section 6 is devoted to the core of
the proof of Theorem 5.1. It involves an induction process which makes an
efficient use of the previous estimates on quasimodes.

Francis : Check the acknowledgements.
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2 Morse functions and Witten Laplacians.

2.1 Witten complexes and associated Laplacians

Let Ω be an n-dimensional connected compact oriented Riemannian manifold
or Rn. Depending on the cases Ω will be Ω or Rnt{∞}. The cotangent (resp.
tangent) bundle is denoted T ∗Ω (resp. TΩ) and the exterior fiber bundle
ΛT ∗Ω = ⊕n

p=0Λ
pT ∗Ω (resp. ΛTΩ = ⊕n

p=0Λ
pTΩ). The space of C∞, C∞0 ,

L2 . . . sections in any of these fiber bundles, E, will be denoted respectively
C∞(Ω;E), C∞0 (Ω;E), L2(Ω;E). . . . When no confusion is possible we will
simply use the short notations ΛpC∞, ΛpC∞0 and ΛpL2 for E = Λp. The
differential on C∞0 (Ω; ΛT ∗Ω) will be denoted by d and more precisely

d(p) : C∞0 (Ω; ΛpT ∗Ω) → C∞0 (Ω; Λp−1T ∗Ω).

Its formal adjoint with respect the L2-scalar product inherited from the rie-
manian structure is denoted by d∗ with

d(p),∗ : C∞0 (Ω; Λp+1T ∗Ω) → C∞0 (Ω; ΛpT ∗Ω).

For a Morse function f ∈ C∞(Ω; R) we set

df,h = e−f(x)/h (hd) ef(x)/h and d∗f,h = e−f(x)/h (hd) ef(x)/h.

The Witten Laplacian is defined as

∆f,h = d∗f,hdf,h + df,hd
∗
f,h,

which means

∆
(p)
f,h = d

(p),∗
f,h d

(p)
f,h + d

(p−1)
f,h d

(p−1),∗
f,h : C∞0 (Ω; ΛpT ∗Ω) → C∞0 (Ω; ΛpT ∗Ω).

Note that df,hdf,h = 0 and d∗f,hd
∗
f,h = 0 respectively imply, that for all u in

C∞0 (Ω; ΛpT ∗Ω),

∆
(p+1)
f,h d

(p)
f,hu = d

(p)
f,h∆

(p)
f,hu (2.1)

and

∆
(p−1)
f,h d

(p−1),∗
f,h u = d

(p−1),∗
f,h ∆

(p)
f,hu. (2.2)

The next assumption leads to a good self-adjoint realization of ∆f,h with
similar basic properties in all cases.
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Assumption 2.1. The function f belongs to C∞(Ω) abd is a Morse function.
Moreover, in the case when Ω = Rn, there is a compact set K ⊂ Rn and a
constant C > 0 such that

∀x ∈ Rn \K, |∇f(x)| ≥ 1

C
(2.3)

∀x ∈ Rn \K, |Hess f(x)| ≤ C|∇f(x)|2 . (2.4)

With inequality (2.3), the Morse function f has only a finite number of
critical points in Ω. The set of all critical points of index p will be called U (p)

and we set
mp = #U (p) (2.5)

and
U = ∪n

p=0U (p) . (2.6)

The additional inequality (2.4), together with (2.3), will give a localization
of the essential spectrum in the semi-classical limit.

2.2 Spectral properties of ∆f,h.

We consider the case when Ω is a connected compact oriented Riemannian
manifold or Ω = Rn. Note that in the first case C∞0 (Ω;E) = C∞(Ω;E).

Proposition 2.2. Under Assumption 2.1, there exist h0 > 0 and c0 > 0
such that the following properties are satisfied for any h ∈ (0, h0].
i) The Witten Laplacians ∆f,h as an unbounded operator on L2(Ω; ΛT ∗Ω) is
essentially self-adjoint on C∞0 (Ω; ΛT ∗Ω).

ii) The essential spectrum σess(∆
(p)
f,h) is contained in [c0,+∞).

iii) The range of the spectral projection 1[0,h3/2)(∆
(p)
f,h) has the dimension mp

for all h ∈ (0, h0].
iv) For any Borel subset Eh of [0, h3/2)

1Eh
(∆

(p+1)
f,h )d

(p)
f,hu = d

(p)
f,h1Eh

(∆
(p)
f,h)u (2.7)

holds for any u ∈ L2(Ω; ΛpT ∗Ω) such that d
(p)
f,hu ∈ L2(Ω; Λp+1T ∗Ω).

v) In the case Ω = Rn, we have(
0 ∈ Ker ∆

(0)
f,h

)
⇔
(
e−f/h ∈ L2(Rn)

)
8



vi) In the case Ω = Rn, we have

(
e−f/h ∈ L2(Rn)

)
⇒
(

lim
|x|→∞

f(x) = +∞
)
.

Proof.
The statements i), ii) and iii) are known in the case of a compact manifold
(see [CFKS], [HelSj3]). In this case, we have of course no essential spectrum.

Let us check these three properties in the case Ω = Rn.
i) The operator

∆f,h = −h2∆ + Ψ(x) = df,hd
∗
f,h + d∗f,hdf,h

is non-negative on C∞0 (Rn; ΛT ∗Rn) while the matrix-valued function Ψ(x) is
C∞. By Simader’s result (see [Sima], [Hel]), ∆f,h is essentially self-adjoint on
C∞0 (Rn; ΛT ∗Rn).
ii) The localization of the essential spectrum is a consequence of (2.3) and
(2.4) which imply the existence of C > 0 and K such that, for all u ∈
ΛpC∞0 ({K),

〈u | ∆(p)
f,hu〉 ≥ 〈u | ∆(p)

0,hu〉+
1

C
||u||2 − Ch||u||2 .

When h < h0, with h0 = 1
2C2 , we get

〈u | ∆(p)
f,hu〉 ≥

1

2C
||u||2 , ∀u ∈ ΛpC∞

0 ({K) ,

and ii) by using Persson’s Lemma.
iii) The previous inequality combined with a simple partition of unity ar-
gument shows that any eigenvector ψh associated with an eigenvalue λh in
[0, h3/2) of ∆

(p)
f,h has to be localized in a neighborhood of K. Indeed take

χ ∈ C∞0 (Ω) such that χ ≡ 1 in a neighborhood of K and write

λh||ψh||2 = 〈χψh |∆(p)
f,hχψh〉+ 〈(1− χ)ψh |∆(p)

f,h(1− χ)ψh〉 − h2 ‖∇χψh‖2 .

This leads, for h small enough, to

‖(1− χ)ψh‖2 ≤ 4Cλh ≤ 2C h3/2.
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This localization of the eigenvectors allows to do the same analysis as in
[CFKS] or [HelSj3] and leads to

dim Ran 1[0,h3/2)(∆
(p)
f,h) = mp . (2.8)

iv) If ψh ∈ L2(Ω; ΛpT ∗Ω) is an eigenvector of ∆
(p)
f,h with eigenvalue λh in

[0, h3/2), then we have d
(p)
f,h ψh ∈ L2(Ω; Λp+1T ∗Ω) and d

(p−1),∗
f,h ψh ∈ L2(Ω; Λp−1T ∗Ω).

Moreover according to (2.2), d
(p)
f,h ψh satisfies

∆
(p+1)
f,h d

(p)
f,h ψh = λhd

(p)
f,h ψh in D′(Ω; ΛpT ∗Ω).

Since ∆
(p+1)
f,h is essentially self-adjoint on C∞0 (Ω; Λp+1T ∗Ω), d

(p)
f,hψh belongs to

the domain of ∆
(p+1)
f,h . There are two possibilities : either d

(p)
f,hψh equals 0 or

d
(p)
f,hψh is an eigenvector of ∆

(p+1)
f,h with eigenvalue λh. In any case we have

d
(p)
f,hψh = 1{λh}(∆

(p+1)
f,h )d

(p)
f,hψh. The same can be done with d

(p−1),∗
f,h ψh.

Let Eh be a Borel subset of [0, h3/2). We set F
(p)
Eh

= Ran 1Eh
(∆

(p)
f,h). If v

belongs to F
(p)
Eh

, we write

v =
N∑

k=1

αkψk,h, with ∆
(p)
f,hψk,h = λk,hψk,h, λk,h ∈ Eh ⊂ [0, h3/2).

We get

d
(p)
f,hv =

N∑
k=1

αkd
(p)
f,hψk,h ∈ F (p+1)

Eh
.

If v ∈ F (p)⊥
Eh

and d
(p)
f,hv ∈ L2(Ω; Λp+1T ∗Ω), we have for all θ ∈ F (p+1)

Eh

〈θ | d(p)
f,hv〉 = 〈d(p),∗

f,h θ | v〉 = 0

because d
(p),∗
f,h θ belongs to F

(p)
Eh

with the same argument. Hence d
(p)
f,hv belongs

to F
(p+1)⊥
Eh

.

v) The equivalence is a consequence of the essential self-adjointness of ∆
(0)
f,h

on C∞0 (Rn) and of the fact that, when Ω is connected, the only distribution

solutions of d
(0)
f,hu = 0 are the functions c exp−f

h
(c ∈ R).

vi) If e−f/h belongs to L2(Rn), the Agmon estimates lead to

e−f(x)/h ≤ C0e
−c0|x|/h ,
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which gives1 the existence of c1 > 0 such that

f(x) ≥ c1|x|, for |x| ≥ 1

c1
. (2.9)

3 Strict saddle points and main assumption

One part of the analysis relies on a good labelling of local minima. This
follows essentially the approach of Bovier-Gayrard-Klein in [BGKl], which
is based on the notion of saddle point defined below. The labelling of the
local minima was proposed by these authors and is one of the key points of
their probabilistic approach. Their intuition was based on the notion of exit
times for the stochastic dynamics and their idea was to enumerate the local
minima according to the decreasing order of exit times.

