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On the Cyclotomic Quantum Algebra

of Time Perception

Michel Planat† §
† Institut FEMTO-ST, Département LPMO,

32 Avenue de l’Observatoire, 25044 Besançon Cedex, France

Abstract.

I develop the idea that time perception is the quantum counterpart to time

measurement. Phase-locking and prime number theory were proposed as the unifying

concepts for understanding the optimal synchronization of clocks and their 1/f

frequency noise. Time perception is shown to depend on the thermodynamics of

a quantum algebra of number and phase operators already proposed for quantum

computational tasks, and to evolve according to a Hamiltonian mimicking Fechner’s

law. The mathematics is Bost and Connes quantum model for prime numbers. The

picture that emerges is a unique perception state above a critical temperature and

plenty of them allowed below, which are parametrized by the symmetry group for the

primitive roots of unity. Squeezing of phase fluctuations close to the phase transition

temperature may play a role in memory encoding and conscious activity.
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1. Introduction

In a recent issue of this journal B. Flanagan [1] discusses parallels between the perception

of color and its concomitant quantum field. We follow that line of reasoning by proposing

the concept of phase-locking to parallel classical measurements on oscillators with the

quantum perception of time. Period measurements of a test oscillator against a reference

one is usually performed close to baseband, thanks to a non-linear mixing element and

a low pass filter. The resulting beat note in units of the frequency of the reference

oscillator results from the continued fraction expansion of the input frequency ratio.

The beat frequency exhibits variability, with 1/f power spectrum, that we explained

from phase-locking of the input oscillators. We could model the effect by considering a

discrete coupling coefficient versus time, related to the logarithm of prime numbers and

also to the Riemann zeta function and its critical zeros [2].

Time evolution in human classical oscillators such as the circadian rhythm in plants,

the heart rate of melatonine secretion should obey the same rules because they are slaved

to the lightning environment or to internal pacemakers. But does time perception resort

to the arithmetic above? Our postulate is that our mind still uses phase-locking, but in

a discrete algebraic way, from quantum finite fields lying in the brain. The object under

control by mental states would be Zq = Z/qZ, the ring of integers of modulo q, with q

the finite dimension of the quantum field. In particular we claim the ability of our mind

to lock to the largest cyclic subgroup in Zq. The human ability to perceive the greatest

common divisor in the frequencies of two sounds, instead of their beat frequency, is well

known, as is the ability to implicitly manage with continued fraction expansions in the

musical design of well tempered scales [3]. On classical computers these tasks require

a polynomial time. In contrast, finding the primitive roots of an algebraic equation

aα = 1(mod q), on which periodicity query depends, requires exponential time. Thus

our intuitive sense of time, of prime numbers, of primitive roots should result from the

ability of our mind to perform some sort of quantum computation. So the 1/f noise

effects observed in human cognition [4] would be related to the 1/fγ noise observed in

Zq about the period of its largest cyclic subgroup.

The best possible introduction to our research is still in the visionary Poincaré

words [5]:

The Physical Continuum. We are next led to ask if the idea of the mathematical

continuum is not simply drawn from experiment. If that be so, the rough data of

experiment, which are our sensations, could be measured. We might, indeed, be tempted

to believe that this is so, for in recent times there has been an attempt to measure

them, and a law has even been formulated, known as Fechner’s law, according to which

sensation is proportional to the logarithm of the stimulus. But if we examine the

experiments by which the endeavor has been made to establish this law, we shall be

led to a diametrically opposite conclusion. It has, for instance, been observed that a

weight A of 10 grammes and a weight B of 11 grammes produced identical sensations,

that the weight B could no longer be distinguished from a weight C of 12 grammes, but
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that the weight A was readily distinguished from the weight C. Thus the rough results

of the experiments may be expressed by the following relations: A = B,B = C,A < C,

which may be regarded as the formula of the physical continuum. But here is an

intolerable disagreement with the law of contradiction, and the necessity of banishing

this disagreement has compelled us to invent the mathematical continuum. We are

therefore forced to conclude that this notion has been created entirely by the mind, but it

is experiment that has provided the opportunity. We cannot believe that two quantities

which are equal to a third are not equal to one another, and we are thus led to suppose

that A is different from B, and B from C, and that if we have not been aware of this,

it is due to the imperfections of our senses.

The Creation of the Mathematical Continuum: First Stage. So far it would suffice,

in order to account for facts, to intercalate between A and B a small number of terms

which would remain discrete. What happens now if we have recourse to some instrument

to make up for the weakness of our senses? If, for example, we use a microscope? Such

terms as A and B, which before were indistinguishable from one another, appear now to

be distinct: but between A and B, which are distinct; is intercalated another new term

D, which we can distinguish neither from A nor from B. Although we may use the most

delicate methods, the rough results of our experiments will always present the characters

of the physical continuum with the contradiction which is inherent in it. We only escape

from it by incessantly intercalating new terms between the terms already distinguished,

and this operation must be pursued indefinitely. We might conceive that it would be

possible to stop if we could imagine an instrument powerful enough to decompose the

physical continuum into discrete elements, just as the telescope resolves the Milky Way

into stars. But this we cannot imagine; it is always with our senses that we use our

instruments; it is with the eye that we observe the image magnified by the microscope,

and this image must therefore always retain the characters of visual sensation, and

therefore those of the physical continuum.