3.1 Strict saddle points.

We consider first the case when Ω is a compact connected oriented manifold
or Ω = Rn.
When Ω = Rn, Ω denotes the one-point-compactification Ω t {∞}.
For a closed set F ⊂ Ω, F will denote its closure in Ω. For the sake of coher-
ence, we keep Assumption 2.1 for the function f although some definitions
could be extended to a more general case.

Definition 3.1.
a) For any E ⊂ Ω, the set of connected components of E is denoted by
Conn(E). We remind that the connected components are non empty closed
subsets relatively to the induced topology on E and therefore compact if E is
a closed subset of Ω.
b) For any A,B ⊂ Ω, H(A,B) denotes the quantity

H(A,B) = inf
{
c ∈]−∞,+∞], ∃C ∈ Conn

(
f−1(]−∞, c])

)
,

C ∩ A 6= ∅ and C ∩B 6= ∅} .
(3.1)

1Note that we only use the existence, for fixed h > 0, of a gap. This gives actually a
necessary condition for f for having a Poincaré inequality.
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We first start with a simple result about H(A,B).

Proposition 3.2. When A and B are closed nonempty subsets of Ω, H(A,B)
is a minimum :

∃C ∈ Conn
(
f−1(]−∞, H(A,B)])

)
, C ∩ A 6= ∅ and C ∩B 6= ∅.

Proof.
It is done in several steps :
a)
For any c ∈ R∪{+∞} the number of connected component of f−1(]−∞, c])
is finite. More precisely it satisfies

#f−1(]−∞, c]) ≤ 1 + #U , (3.2)

where U is the set of critical points of f . This implies in particular a uniform
bound of this number.

First there is the possible connected component of {∞}. The limiting
case c = +∞ gives f−1(]−∞,+∞]) = Ω which is connected.
It suffices to consider the case c < +∞. Let us consider C in

Conn
(
f−1(]−∞, c])

)
such that ∞ 6∈ C. It is a closed subset of Ω which

does not contain ∞ and therefore a compact connected subset of Ω. If every
point x ∈ C is critical, then C is reduced to a single point which belongs to
U . If there exists x0 ∈ C such that ∇f(x0) 6= 0, then C contains a bounded
connected component in Ω of f−1(]−∞, c[), denoted by C0. In this last case

C0 ⊂ C is a compact subset of Ω such that f
∣∣∣
∂C0

= c. Then C0 and therefore

C contains a local minimum of f . So we have shown that any connected
component of f−1(]−∞, c]) which does not contain ∞ contains a critical
point of f .
b)

For c > c′ > H(A,B), for any C ′ in Conn
(
f−1(]−∞, c′])

)
there exists C

in Conn
(
f−1(]−∞, c])

)
such that C ′ ⊂ C.

We first observe that f−1(]−∞, c′]) ⊂ f−1(]−∞, c]) are not empty.
Now take x0 ∈ C ′ and observe that the connected component of f−1(−∞, c])
containing x0 contains C ′.
c)

12



For any decreasing sequence (cn)n∈N such that limn→∞ cn = H(A,B), there
exists a decreasing sequence of closed connected subsets Kn ⊃ Kn+1 in Ω such
that

Kn ∈ Conn
(
f−1(]−∞, cn])

)
, Kn ∩ A 6= ∅, Kn ∩B 6= ∅ .

Since # Conn
(
f−1(−∞, c0])

)
is finite, there existsK0 ∈ Conn

(
f−1(−∞, c0])

)
such that the set{
k ∈ N,∃C ∈ Conn

(
f−1(]−∞, ck])

)
, C ∩ A 6= ∅, C ∩B 6= ∅, C ⊂ K0

}
is infinite.
Assume that Kn ∈ Conn

(
f−1(−∞, cn])

)
satisfies the above condition with

K0 replaced byKn. The setKn+1 =
{
C ∈ Conn

(
f−1(]−∞, cn+1]

)
, C ⊂ Kn

}
is finite. For any C ∈ Conn

(
f−1(]−∞, ck]

)
, k ≥ n+ 1, such that C ⊂ Kn

there exists C ′ ∈ Kn+1 such that C ⊂ C ′. Hence we can choose Kn+1 ∈ Kn+1

such that{
k ∈ N, k ≥ n+ 1,∃C ∈ Conn

(
f−1(]−∞, ck]

)
,

C ∩ A 6= ∅, C ∩B 6= ∅, C ⊂ Kn+1}

is infinite with Kn+1 ⊂ Kn. It satisfies Kn+1 ∩ A 6= ∅ and Kn+1 ∩B 6= ∅.
d) End of the proof.
The sequence (Kn)n∈N is a decreasing sequence of non empty compact con-
nected subsets of Ω. Hence the intersection K = ∩n∈NKn is a non empty
connected subset of Ω. Similarly the sequences (Kn∩A)n∈N and (Kn∩B)n∈N
are decreasing sequences of non empty compact subsets of Ω. Hence K ∩ A
and K ∩B are not empty. Finally K \ {∞} ⊂ f−1(]−∞, cn]) for any n ∈ N
and we get

K ⊂ f−1(]−∞, H(A,B)]).

Definition 3.3. Under assumption 2.1, let A and B be two closed subsets of
Ω. We say that Z is a set of strict saddle points for (A,B) if it is not empty
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and satisfies the following four conditions :

(ssp1) Z ⊂
(
U (1) ∩ f−1({H(A,B)})

)
∪ {∞} ,

(ssp2) Z ∩ A = ∅ and Z ∩B = ∅ ,

(ssp3)
{
C ∈ Conn

(
f−1(]−∞, H(A,B)]) \ Z

)
, C ∩ A 6= ∅, C ∩B 6= ∅

}
= ∅ .

The word “strict” refers to the condition (ssp2).

Examples 3.4. Here are simple examples which show why it is convenient
to introduce the point ∞.
a) If f is a C∞ function such that f(−1) < 0, f(+1) < 0 and f(0) = 0. Only
with this information, one can say that the pair A = {−1}, B = {+1}, admits
a set of saddle points without discussing the behaviour of f at infinity or the
number of critical points. Indeed f admits a maximum on ]−1, 1[, f(x0) ≥ 0
and H(A,B) ∈ [max {f(−1), f(+1)} , f(x0)]. We can take Z = {+∞} if
H(A,B) < f(x0) or Z = {x0,+∞} if H(A,B) = f(x0).
This argument can be extended in arbitrary dimension. By setting M =
max f(A ∪ B) for two compact subsets A,B of Ω. If A,B do not intersect
a common connected component of f−1 ((−∞,M ]), then (A,B) admits a set
of strict saddle points (adapt the proof of Proposition 3.5 below).

b) Consider a function on f on R which has three local maxima a x = 0,±2,
with f(0) = 3, f(−2) = +1 and f(+2) = +2, two local minima at x = ±1,
f(±1) = 0, and equals −x2 for |x| ≥ 5. We take first A = {−1} and
B = {+1}. Then we have H(A,B) = +2 and one can take Z(A,B) =
{+2} or Z(A,B) = {+2,+∞}. Indeed in our analysis the interesting saddle
points are at x = +2 and x = −2. The simplest way to introduce these
points without entering into questions about the geometry of f near infinity
which can be complicated in dimension n > 1 is by considering in this case
Z(A,B) = {+2,∞} and by working with other pairs of sets A1 = {+1},
B1 = {+∞} (or B1 = {−1,+∞}) for which Z(A1, B1) = {+2} and A2 =
{−1}, B2 = {+∞} (or B2 = {+1,∞}) for which Z(A2, B2) = {−2}. This
situation occurs only in the case Ω = Rn with e−f/h 6∈ L2(Rn).

The previous definition (more precisely (ssp3)) says that, if Z is a set of
strict saddle points for (A,B), then any connected component of the subset
f−1(]−∞, H(A,B)]) joining A and B meets Z. In particular any continuous
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path γ from [0, 1] into Ω such that f(γ(t)) ≤ H(A,B) when γ(t) 6= ∞ and
γ(0) ∈ A and γ(1) ∈ B, meets Z. The proof is by contradiction. Suppose
supt∈]0,1[ f(γ(t)) ≤ H(A,B). Then γ(t) ∈ f−1(]−∞, H(A,B)]) \ Z and

the connected component of f−1(]−∞, H(A,B)]) \ Z containing γ has non
empty intersection with A and B in contradiction with (ssp3). In order to
compare this rather abstract definition with the more usual Morse theory, it
is useful to recall a few remarks coming from the local analysis of a Morse
function.

Local structure of the level sets of a Morse function
First we observe that, near a non critical point x0 of f , one can find a ball
Bx0 around x0 and a set of local coordinates such that

A<
f (x0) := {f(x) < f(x0)} ∩Bx0 = {y1 < 0} ∩Bx0 .

Secondly, if x0 is a critical point of index p, then there exists a ball Bx0

around x0 and a set of local coordinates centered at x0 such that

A<
f (x0) =

{
−

p∑
`=1

y2
` +

n∑
`=p+1

y2
` < 0

}
∩Bx0 ,

and
A≤

f (x0) := {f(x) ≤ f(x0)} ∩Bx0

=
{
−
∑p

`=1 y
2
` +

∑n
`=p+1 y

2
` ≤ 0

}
∩Bx0 ,

We now observe that

1. When p = 0 (local minimum), A<
f (x0) is empty and A≤

f (x0) is reduced
to x0.

2. When p = 1, A<
f (x0) has two connected components and x0 belongs to

the closure of each of the two components. This property is crucial in
the discussion of (ssp3).