The goal of the paper is to connect Poincaré physical continuum to the remarkable

quantum phase model due to J.B. Bost and A. Connes [6]: In this paper we construct a

C∗-dynamical system whose partition function is the Riemann ζ function. It admits the

ζ function as partition function and the Galois group Gal(Qcycl/Q) of the cyclotomic

extension Qcycl of Q as symmetry group. Moreover, it exhibits a phase transition with

spontaneous symmetry breaking at inverse temperature β = 1. The original motivation

for these results comes from the work of B. Julia.

2. Classical phase-locking

Poincaré physical continuum can be figured out by the concept of phase-locking of

clocks. The oscillators in our body, from the skin to the nerve cells, are engaged in

our sensation of weight. Two groups of oscillators compare the physical strengths of

the stimuli and react as A and B by locking at values A
B

= 1
1
, or A

B
= 1

2
· · ·, or more

generally at some simple rational ratio A
B

= p
q
, where p and q are coprime to each
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other, i.e. with greatest common divisor (p, q) = 1. One model of the phase-locking

phenomenon between coupled oscillators of angular frequency ω0 and ω is the Adler’s

equation [2]

dΦ

dt
+K sin Φ = ∆ω. (1)

It is achieved for example from a non-linear phase detector using electronic diode mixers

and a sustaining loop which shifts the frequency of a voltage controlled oscillator.

The same physical mechanism also occurs in phase-locked lasers and in feedbacks with

biologic oscillators. The symbol Φ in (1) is the phase difference between the oscillators,

∆ω = ω − ω0 is the detuning frequency and K is the strength of the interaction. This

model leads to a mean frequency 〈Φ̇〉 = 0 which is zero inside the phase-locked zone

|∆ω| < 2K and which is 〈Φ̇〉 = ∆ω(1−K2/(∆ω)2)1/2 outside that zone. Note that if the

oscillators have frequencies far apart, then 〈Φ̇〉 → ∆ω, so that the strength of “sensation”

is proportional to the “physical” strength. At that stage the model can only discriminate

if two physical strengths are equal or not. For a better operation of phase-locking

the harmonics generated in the interaction have to be accounted for. Experimentally

one finds 1/f frequency fluctuations about the unperturbed signal. Their range can

be found easily by differentiating the shifted frequency [2]. Technical details of the

frequency lockings between interacting harmonics need to have recourse to the theory

of continued fraction expansions. A simple model of the phase-lockings is the so-called

Arnold map

Φn+1 = Φn + 2πΩ − c sin Φn, (2)

where the coupling coefficient is c = K
ω0

. Such a non-linear map is studied by introducing

the winding number ν = limn→∞(Φn − Φ0)/(2πn). The limit exists everywhere as long

as c < 1. The curve ν versus Ω is a devil’s staircase with steps attached to the rational

values Ω = p
q

and the width increases with the coupling coefficient c. The structure in

steps corresponds to the Poincaré physical continuum.

It is well known that the phase-locking zones may overlap if c > 1 leading to chaos

from quasi-periodicity [2]. However, this type of chaos doesn’t resort to 1/f noise since

the phase-locked loops generally operate at quite small values of the coupling c. To

account for the 1/f noise we refined Arnold’s equation by introducing a discrete time

dependance on c able to reflect the tiny energy exchanges occurring from time to time

and needed for phase synchronization. We postulated a modulation of c by the Mangoldt

function Λ(n) of prime number theory. It is defined as

Λ(n) =

{

ln b if n = bk, b a prime,

0 otherwise.
(3)

Mangoldt function arises in prime number theory as the logarithmic derivative of

Riemann zeta function ζ(s) =
∑

n≥1 n
−s, ℜ(s) ≥ 1 since d ln ζ(s)/ds =

∑

n≥1 Λ(n)n−s.

Riemann zeta function can be extended analytically to the whole plane of the complex

variable s, except for a pole at s = 1. The zeta function also shows trivial zeros on

the negative axis, at s = −2l, l integer, and an infinite number of very irregularly
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spaced zeros on the vertical axis ℜs = 1
2
. Riemann hypothesis states that indeed all

zeros are located on that critical axis. In addition the averaged Mangoldt function can

be expressed explicitly in terms of critical zeros. Numerically the averaged Mangoldt

function deviates from 1 with a random looking term, having a 1/f type power spectral

density. This fact motivated us to put it as a modulating term of c. In Sect.3.3 below,

it will be shown how the pole of the Riemann zeta function is associated with the

critical temperature Tc in the phase transition model of time perception, and how phase

fluctuations of the Mangoldt function type occur close to Tc.