3. When p ≥ 2, A<
f (x0) is (arcwise) connected.

So we can now prove the

Proposition 3.5. If A and B are disjoint non empty subsets of local minima
of f , then the pair (A,B) admits a set of strict saddle points.
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Proof.
First note that H(A,B) < +∞. We have to prove that a set C, belonging to

Conn
(
f−1(]−∞, H(A,B)])

)
and satisfying C ∩ A 6= ∅, C ∩ B 6= ∅ and

∞ 6∈ C, contains a critical point z of index 1 in f (−1)(H(A,B)) (i.e. z ∈ U (1)

and f(z) = H(A,B)). After this, we just take for Z the collection of such
critical points by adding the point ∞ for possible connected component C
such that ∞ ∈ C.
If ∞ 6∈ C, then C is a compact connected component of f−1(]−∞, H(A,B)])
in Ω. Since f is a Morse function, there are two possibilities, resulting from
the previous local analysis of f and of the connectedness of C : Either it is
reduced to one point which is a local minimum of f , or it is the closure of a
finite union of bounded connected components Ωi of f−1 (]−∞, H(A,B)[).
The first case cannot occur indeed because C ∩A 6= ∅ and C ∩B 6= ∅ forbids
C to be reduced to one point. Hence we are reduced to the case

C = ∪N
i=1Ωi ,

where Ω1, . . .ΩN are bounded connected components of f−1(]−∞, H(A,B)[)
(note that N is smaller than the number of local minima m0).
Every x ∈ A ∩C (resp. x ∈ B ∩C) belongs to some Ωi. The Ωi are labelled
such that for all i ∈ {1, . . . ,M}, A ∩ Ωi 6= ∅ and for all i ∈ {M + 1, . . . , N},
A ∩ Ωi = ∅. We have

A ∩ C ⊂ ∪M
i=1Ωi and B ∩ C ⊂ ∪N

i=M+1Ωi.

Since C is connected, we have

C ∩ (
M
∪

i=1
Ωi) ∩

(
N
∪

j=M+1
Ωj

)
6= ∅.

Therefore, there exists i ≤ M and j ≥ M + 1 such that C ∩ Ωi ∩ Ωj 6= ∅.
Assume x0 ∈ C∩Ωi∩Ωj and note that i 6= j implies f(x0) = H(A,B). Then
we observe that, if x0 was not a critical point, then the local analysis shows
that Ωi = Ωj and i = j, in contradiction with the assumption.
Similarly the analysis of the connectedness of the set A<

f (x0) at critical points
excludes all critical points except the case p = 1.
Therefore a point x0 ∈ C ∩ Ωi ∩ Ωj with i ≤ M and j ≥ M + 1 is a critical
point of index 1.
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On the uniqueness of the set of strict saddle points
It is not possible to give a satisfactory definition of a unique set of strict
saddle points even in the case of Proposition 3.5. When there is a set of
strict saddle points, one can always take the maximal set Z which satisfies
the three conditions of Definition 3.3. But this is not accurate enough for
our purpose and even in the framework of Proposition 3.5 the minimal sets
of strict saddle points with respect to the inclusion are not unique : Simply
consider the case when a path going from one local minimum x1, A = {x1}
to a local minimum x2, B = {x2}, x1 6= x2, has to meet two distinct critical
points of index 1, y1 and y2 with f(y1) = f(y2) = H(A,B); then one can
take Z = {y1}; Z = {y2} or Z = {y1, y2} but their intersection is empty.
However it is possible to define the property that the pair (A,B) admits a
unique strict saddle point.

Definition 3.6. Let A,B be closed nonempty disjoint subsets of Ω. The
point z ∈ U (1) ∪ {∞} is said to be a unique strict saddle point for the pair
(A,B) if

( ∩
C∈C(A,B)

C) ∩ {ΩA ∩ {ΩB ∩
[(
U (1) ∩ f (−1)(H(A,B))

)
∪ {∞}

]
= {z}

where C(A,B) denotes the set of closed connected sets C ⊂ f−1(]−∞, H(A,B)])
such that C ∩ A 6= ∅ and C ∩B 6= ∅.

We conclude this paragraph with the following remark :

Remark 3.7. In the case Ω = Rn, assume A = {x0} and B = {x1, . . . , xN ,∞}
where x0, x1 . . . xN are local minima of f . We set B′ = {x1, . . . , xN}. There
are two cases.
1) H({x0}, {∞}) > H({x0}, B′) :
Then H(A,B) = H({x0}, B′) and the problem is reduced to the analysis of
(A,B′). By Proposition 3.5 (A,B) admits a set Z of strict saddle points.
Moreover, the connected component of f−1(]−∞, H(A,B)]) \ Z which con-
tains x0 is relatively compact in Ω (i.e. bounded). This case occurs in par-
ticular when lim|x|→∞ f(x) = +∞.
2) H({x0}, {∞}) ≤ H({x0}, B′) :
Then saying that (A,B) admits a set Z of strict saddle points is an assump-
tion on the behaviour of f in a neighborhood of ∞. In this case also, the
connected component of f−1(]−∞, H(A,B)]) \ Z which contains x0 is rela-
tively compact in Ω (i.e. bounded).
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So we have shown that, if it is stated that (A,B) admits a unique strict sad-
dle point z, the connected component of f−1(]−∞, H(A,B)]) \ {z} which
contains x0 is relatively compact in Ω (i.e. bounded) in both cases.

3.2 Main assumption, notations and first consequences.

The next assumption is essentially the one introduced by Bovier-Gayrard-
Klein in [BGKl]. It will imply that each exponentially small eigenvalue of

∆
(0)
f,h is simple, with a different asymptotic behavior. We introduce the set

C0 defined by

a) C0 = ∅ if Ω is a compact connected oriented Riemannian manifold.

b) C0 = ∅ if Ω = Rn with e−f(x)/h ∈ L2(Rn).

c) C0 = {∞} if Ω = Rn and e−f(x)/h 6∈ L2(Rn).

Assumption 3.8.
The function f satisfies Assumption 2.1. Moreover there exists a labelling

of the local minima U (0) =
{
U

(0)
1 , . . . , U

(0)
m0

}
such that, by setting

Ck =
{
U

(0)
k , . . . , U

(0)
1

}
∪ C0 ,

we have :

i) For k ≥ 2, U
(0)
k is the unique minimizer of

H(U, Ck \ {U})− f(U), U ∈ Ck \ C0.

ii) For any k ∈ {1, . . .m0} (k ≥ 2 in the case C0 = ∅) the pair
(
{U (0)

k }, Ck−1

)
admits a unique saddle point z∗k.

By its definition, the point z∗k, with k ≥ 2 if C0 = ∅ and k ≥ 1 if C0 6= ∅, has
to be a critical point of index 1.

Definition 3.9. (The map j)

If these critical points of index 1 are numbered U
(1)
j , j = 1, . . . ,m1, we define

the application k → j(k) on {1, . . . ,m0} if C0 6= ∅ and {2, . . . ,m0} if C0 = ∅
by

U
(1)
j(k) = z∗k. (3.3)
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In the case when C0 = ∅, we set j(1) = 0, with the convention that U
(1)
0 6∈ Ω

and f(U
(1)
0 ) = +∞.

The cases C0 = ∅ and C0 6= ∅ will be distinguished by j(1) = 0 or j(1) 6= 0.

Definition 3.10. Under Assumption 3.8, consider for k ∈ {1, . . . ,m0} the
set Ek defined by:

a) For j(k) 6= 0, Ek is the connected component of U
(0)
k in

f (−1)(]−∞, f(U
(1)
j(k))]) \ {U

(1)
j(k)} .

b) E1 = Ω if j(1) = 0.

Proposition 3.11. Under Assumption 3.8 and with Definition 3.10, the
following properties are satisfied :

a) The sequence
(
f(U

(1)
j(k))− f(U

(0)
k )
)

k∈{1,...,m0}
is strictly decreasing (with

the convention f(U
(1)
0 ) = +∞).

b) For j(k) 6= 0, Ek is a relatively compact subset of Ω and Ek = Ek∪
{
U

(1)
j(k)

}
.

In any case, Ek is included in f−1(]−∞, f(U
(1)
j(k)]).

c) For any (k, j) ∈ {1, . . . ,m0}×{1, . . . ,m1}, the relation U
(1)
j ∈ Ek implies

either (j = j(k′) for some k′ > k) or j 6∈ j({1, . . . ,m0}).

d) For any k 6= k′ ∈ {1, . . . ,m0}, the relation U
(0)
k′ ∈ Ek implies(

k′ > k and f(U
(0)
k′ ) > f(U

(0)
k )
)

e) The application j : {1, . . . ,m0} → {0, 1, . . . ,m1} is injective.

Proof.
a) The condition i) of Assumption 3.8 gives

f(U
(1)
j(k))− f(U

(0)
k ) = H(U

(0)
k , Ck \ {U (0)

k })− f(U
(0)
k )

< H(U
(0)
k−1, Ck \ {U (0)

k−1})− f(U
(0)
k−1)

≤ H(U
(0)
k−1, Ck−1 \ {U (0)

k−1})− f(U
(0)
k−1)

≤ f(U
(1)
j(k−1))− f(U

(0)
k−1) ,
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where the last inequality is an equality if j(k − 1) 6= 0.
b) It is a rewriting of Remark 3.7.
c) Assume Uj(k′) ∈ Ek.
In the case j(k) = 0, then Ek = E1 = Ω and Uj(k′) ∈ Ω implies k′ > 1.

Consider now the case j(k) 6= 0. Since U
(1)
j(k) 6∈ Ek, one has k 6= k′. Moreover

the inequality f(U
(1)
j(k′)) ≤ f(U

(1)
j(k)) implies that the connected component of

f−1(]−∞, f(U
(1)
j(k′))]), which contains U

(1)
j(k′) is contained in Ek. Hence Ek

contains U
(0)
k and U

(0)
k′ . Finally Ek is modified into a closed connected set

Êk lying in f−1(]−∞, f(U
(1)
j(k))]) \

{
U

(1)
j(k)

}
in the following way. Take Morse

coordinates around U
(1)
j(k) and consider, for ρ > 0 small enough, Ek,ρ :=

Ek ∩ {|x| ≤ ρ} and its radial projection on Ered
k,ρ := Ek ∩ {|x| = ρ}. Then

Êk,ρ := (Ek \Ek,ρ)∪Ered
k,ρ is closed and can be considered as the image of Ek

by a continuous application. Hence it is connected. We have found a closed

connected set Êk,ρ lying in Ek ⊂ f−1(]−∞, f(U
(1)
j(k))]), which contains U

(0)
k ,

U
(0)
k′ , k′ 6= k and does not contain U

(1)
j(k). Therefore one cannot have k ≤ k′

because this would contradict the assumption that U
(1)
j(k) is the unique saddle

point between U
(0)
k and Ck−1 (Assumption 3.8-ii) and Definition 3.6). Indeed

the existence of another saddle point is obtained by using Proposition 3.5 by
slightly increasing the value of f(U

(1)
j(k)). Hence, the only possibility is k′ > k.

d) Assume U
(0)
k′ ∈ Ek with k 6= k′. By the same argument as for c), one then

takes a closed connected set Ck,k′ ⊂ Ek ⊂ f−1(]−∞, f(U
(1)
j(k))]) such that

U
(0)
k , U

(0)
k′ ∈ Ck,k′ and U

(1)
j(k) 6∈ Ck,k′ . This implies k′ > k.

Assume now by contradiction that{
k′ > k, U

(0)
k′ ∈ Ek and f(U

(0)
k′ ) ≤ f(U

(0)
k )
}
6= ∅ ,

and let k0 be its smallest element.
We deduce from the existence of Ck,k0 as a closed connected subset of Ek ⊂
f−1(]−∞, f(U

(1)
j(k))]) containing U

(0)
k and U

(0)
k0

, the inequality

f(U
(1)
j(k0)) = H(U

(0)
k0
, Ck0−1) ≤ f(U

(1)
j(k)).

Since the connected component C of U
(1)
j(k0) in f−1(]−∞, f(U

(1)
j(k0))]) contains

U
(0)
k0

and a point in Ck0−1, it is contained in Ek and Ek contains a point of
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Ck0−1. This point cannot belong to C0 : In the case j(k) = 0, C0 = ∅ and in
the case j(k) 6= 0 it is a consequence of b).

Hence there exists k1 < k0 such that U
(0)
k1
∈ C ⊂ Ek. Finally, the condition i)

of Assumption 3.8 for k0 gives

f(U
(1)
j(k0))− f(U

(0)
k0

) = H(U
(0)
k0
, Ck0−1)− f(U

(0)
k0

)

< H(U
(0)
k1
, Ck0 \ {U

(0)
k1
})− f(U

(0)
k1

)

≤ f(U
(1)
j(k0))− f(U

(0)
k1

) ,

For the last inequality we used the existence of a connected set C containing
U

(0)
k1

and the point U
(0)
k0
∈ Ck0 \ {U

(0)
k1
} such that f(C) ∈]−∞, f(U

(1)
j(k)), with

the definition of H(U
(0)
k1
, Ck0 \ {U

(0)
k1
}).

Hence we obtain
f(U

(0)
k1

) < f(U
(0)
k0

) ≤ f(U
(0)
k ) ,

with k1 < k0 and U
(0)
k1
∈ Ek in contradiction with the definition of k0. Hence

we have proved

∀k′ > k, (U
(0)
k′ ∈ Ek) ⇒

(
f(U

(0)
k′ ) > f(U

(0)
k )
)
.

e) First of all the value 0 is attained at most once, that is for k = 1 , when

C0 = ∅. Assume j(k) = j(k′) 6= 0. The point U
(1)
j(k) = U

(1)
j(k′) ∈ U (1) is the

unique strict saddle point for (U
(0)
k , Ck−1) and for (U

(0)
k′ , Ck′−1).

Then we have

either Ek = Ek′ ,

or ∃k1 < k′, U
(0)
k1
∈ Ek and ∃k2 < k, U

(0)
k2
∈ Ek′ .

According to d), the first case implies

k ≤ k′ and k′ ≤ k ,

while the second case gives

k ≤ k1 < k′ and k′ ≤ k2 < k .

Hence only the first case is possible with k′ = k.

Remark 3.12. In the case j(1) = 0, since we have by definition E1 = Ω,

the property d) in Proposition 3.11 says that U
(0)
1 is a global minimum for f .
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3.3 A generic case.

We check here that Assumption 3.8 is generically 2 verified when C0 = ∅
(that is j(1) = 0), that is when Ω is a connected oriented compact Rie-
mannian manifold or when Ω = Rn and e−f(x)/h ∈ L2(Rn). Remind that
in this last case lim|x|→∞ f(x) = +∞. A Morse function f ∈ C∞(Ω), with
lim|x|→∞ f(x) = +∞ if Ω = Rn, generically has #U distinct singular values.
Moreover one can also assume that generically :

Assumption 3.13. All the quantities f(U
(1)
j )− f(U

(0)
α ), for j ∈ {1, . . . ,m1}

and α ∈ {1, . . . ,m0} are distinct.

Proposition 3.14. Assumption 3.13 implies Assumption 3.8.

Proof
We start with m0 = #U (0) unlabelled local minima :

U (0) = {U (0)
α , α ∈ A} , with #A = m0 .

For any subset A′ ⊂ A, #A′ ≥ 2, and any α ∈ A′, the pair
({U (0)

α }, {U (0)
α′ , α

′ ∈ A′, α′ 6= α}) admits a set of strict saddle points ac-
cording to Proposition 3.5. Since the set f−1({H(α,A′ \ {α})}) is bounded
and contains at most one element of U , it has to be a critical point of index
1 and the pair ({U (0)

α }, {U (0)
α′ , α

′ ∈ A′, α′ 6= α}) admits a unique strict saddle

point U
(1)
α,A′ .

The labelling of the local minima and the verification of Assumption 3.8 can
now be done by reverse induction from k = m0 to k = 2.
Once U

(0)
m0 , . . . , U

(0)
k+1, k ≥ 2, are known, we set

Ck =
{
U (0)

α , α ∈ A
}
\ {U (0)

m0
, . . . , U

(0)
k+1} = Cm0 \ {U (0)

m0
, . . . , U

(0)
k+1}.

The point U
(0)
k is then chosen as the point in Ck which minimizes the quantity

f(U
(1)
α,Ck

)− f(U (0)
α ), α ∈ Ck.

It is uniquely defined according to Assumption 3.13.

2By assuming that we are considering functions with no critical points outside a given
regular compact domain D of Ω, a generic function is a function such that f

∣∣
D

belongs to
some fixed Gδ set of C∞(D).
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4 Cut-off functions and quasimodes.

4.1 Labelling of local minima and cut-off functions.

Let us first recall some notations and definitions. The Riemannian metric is
denoted by dx2 and the corresponding geodesic distance between two points
x, y ∈ Ω by dΩ(x, y).
The Agmon metric associated with the Witten Laplacian ∆f,h is the degen-
erate metric |∇f(x)|2 dx2 and the corresponding distance between two points
x, y ∈ Ω by dAg(x, y).
For x ∈ Ω and ε > 0, B(x, ε) denotes the open ball for the geodesic distance

B(x, ε) = {y ∈ Ω, dΩ(y, x) < ε} .

Having in mind the Definition 3.10 of the set Ek, it is then easy to show

Lemma 4.1. There exists ε1 > 0 such that the following properties are ver-
ified :

i) For any critical point U ∈ U , with index p, there exist Morse coordinates
x = (x1, . . . , xn) such that

∀x ∈ B(U, 4ε1), f(x)− f(U) = −x2
1 · · · − x2

p + x2
p+1 + · · ·+ x2

n .

ii) We have the lower bound : min {dΩ(U,U ′), U, U ′ ∈ U , U 6= U ′} ≥ 10 ε1.

iii) For any U ∈ U and any k ∈ {1, . . . ,m0}

(U 6∈ Ek) ⇒ (dΩ(U,Ek) ≥ 10 ε1).

If
◦
Ek denotes the interior of Ek and ∂Ek its boundary, the open set Ωk is

then defined as

Ωk =
◦
Ek ∪

(
∪

U∈U∩∂Ek, U 6=U
(1)
j(k)

B(U, 3 ε1)

)
. (4.1)

Its closure Ωk equals Ω when j(k) = 0 and equals the compact arcwise
connected set

Ωk = Ek ∪ {U (1)
j(k)} ∪

(
∪

U∈U∩∂Ek, U 6=U
(1)
j(k)

B(U, 3 ε1)

)

23



when j(k) 6= 0.
The cut-off function χk,ε, k ∈ {1, . . . ,m0}, will be supported in a neighbor-

hood of Ωk with some specific behaviour near U
(1)
j(k), when j(k) 6= 0.

For ε > 0 and δ > 0, 0 < δ < ε < ε1, we introduce the set Ω̃k(ε, δ) defined
by

Ω̃k(ε, δ) =
{
x ∈ Ω, dΩ

(
x,Ωk \B(U

(1)
j(k), ε)

)
< δ
}
∪B(U

(1)
j(k), ε).

Then there exists C > 0 and ε0 ∈ (0, ε1] such that, for any fixed ε ∈ (0, ε0],
one can associate δε ∈ (0, ε) and Cε > 0 so that the estimates

∀x ∈ Ω̃k(ε, δ) \ Ω̃k(ε, δ/2) , f(U
(1)
j(k)) + δ

Cε
≤ f(x) ≤ f(U

(1)
j(k)) + Cε , (4.2)

∀x ∈ B(U
(1)
j(k), ε) ,

∣∣∣f(x)− f(U
(1)
j(k))

∣∣∣ ≤ Cε , (4.3)

hold for any δ ∈ (0, δε].
The cut-off χk,ε is now chosen such that

suppχk,ε ⊂ Ω̃k(ε, δε) and χk,ε

∣∣∣
Ω̃k(ε,δε/2)\B(U

(1)
j(k)

,ε)
≡ 1.

In the case j(k) = 0, our definition simply says χk,ε ≡ 1 on Ω.

Around U
(1)
j(k), the cut-off function χk,ε is chosen3 so that U

(1)
j(k) 6∈ suppχk,ε

and

∀x ∈ B(U
(1)
j(k), ε),

(
χk,ε(x) 6= 0 and f(x) < f(U

(1)
j(k))

)
⇒ (x ∈

◦
Ek ⊂ Ωk).

(4.4)
Before we summarize the properties of the cut-off functions χk,ε, k ∈ {1, . . . ,m0},
we invite the reader to look at the three pictures which illustrate the various
possibilities of the local shape of Ω̃k(ε, δ) and of supp∇χk,ε in a neighborhood
of x0 ∈ ∂Ek. Asymptotically, that is for ε1 and ε going to 0, geodesic balls
are equivalent to ellipsoids in Morse coordinates (We simplified the picture
by drawing circles instead).

3For further calculations, we will be more specific in Subsection 4.2 about the shape of
this cut-off around U

(1)
j(k).
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x0

Ωk

∂Ωk

∂Ω̃k
�
ε � δ � 2 �

δ � 2
�

Figure 1: Case x0 ∈ ∂Ωk, ∇f(x0) 6= 0. The support of ∇χk,ε is localized
around the dashed curve.

x0
� U

Ωk

∂Ωk

∂Ek

∂Ω̃k
�
ε � δ � 2 �

δ � 2 3ε1

Figure 2: Case x0 = U ∈ ∂Ωk, ∇f(U) = 0 and U 6= U
(1)
j(k). The support of

∇χk,ε is localized around the dashed curve.

x0
� U

�
1 �

j
�
k �

∂Ωk

Ωk

ε

δ � 2

∂Ω̃k � ε � δ � 2 �

Figure 3: Case x0 = U
(1)
j(k). The support of ∇χk,ε is localized around the

dashed curve.
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Proposition 4.2. By taking δ = δε with ε ∈ (0, ε0], 0 < ε0 ≤ ε1 small
enough, the cut-off functions χk,ε, k ∈ {1, . . . ,m0} satisfy the following prop-
erties :

a) If x belongs to suppχk,ε and f(x) < f(U
(1)
j(k)), then x ∈

◦
Ek.

b) There exist C > 0 and for any ε ∈ (0, ε0] a constant Cε > 0 such that for
x ∈ supp∇χk,ε :

either x 6∈ B(U
(1)
j(k), ε) and f(U

(1)
j(k)) + C−1

ε ≤ f(x) ≤ f(U
(1)
j(k)) + Cε

or x ∈ B(U
(1)
j(k), ε) and

∣∣∣f(x)− f(U
(1)
j(k))

∣∣∣ ≤ Cε.

c) For any U ∈ U , U 6= U
(1)
j(k), the distance dΩ(U, supp∇χk,ε) is bounded

from below by 3ε1 > 0. If further U ∈ suppχk,ε, then U ∈ Ek.

d) If U
(0)
k′ , for some k′ ∈ {1, . . . ,m0}, belongs to suppχk,ε, then k′ ≥ k and

f(U
(0)
k′ ) > f(U

(0)
k ), f(U

(1)
j(k′)) ≤ f(U1

j(k)), if k 6= k′.

e) For any j ∈ {1, . . . ,m1} such that U
(1)
j ∈ suppχk,ε :

either j 6∈ j ({1, . . . ,m0})
or j = j(k′) with k′ ≥ k and U

(0)
k′ ∈ suppχk,ε.

Proof.
a) is an immediate consequence of the local description of Ω̃k(ε, δ) in a neigh-
borhood of x0 ∈ ∂Ek.
b) is a consequence of the inequalities (4.2) and (4.3).
In c) the first statement is a consequence of the choice of ε1 in Lemma 4.1.
The second statement comes from the local description of Ω̃k(ε, δ) for δ > 0
small enough.
d) is a consequence c) and Proposition 3.11-d).
e) is a consequence of c) and Proposition 3.11-c).
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4.2 Cut-off functions near saddle points.

We specify here the behaviour of the cut-off χk,ε in the ball B(U
(1)
j(k), ε) with

j(k) 6= 0 and ε ∈ (0, ε0], ε0 > 0 small enough. We introduce like in ([HelSj3]-
Section 2), the coordinates (y, z) which are adapted to the WKB-analysis of

∆
(p)
f,h near a critical point U = U (p) with index p (Actually we simply need

the case p = 1 here). We associate with this critical point U the stable (or
incoming) manifold V− and the unstable (or outgoing) manifold V+ for ∇f ,
dim V− = p and dim V+ = n− p. We set

Φ(x) = dAg(x, U) ,

where dAg is the Agmon distance introduced in Subsection 4.1. In a neigh-
borhood of V of U we have :

|f(x)− f(U)| ≤ Φ(x), ∀x ∈ V , (4.5)

and
(|f(x)− f(U)| = Φ(x)) ⇔ (x ∈ V− ∪ V+) . (4.6)

More precisely we have

∀x ∈ V± ∩ V , Φ(x) = ± (f(x)− f(U)) .

We now set for all x ∈ V

g+(x) = Φ(x)− f(x) + f(U) and g−(x) = Φ(x) + f(x)− f(U).

The relation (due to the fact that Φ is locally a solution of the eikonal equa-
tion) in the neighborhood of U

|∇Φ(x)|2 = |∇f(x)|2 , (4.7)

gives
∇g+.∇g− = 0 .

Moreover g+ (resp. g−) vanishes at order 2 on V+ (resp. V−) with a non
degenerate transverse Hessian by taking V small enough. We also have

∇g+ = 0 and ∇g− = 2∇f = 2∇Φ on V+ ,

∇g− = 0 and ∇g+ = −2∇f = 2∇Φ on V− ,
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and ∇g− (resp. ∇g+) is tangent to V+ (resp. V−).
One first determines the coordinates y1, . . . , yp on V− centered at U ( yj(U) =
0) such that the 1-forms dy1, . . . dyp define at U an orthonormal system of
eigenvectors of Hess f(U) corresponding to its negative eigenvalues. Since g−
vanishes at order 2 on V− with nondegenerate transverse Hessian which has
a fixed sign, the coordinates yj can be extended to a neighborhood of V−
as C∞-solutions of

∇g−yj = 0, 1 ≤ j ≤ p .

Since ∇g− is tangent to V+, we have

yj

∣∣∣
V+

= 0, 1 ≤ j ≤ p .

Moreover, any C∞-function which solves ∇g−u = 0 can be written as a func-
tion of (y1, . . . , yp). In particular we can write

g+ = g+(y1, . . . , yp) .

Similarly the coordinates zp+1, . . . , zn are first defined on V+ such that zj(U) =
0 and (dzp+1(U), . . . dzn(U)) is an orthonormal system of eigenvectors of
Hess f(U) corresponding to positive eigenvalues. They are extended as solu-
tions of

∇g+zj = 0, p+ 1 ≤ j ≤ n ,

and satisfy : zj

∣∣∣
V−

= 0, p+ 1 ≤ j ≤ n and g− = g−(zp+1, . . . , zn). Since g±

vanishes at order 2 and has a non degenerate transverse Hessian on V±, the
coordinates (y1, . . . , yp) and (zp+1, . . . , zn) can be replaced by Morse coordi-

nates. If λ̂1(U) ≤ λ̂2(U) . . . ≤ λ̂n(U) denote the eigenvalues of Hess f(U), we
obtain coordinates (y, z) such that

f − f(U) =
1

2
(−g+(y1, . . . , yp) + g−(zp+1, . . . , zn))

=

p∑
j=1

λ̂j(U)

2
y2

j +
n∑

j=p+1

λ̂j(U)

2
z2

j ,

and such that (dy1(U), . . . , dzn(U)) is an orthonormal system of eigenvectors
for Hess f(U).
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We will use such a set of coordinates in a neighborhood V of U = U
(1)
j(k),

j(k) 6= 0. Note that in this case p = 1, V− ∩ V = {z2 = . . . = zn = 0} ∩ V
and V+ ∩V = {y1 = 0} ∩ V . The orientation of the y1-axis V− is chosen such
that

Ωk ∩ V ⊂ {y1 < 0} ∩ V .

The parameter ε0 > 0 and for ε ∈ (0, ε0] the cut-off χk,ε are chosen such
that :

i) The ball B(U
(1)
j(k), ε0) is contained in V .

ii) The support χk,ε does not meet V+ :

suppχk,ε ∩B(Uj(k), ε) ⊂ {y1 < 0} ∩B(U
(1)
j(k), ε).

iii) In a neighborhood

V− =

{
x ∈ B(U

(1)
j(k), ε), max

j=2,...,n
|zj(x)| ≤ νε

}
, νε > 0 , (4.8)

of V−∩B(U
(ε)
j(k)), the function χk,ε only depends on y1 : χk,ε = χk,ε(y1).

U
�
1 �

j
�
k �

∂Ωk

Ωk

V�

V �
χk � ε � 1

χk � ε � 0

Figure 4: The support of ∇χk,ε is localized between the dashed curves which
coincide with y1 = Cte near V−.

29



4.3 Definition of quasimodes

The cut-off function χk,ε is used in the construction of quasi-modes for ∆
(0)
f,h.

The construction of quasi-modes for ∆
(1)
f,h will rely on the approximation by

the Dirichlet problem in small balls around U
(1)
j , j ∈ {1, . . . ,m1}. Let ε1 > 0

be the positive radius independent of ε > 0 chosen in Definition 4.1. For
each j ∈ {1, . . .m1}, we consider a normalized fundamental state uj of the

Witten Laplacian ∆
(1)
f,h in B(U

(1)
j , 2ε1) with Dirichlet boundary conditions on

all components. The cut-off function θj ∈ C∞0 (B(U
(1)
j , 2ε1)) is taken such

that θj ≡ 1 on B(U
(1)
j , ε1).

Note that the function χk,ε depends on ε ∈ (0, ε0], while θj is kept fixed
like ε1 > 0.

Definition 4.3.
For any k ∈ {1, . . . ,m0}, the (ε, h)-dependent function ψ

(0)
k is defined by

ψ
(0)
k (x) =

∥∥∥χk,ε(x)e
−(f(x)−f(U

(0)
k ))/h

∥∥∥−1

χk,ε(x)e
−(f(x)−f(U

(0)
k ))/h .

For any j ∈ {1, . . . ,m1}, the h-dependent 1-form ψ
(1)
j is defined by

ψ
(1)
j (x) =

(
‖θjuj‖−1) θj(x)uj(x) .

For any k ∈ {1, . . . ,m0} we set

λapp
k (ε, h) =

{ ∣∣∣〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k

〉∣∣∣2 if j(k) 6= 0 ,

0 if j(k) = 0 .

Remark 4.4. For the sake of conciseness, we do not mention the (ε, h)- and

h- dependence in the notations ψ
(0)
k and ψ

(1)
j .

5 Main result

Theorem 5.1.
Under Assumptions 2.1 and 3.8, there exist ε0 > 0 and α > 0, such that, for
any ε ∈ (0, ε0],

∀k ∈ {1, . . . ,m0} , λk(h) = λapp
k (ε, h)

(
1 +Oε(e

−α/h)
)
.

30



Moreover, if j(k) 6= 0, there exists a sequence (ck,m)m∈N∗ independent of
ε ∈ (0, ε0] such that

λapp
k (ε, h) =

h

π
|λ̂1(U

(1)
j(k))|

√√√√√
∣∣∣det(Hess f(U

(0)
k ))

∣∣∣∣∣∣det(Hess f(U
(1)
j(k)))

∣∣∣
× exp−2

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
× ak(ε, h) ,

with

ak(ε, h) ∼ 1 +
∞∑

k=1

ck,mh
m .

6 Proof of Theorem 5.1

6.1 Quasimodal estimates.

In the next two sections, the parameter ε1 > 0 is fixed, while ε0 and ε ∈ (0, ε0]
will be adapted in the different steps of the proof. We shall denote by α
a generic positive constant which is independent of ε ∈ (0, ε0].

Proposition 6.1.
The system of (ε, h)-dependent functions (ψ

(0)
k )k∈{1,...,m0} of Definition 4.3 is

almost orthogonal with(
〈ψ(0)

k | ψ(0)
k′ 〉
)

k,k′∈{1,...,m0}
= IdCm0 +Oε(e

−α/h) ,

and there exists α > 0 and, for any ε ∈ (0, ε0], C(ε) and h0(ε) such that, for
any h ∈ (0, h0(ε)],

〈∆(0)
f,hψ

(0)
k | ψ(0)

k 〉 =
∥∥∥d(0)

f,hψ
(0)
k

∥∥∥2

≤ C(ε)e−2(f(U
(1)
j(k)

)−f(U
(0)
k )−αε)/h .

Proof.
The almost orthogonality property is a direct consequence of Proposition 4.2-
d) while the second estimate is given by

〈∆(0)
f,hψ

(0)
k | ψ(0)

k 〉 =

∫
Ω
|∇χk,ε(x)|2 e−2(f(x)−f(U

(0)
k ))/h dx∫

Ω
|χk,ε(x)|2 e−2(f(x)−f(U

(0)
k ))/h dx

.
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The denominator is seen of order hn/2 by observing that f(U
(0)
k ) is a non

degenerate global minimum for f
∣∣
supp χk,ε

and using the Laplace integral

method. The numerator is 0 in the case j(k) = 0. In the case j(k) 6= 0, the

numerator is bounded by C(ε)e
−2

(
f(U

(1)
j(k)

)−f(U
(0)
k )−Cε

)
/h

according to Proposi-
tion 4.2-b). This yields the result by taking α ≤ C/2.

Corollary 6.2.
There exists ε0 > 0 and α > 0 such that for any choice of ε in (0, ε0] the

(ε, h)-dependent quasimodes ψ
(0)
k satisfy the estimate

〈∆(0)
f,hψ

(0)
k | ψ(0)

k 〉 ≤ Cεe
−α/h

for all k ∈ {1, . . . ,m0}.

Proposition 6.3.

The system of h-dependent 1-forms,
(
ψ

(1)
j

)
j∈{1,...,m1}

given in Definition 4.3

is orthonormal and there exists α > 0 independent of ε such that

〈∆(1)
f,hψ

(1)
j | ψ(1)

j 〉 = O(e−α/h)

for all j ∈ {1, . . . ,m1}.

Proof.
The orthogonality is obvious with our choice of ε1 > 0 in Lemma 4.1. The es-
timate is a consequence of Theorem 1.4 and Lemma 1.6 in [HelSj3] which says

that the first eigenvalue of the Dirichlet Witten Laplacian ∆
(1)
f,h in B(U

(1)
j , 2ε1)

is exponentially small and provides the Agmon type estimates for the first
eigenvector

|uj(x)| = Oη

(
e−dAg(x,U

(1)
j )/h

)
· eη/h , ∀η > 0 . (6.1)

Proposition 6.4. There exist sequences (ck,m)m∈N∗, for j(k) 6= 0, such that

the (ε, h)-dependent and h-dependent quasimodes ψ
(0)
k and ψ

(1)
j satisfy the

32



identities

〈ψ(1)
j | d(0)

f,hψ
(0)
k 〉 = 0 if j 6= j(k)

〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k 〉 ∼ (−1)n−1h

1/2

π1/2
|λ̂1(U

(1)
j(k))|

1/2

∣∣∣∣∣ det(Hess f(U
(0)
k ))

det(Hess f(U
(1)
j(k)))

∣∣∣∣∣
1/4

× exp−1

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
×

[
1 +

∞∑
m=1

ck,mh
m

]

for any (k, j) ∈ {1, . . . ,m0} × {1, . . . ,m1} as soon as ε ∈ (0, ε0].

Proof.
The first statement is a consequence our choice of ε1 > 0 and χk,ε which gives

according to Proposition 4.2-c) suppψ
(1)
j ∩supp∇χk,ε = ∅. We conclude with

d
(0)
f,hψ

(0)
k = Cε,h

(
d(0)χk,ε

)
e−f/h.

We now need some accurate estimates for ψ
(0)
k and ψ

(1)
j(k) when j(k) 6= 0. Let

us start with ψ
(0)
k .

We first need an expansion for the constant factor∥∥∥∥χk,εe
−

(
f(x)−f(U

(0)
k )

)
/h

∥∥∥∥2

=

∫
Ω

|χk,ε(x)| e−
2(f(x)−f(U

(0)
k

))

h dx.

The Laplace method gives∥∥∥∥χk,εe
−

(
f(x)−f(U

(0)
k )

)
/h

∥∥∥∥2

∼ (πh)n/2∣∣∣det Hess f(U
(0)
k )
∣∣∣1/2

[
1 +

∞∑
m=1

ak,mh
m

]

and we set

ak(h) =

∥∥∥∥χk,εe
−

(
f(x)−f(U

(0)
k )

)
/h

∥∥∥∥−1

=

∣∣∣det Hess f(U
(0)
k )
∣∣∣1/4

πn/4
[1 +Oε(h)] ,

with actually a complete expansion if necessary. Hence, the function ψ
(0)
k

and its differential d
(0)
f,hψ

(0)
k are equal to

ψ
(0)
k (x) = h−

n
4 ak(h)χk,ε(x)e

−
(f(x)−f(U

(0)
k

))

h (6.2)
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and

d
(0)
f,hψ

(0)
k (x) = h−

n
4 ak(h)(hd

(0)χk,ε)(x)e
−

(f(x)−f(U
(0)
k

))

h . (6.3)

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h1−n

4 ak(h)

∫
B(U

(1)
j(k)

,ε)

(ψ
(1)
j(k) | d

(0)χk,ε)(x)e
−

(f(x)−f(U
(0)
k

))

h dx

+Oε

(
e−

f(U
(1)
j(k)

)−f(U
(0)
k

)+σε

h

)
, σε > 0.

The three additional conditions i), ii) and iii) given in Subsection 4.2 for
the cutoff function χk,ε combined with (4.6) permit to reduce the integration
domain to the neighborhood V−, introduced in (4.8), of the stable manifold
V−. We obtain〈

ψ
(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h1−n

4 ak(h)

∫
V−

(ψ
(1)
j(k) |χ

′
k,εdy1)(x)e

−
(f(x)−f(U

(0)
k

))

h dx

+Oε

(
e−

f(U
(1)
j(k)

)−f(U
(0)
k

)+σε

h

)
, σε > 0 .

Theorem 2.5 in [HelSj3] says that in the coordinate system given in Subsec-
tion 4.2 there exists a WKB approximation

ω ∼ h−
n
4 exp−Φ

h
(
∞∑

m=0

hmωm)

of ψ
(1)
j(k) = uj in B(U

(1)
j(k), ε) such that∣∣eΦ(x)/h(uj − ω)(x)

∣∣ = O(h∞)

and ω0 = (−1)n−1

∣∣∣det Hess f(U
(1)
j(k))

∣∣∣1/4

πn/4
? (dz2 ∧ . . . ∧ dzn) on V− .

By setting bj(h) = (−1)n−1

∣∣∣detHess f(U
(1)
j(k)

)
∣∣∣1/4

πn/4 , we obtain〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h1−n

2 ak(h)bj(h)

∫
V−
e−

Φ(x)+f(x)−f(U
(0)
k

)

h

(
χ′k,ε(y1) +Oε(h)

)
dy1∧dz2∧. . .∧dzn .
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and with Φ(x) + f(x) = g−(z) + f(U
(1)
j(k))〈

ψ
(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h1−n

2 ak(h)bj(h)e
−

f(U
(1)
j(k)

)−f(U
(0)
k

)

h ×[∫
V−
e−g−(z)/h(χ′k,ε(y1) +Oε(h))dy1 ∧ dz2 ∧ . . . ∧ dzn

]
.

By Stokes formula the problem is reduced to the asymptotics of the integral∫
|z|≤ν

e−g−(z)dz2 ∧ . . . ∧ dzn on V+ .

The final result〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h

1
2 ak(h)bj(h)e

−
f(U

(1)
j(k)

)−f(U
(0)
k

)

h × π
n−1

2∣∣∣λ̂2(U
(1)
j(k)) . . . λ̂n(U

(1)
j(k))

∣∣∣1/2

 (1 +Oε(h)) .

is again an application of the Laplace method applied first to the main term
and then to the remainder term. For the asymptotic expansion, one has to
solve recursively the transport equations which determine the ωm and apply
the same trick with each term.

Corollary 6.5.
Let ψ

(0)
k and ψ

(1)
j denote the (ε, h)-dependent and h-dependent quasimodes of

Definition 4.3. Assume that the 1-form (w
(1)
j )j∈{1,...,m1} satisfy∥∥∥w(1)

j − ψ
(1)
j

∥∥∥ = O(e−α/h) ,

for some α > 0 independent of ε ∈ (0, ε0]. Then there exist ε′0 > 0 and α′ > 0
such that, for all ε ∈ (0, ε′0], the estimates∣∣∣〈w(1)

j | d(0)
f,hψ

(0)
k 〉
∣∣∣ ≤ Cεe

−(f(U
(1)
j(k)

−f(U
(0)
k )+α′)/h , if j 6= j(k) , (6.4)

and
〈w(1)

j(k) | d
(0)
f,hψ

(0)
k 〉 = 〈ψ(1)

j(k) | d
(0)
f,hψ

(0)
k 〉
(
1 +Oε(e

−α′/h)
)
, (6.5)

hold for all (k, j) ∈ {1, . . . ,m0} × {1, . . . ,m1}.
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It is a straightforward consequence of Propositions 6.1 and 6.4 which give :∥∥∥d(0)
f,hψ

(0)
k

∥∥∥ ≤ Cεe
−

(
f(U

(1)
j(k)

)−f(U
(0)
k )−α′′ε

)
/h
.

6.2 Finite dimensional reduction

Our main tool here is the following consequence of the spectral theorem :
For a non negative operator A and for u ∈ D(A), we have

(〈Au |u〉 ≤ a) ⇒
(∥∥1[b,+∞)(A)u

∥∥ ≤ a

b

)
(6.6)

for any a, b > 0.
This remark with Proposition 2.2 and the results of the previous Subsection
6.1 lead to the

Proposition 6.6.
There exist α, α′ > 0 such that

1[0,h3/2)(∆
(`)
f,h) = 1[0,e−α/h)(∆

(`)
f,h)) for ` = 0, 1.

Moreover if one sets

∀i ∈ {1, . . . ,m`} , v
(`)
i = 1[0,h3/2)(∆

(`)
f,h)ψ

(`)
i , (6.7)

where the ψ
(`)
i are the (ε, h)- and h- dependent quasimodes introduced in

Definition 4.3, the system
(
v

(`)
i

)
i∈{1,...,m`}

is a basis of F (`) such that

1) ∀i ∈ {1, . . . ,m`} ,
∥∥∥v(`)

i − ψ
(`)
i

∥∥∥ ≤ e−α′/h

2) V (`) :=
(
〈v(`)

i |v(`)
i′ 〉
)

i,i′∈{1,...,m`}
= IdCm` +O(e−α′/h).

Remark 6.7. Note that here again we forget the (ε, h)-dependence (resp.

h-dependence) of the functions v
(0)
k (resp. 1-forms v

(1)
j ) in the notation. de-

pendence
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Proof.
Let ` ∈ {0, 1} and i ∈ {1, . . . ,m`}. According to (6.6), Corollary 6.2 and

Proposition 6.3,
∥∥∥1[h3/2/2,+∞)(∆

(`)
f,h)ψ

(`)
i

∥∥∥ is estimated by e−α′/h. The sec-

ond estimate then comes from the almost orthonormality of
(
ψ

(`)
i

)
i∈{1,...,m`}

.

Since we know by Proposition 2.2-iii) that F (`) has dimension m`, the system

(v
(`)
i )i∈{1,...,m`} is a basis of F (`). We conclude with

〈∆(`)
f,hv

(`)
i | v(`)

i 〉 ≤ 〈∆(`)
f,hψ

(`)
i | ψ(`)

i 〉 ≤ e−2α/h .

Definition 6.8. The basis (e
(`)
i )i∈{1,...,m`} of F (`) is the orthonormal basis de-

rived from (v
(`)
i )i∈{1,...,m`} by the Gram-Schmidt orthonormalization procedure

e
(`)
i =

∑
i′

[
(V (`))−1/2

]
ii′
v

(`)
i′ .

The m1×m0 matrix M is the matrix of4 β
(0)
f,h in the bases (e

(0)
k )k∈{1,...,m0} and

(e
(1)
j )j∈{1,...,m1}. Its square M∗M is called the interaction matrix.

According to (2.7), the m0 first eigenvalues of the Witten Laplacian

∆
(0)
f,h = d

(0)∗
f,h d

(0)
f,h are the eigenvalues of the interaction matrix M∗M. Hence

it is theoretically possible to determine the low lying eigenvalues of ∆
(0)
f,h by

analyzing the matrix M. The problem is that the coefficients of the matrix
M are not known at this level accurately enough in order to split the different
exponentially small scales. One possibility would be to analyze the structure
of resonant and weakly resonant wells in the spirit of [HelSj2]. Some indi-
cations are given in [HelNi]. We will see that here it is more convenient to
work with the matrix

I =
(
〈v(1)

j | β(0)
f,hv

(0)
k 〉
)

(j,k)∈{1,...,m1}×{1,...,m0}
. (6.8)

of the map β
(0)
f,h, written in the bases (v

(0)
k )k∈{1,...,m0} in F (0) and

(
v

(1),∗
j

)
j∈{1,...,m1}

dual to (v
(1)
j )j∈{1,...,m1} in F (1). This permits to use directly all the accurate

4 We recall from (1.2) that β
(0)
f,h is defined from F (0) into F (1) by the restriction of d

(0)
f,h

to F (0).
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information that we have on the quasimodes ψ
(`)
i . The fact that these bases

are not orthonormal does not make any problem if one notices that the eigen-
values of M∗M are indeed the squares of the singular values of β

(0)
f,h.

6.3 Singular values and induction.

The first eigenvalues λk(h), 1 ≤ k ≤ m0, of ∆
(0)
f,h are the squares of the

singular values5 µm0+1−k(M) of M. In other words,

λk(h) =
[
µm0+1−k

(
β

(0)
f,h

)]2
.

We will use the simple consequence of the Fan inequalities (see [Sim1],
[GoKr]) :

Proposition 6.9. For any matrices A and B such that,

max
{
‖B‖ ,

∥∥B−1
∥∥} ≤ 1 + ρ ,

the singular values of A and AB satisfy

µk(A)

(1 + ρ)
≤ µk(AB) ≤ (1 + ρ)µk(A)

and the same holds with AB replaced by BA.

Hence a little change of bases, induces a relative little change of the sin-
gular values and it is not necessary to work with orthonormal bases in order
to estimate the singular values.

For example, we have for any k ∈ {1, . . . ,m0},

µk(β
(0)
f,h) = µk(M) = µk(I)

(
1 +O(e−α/h)

)
where I is the matrix of the map β

(0)
f,h introduced in (6.8).

We will construct by reverse induction on K, from m0 down to K = 2 or
K = 1, two bases (v

(0)
k,K)k∈{1,...,m0} of F (0) and of F (1) (v

(1)
j,K)j∈{1,...,m1} so that

the next properties hold for ε ∈ (0, ε0] and some α > 0 independent of ε :

5 The singular values µk(A) are numbered here as usual in the decreasing order with
µ1(A) = ‖A‖.
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1) The systems (v
(0)
k,K)K<k≤m0 and (v

(1)
j(k),K)K<k≤m0 are orthonormal.

We then set

F
(0)
K = Span

{
v

(0)
k,K , K < k ≤ m0

}
and F

(1)
K = Span

{
v

(1)
j(k),K , K < k ≤ m0

}
.

2) For 1 ≤ k ≤ K, v
(0)
k,K belongs to

(
F

(0)
K

)⊥
and for j 6∈ {j(k), K < k ≤ m0},

v
(1)
j,K belongs to

(
F

(1)
K

)⊥
.

3) The estimates

∀i ∈ {1, . . . ,m`} ,
∥∥∥v(`)

i,K − ψ
(`)
i

∥∥∥ = Oε(e
−α/h)

hold for ` = 0, 1.
4) For K < k ≤ m0, the equality

β
(0)
f,hv

(0)
k,K = νkv

(1)
j(k),K and ∆

(0)
f,hv

(0)
k,K = ν2

kv
(0)
k,K

hold with
νk = 〈ψ(1)

j(k) | d
(0)
f,hψ

(0)
k 〉
(
1 +Oε(e

−α/h)
)
.

They imply, observing also that νk 6= 0,

∆
(`)
f,hF

(`)
K ⊂ F

(`)
K , ` ∈ {0, 1} .

5) For all j 6∈ {j(k), K < k ≤ m0} and all k ∈ {1, . . . , K}, we have

〈v(1)
j,K | β(0)

f,hv
(0)
k,K〉 = 〈v(1)

j,K | d(0)
f,hψ

(0)
k 〉.

Remind that the ψ
(`)
i and the v

(`)
i depend on h ∈ (0, h0] and ε ∈ (0, ε0]

while α > 0 enters in the exponential estimates. The parameters ε0 > 0
and α > 0 belong to intervals which have to be reduced each time that one
refers Corollary 6.5. This is done a finite number of times at each step of the
induction.

Initialization: the case K = m0.
We take v

(0)
k,m0

= v
(0)
k and v

(1)
j,m0

= v
(1)
j according to the definition of the

previous section. The conditions 1) and 4) are empty. The conditions 2)
and 3) are given in Proposition 6.6. For the condition 5), we write

〈v(1)
j | β(0)

f,hv
(0)
k 〉 = 〈1[0,h3/2)(∆

(1)
f,h)v

(1)
j | d(0)

f,h1[0,h3/2)(∆
(0)
f,h)ψ

(0)
k 〉

= 〈1[0,h3/2)(∆
(1)
f,h)v

(1)
j | d(0)

f,hψ
(0)
k 〉 = 〈v(1)

j | d(0)
f,hψ

(0)
k 〉.
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The recursion argument.
Assume that the result is true for K > 1 (or K > 2 if j(1) = 0). The
conditions 1) and 4) say that the quantities |νk|, K < k ≤ m0 are singular

values of β
(0)
f,h (ν2

k is an eigenvalue of ∆
(0)
f,h

∣∣
F (0)). Moreover the estimate

νk = 〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k 〉
(
1 +Oε(e

−α/h)
)

(6.9)

and Proposition 6.4 imply

|νk| ≥ Cεh
1/2e−(f(Uj(K+1))−f(U

(0)
K+1))/h ≥ Cεe

−(f(Uj(K))−f(U
(0)
K )−2α1)/h , (6.10)

with α1 independent of ε > 0.
Let us consider the dual basis (v

(1),∗
j,K ) in F (1). For j = j(k), K < k ≤ m0,

v
(1),∗
j,K equals v

(1)
j,K and consequently∥∥∥v(1),∗

j,K − ψ
(1)
j

∥∥∥ = Oε

(
e−α/h

)
.

The matrix of β
(0)
f,h : (F

(0)
K )⊥ → (F

(1)
K )⊥ in the bases (v

(0)
k,K)1≤k≤K and

(v
(1),∗
j,K )j 6∈{j(k),K<k≤m0} equals(

〈v(1)
j,K | β(0)

f,hv
(0)
k 〉
)

j 6∈{j(k),K<k≤m0},1≤k≤K
. (6.11)

The conditions 3) and 5) and Corollary 6.5 lead to∥∥∥βf,h

∣∣
(F

(0)
K )⊥

∥∥∥ = Oε(e
−(f(Uj(K))−f(U

(0)
K )−α1)/h).

Hence the quantity |νk|, K < k ≤ m0 are the first largest singular values of

β
(0)
f,h,

∀k ∈ {K + 1, . . . ,m0} , |νk| = µm0+1−k(β
(0)
f,h) =

√
λk(h),

and we have √
λK(h) = µm0+1−K(β

(0)
f,h) =

∥∥∥β(0)
f,h

∣∣
(F

(0)
K )⊥

∥∥∥ . (6.12)

Let us now consider more carefully β
(0)
f,h

∣∣
(F

(0)
K )⊥

and its matrix (6.11) in the

bases (v
(0)
k,K)1≤k≤K , (v

(1),∗
j,K )j 6∈{j(k),K<k≤m0}. With the same arguments as above
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relying on Corollary 6.5 and conditions 3) and 5), its coefficients have the
form

〈ψ(1)
j(K) | df,h(0)ψ

(0)
K 〉
(
δj(K),jδK,k +Oε(e

−α2/h)
)
. (6.13)

Since the two bases are Oε(e
−α/h)-close to orthonormal bases, we obtain√

λK(h) =
∣∣∣〈ψ(1)

j(K) | d
(0)
f,hψ

(0)
K 〉
∣∣∣ (1 +Oε(e

−α3/h)).

We set

νK =
〈ψ(1)

j(K) | d
(0)
f,hψ

(0)
K 〉∣∣∣〈ψ(1)

j(K) | d
(0)
f,hψ

(0)
K 〉
∣∣∣
√
λK(h) . (6.14)

We have
β

(0)
f,hv

(0)
K,K = νKv

(1),∗
j(K),K +Oε(νKe

−α4/h). (6.15)

We next define the new bases (v
(0)
k,K−1) and (v

(1)
j,K−1).

Of course we keep v
(0)
k,K−1 = v

(0)
k,K and v

(1)
j(k),K−1 = v

(1)
j(k),K for K < k ≤ m0.

We then take

v
(0)
K,K−1 =

∥∥∥1{λK}(∆
(0)
f,h)vK,K

∥∥∥−1

1{λK}(∆
(0)
f,h)vK,K

and v
(1)
j(K),K−1 =

1

νK

β
(0)
f,hv

(0)
K,K−1.

For 1 ≤ k ≤ K − 1 and j 6∈ {j(k), K − 1 < k ≤ m0}, we take

v
(0)
k,K−1 = v

(0)
k,K − 〈v

(0)
k,K | v(0)

K,K−1〉v
(0)
K,K−1

and v
(1)
j,K−1 = v

(0)
j,K − 〈v

(1)
j,K | v(1)

j(K),K−1〉v
(1)
j(K),K−1.

By construction the conditions 1), 2) and 4) are satisfied by these new bases.

The condition 3) will be satisfied as well if
∥∥∥v(0)

K,K − v
(0)
K,K−1

∥∥∥ = Oε(e
−α5/h)

holds. The identity (6.12) gives

∀k ∈ {1, . . . , K} , v
(0)
k,K = 1[0,λK ](∆

(0)
f,h)v

(0)
k,K . (6.16)

Moreover Corollary 6.5 yields

∀k ∈ {1, . . . , K − 1} ,∀j ∈ {1, . . . ,m1} ,
∣∣∣〈v(1)

j,K | β(0)
f,hv

(0)
k,K〉

∣∣∣ = Oε(
√
λKe

−α6/h).
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Like in the proof of Proposition 6.6, we obtain for some α7 > 0

1[0,λK)(∆
(0)
f,h) = 1[0,λKe−α7/h)(∆

(0)
f,h). (6.17)

We now write, by spectral decomposition and using (6.17) and (6.16),

λK

∥∥∥1{λK}(∆
(0)
f,h)v

(0)
K,K

∥∥∥2

+Oε(λKe
−α7/h)

∥∥∥1[0,λK)(∆
(0)
f,h)v

(0)
K,K

∥∥∥2

= 〈∆(0)
f,hv

(0)
K,K | v(0)

K,K〉 (6.18)

and observe that by (6.15)

〈∆f,hv
(0)
K,K | v(0)

K,K〉 =
∥∥∥β(0)

f,hv
(0)
K,K

∥∥∥2

= λK

(
1 +Oε(e

−α4/2h)
)
. (6.19)

Hence we obtain ∥∥∥1{λK}(∆
(0)
f,h)v

(0)
K,K

∥∥∥ = 1 +Oε(e
−α8/h).

We conclude with∥∥∥1[0,λK)(∆
(0)
f,h)v

(0)
K,K

∥∥∥2

=
∥∥∥v(0)

K,K

∥∥∥2

−
∥∥∥1{λK}(∆

(0)
f,h)v

(0)
K,K

∥∥∥2

= Oε(e
−2α/h) +Oε(e

−2α8/h).

We have proved ∥∥∥v(0)
K,K − v

(0)
K,K−1

∥∥∥ = Oε(e
−α5/h) .

This implies∥∥∥β(0)
f,hv

(0)
K,K − νKv

(1)
j(K),K−1

∥∥∥ =
∥∥∥β(0)

f,hv
(0)
K,K − β

(0)
f,hv

(0)
K,K−1

∥∥∥
=
∥∥∥β(0)

f,h1[0,λK ](∆
(0)
f,h)(v

(0)
K,K − v

(0)
K,K−1)

∥∥∥
= Oε(

√
λKe

−α5/h) ,

while we have ∥∥∥β(0)
f,hv

(0)
K,K − νKv

(1),∗
j(K),K

∥∥∥ = Oε(νKe
−α4/h).

The almost orthonormality of (v
(1)
j,K)j∈{1,...,m0} inherited from the condition 3)

and the almost orthogonality of (ψ
(1)
j ){1,...,m1} imply∥∥∥v(1)

j(K),K − v
(1),∗
j(K),K

∥∥∥ = Oε(e
−α/2h).
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This yields ∥∥∥v(1)
j(K),K−1 − v

(1)
j(K),K

∥∥∥ = Oε(e
−α9/h).

Let us verify condition 5) for the new bases.
For k ∈ {1, . . . , K − 1} the construction of the new bases and the induction
gives

v
(0)
k,K−1 = v

(0)
k,K − 〈v

(0)
k,K | v(0)

K,K−1〉v
(0)
K,K−1 = v

(0)
k,m0

−
∑

K≤K′≤m0

tk,K′ v
(0)
K′,K′−1

= v
(0)
k −

∑
K≤K′≤m0

tk,K′ v
(0)
K′,K−1 ,

with tk,K′ := 〈v(0)
k,K′ | v(0)

K′,K′−1〉. Hence we get, with v
(0)
k = 1[0,h3/2)(∆

(0)
f,h)ψ

(0)
k ,

β
(0)
f,h v

(0)
k,K−1 = β

(0)
f,h v

(0)
k −

∑
K≤K′≤m0

tk,K′ β
(0)
f,hv

(0)
K′,K−1

= 1[0,h3/2)(∆
(1)
f,h) d

(0)
f,hψ

(0)
k −

∑
K≤K′≤m0

tk,K′ νK′ v
(1)
j(K′),K−1.

Meanwhile for j 6∈ {j(k), K − 1 < k ≤ m0}, the vectors v
(1)
j,K−1 were con-

structed such that

v
(1)
j,K−1 ∈ (F

(1)
K−1)

⊥ =
(
Span{v(1)

j(K),K−1, . . . , v
(1)
j(m0),K−1}

)⊥
.

We obtain, for all k ∈ {1, . . . , K − 1} and all j 6∈ {j(k), K − 1 < k ≤ m0},

〈v(1)
j,K−1 | β

(0)
f,hv

(0)
k,K−1〉 = 〈1[0,h3/2)

(
∆

(1)
f,h

)
v

(1)
j,K−1 | d

(0)
f,hψ

(0)
k 〉

= 〈v(1)
j,K−1 | d

(0)
f,hψ

(0)
k 〉.

Stopping the induction :
When j(1) 6= 0, one continues the induction until the bases (v

(0)
k,1) and (v

(1)
j,1 )

are constructed. When j(1) = 0 ones stops the induction when the basis

(v
(0)
k,2) and (v

(1)
j,2 ) are constructed. Indeed in this case we have β

(0)
f,hv

(0)
1 = 0 and

for all K, 2 ≤ K ≤ m0, v
(0)
1,K = v

(0)
1 .
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Bull. Sci. Math. 119, p. 529-553 (1995).

[Sim1] B. Simon. Trace ideals and their applications. Cambridge University
Press IX, Lecture Notes Series vol. 35 (1979).

[Sim2] B. Simon : Semi-classical analysis of low lying eigenvalues, I.. Non-
degenerate minima: Asymptotic expnasions. Ann. Inst. Poincaré, 38, p.
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