3. Quantum phase-locking

3.1. Quantum phase states

Our hypothesis is that mental states of human perception still rely on phase-locking but

with an important feature added: the discreteness of phase states, which adds to the

discreteness of frequency ratios between the interacting oscillators. What characterizes

best the quantum time perception in contrast to classical time measurement is the

existence of quantum operators sustaining this algebra of phase states, and a properly

chosen evolution Hamiltonian operator. Otherwise our approach is quantum field theory

and quantum statistical mechanics.

Let us start with the familiar Fock states of the quantized electromagnetic field

(the photon occupation states) |n〉 which live in an infinite dimensional Hilbert space.

They are orthogonal to each other: 〈n|m〉 = δmn, where δmn is the Dirac symbol. The

states form a complete set:
∑∞
n=0 |n〉〈n| = 1.

The annihilation operator â removes one photon from the electromagnetic field

â|n〉 =
√
n|n− 1〉, n = 1, 2, · · · (4)

Similarly the creation operator â† adds one photon: â†|n〉 =
√
n+ 1|n+1〉, n = 0, 1, · · ·

These operators follow the commutation relation [â, â†] = 1. The operator N = â†â

represents the particle number operator and satisfies the eigenvalue equation N |n〉 =

n|n〉.
The algebra can be simplified by removing the normalization factor

√
n in (4)

defining thus the shift operator E as

E|n〉 = |n− 1〉, n = 1, 2, · · · (5)

Similarly E†|n〉 = |n + 1〉, n = 0, 1, · · ·. The operator E has been known as the

(exponential) phase operator

E = eiΦ = (N + 1)−1/2â =
∞
∑

n=0

|n〉〈n+ 1|. (6)

The problem with this definition is that the operator E is only one-sided unitary since

EE† = 1, E†E = 1 − |0〉〈0|, due to the vacuum-state projector |0〉〈0|. The problem of

defining a Hermitian quantum phase operator was already encountered by the founder
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of quantum field theory P.A.M. Dirac [7]. The eigenvectors of E have been known as

the Susskind-Glogower phase states; they satisfy the eigenvalue equation

E|ψ〉 = eiψ|ψ〉, with |Ψ〉 =
∑∞
n=0 e

inψ|n〉. (7)

They are non-orthogonal to each other and form an overcomplete basis which solves

the identity operator since 1
2π

∫ π
−π dψ|ψ〉〈ψ| = 1. When properly normalized the phase

states |ψ〉 in (7) are a special case of the SU(1, 1) Perelomov coherent states [8],[9]. The

operator cos Φ = 1
2
(E + E†) is used in the theory of Cooper pair box with a very thin

junction when the junction energy EJ cos Φ is higher than the electrostatic energy [10].

Further progress in the definition of phase operator was obtained by Pegg and

Barnett [7] in the context of a finite Hilbert space. From now we consider a finite basis

|n〉 of number states, with the index n ∈ Zq = Z/qZ, the ring of integers modulo q.

The phase states are now defined from the discrete Fourier transform (or more precisely

from the quantum Fourier transform since the superposition is on Fock states not on

real numbers)

|θp〉 =
1√
q

q−1
∑

n=0

exp(2iπ
p

q
n)|n〉. (8)

The states are eigenstates of the Hermitian phase operator Θq such that Θq|θp〉 = θp|θp〉
where Θq =

∑q−1
p=0 θp|θp〉〈θp| and θp = θ0 + 2πp/q with θ0 a reference angle. It is implicit

in the definition (8) that the Hilbert space is of finite dimension q. The states |θp〉 form

an orthonormal set and in addition the projector over the subspace of phase states is
∑q−1
p=0 |θp〉〈θp| = 1q, where 1q is the unitary operator. Given a state |F 〉 one can write

a probability distribution |〈θp|F 〉|2 which may be used to compute various moments,

e.g. expectation values, variances. The key element of the formalism is that first the

calculations are done in the subspace of dimension q, then the limit q → ∞ is taken.

3.2. Primitive roots and 1/f noise

Let us consider the ring Zq. An important point about this set is that it is endowed

with cyclic properties. If q = p, a prime number, then the period is p− 1; in any case

they are cyclic subgroups in Zq. This can be shown by the examination of the algebraic

equation

aα = 1(mod q). (9)

Let us ask the question: what is the cycle of largest period in Zq? To find it one should

look at the primitive roots which are defined as the solution of (9) such that the equation

is wrong for any 1 ≤ α < q − 1 and true only for α = q − 1. If q = b, a prime number,

and b = 7, the largest period is thus φ(b) = b− 1 = 6, and the cycle is as given in Table

1. If q = 2, or 4, or q = br, a power of a prime number > 2, or q = 2br, twice the power

of a prime number > 2, then a primitive root exists, and the largest cycle in the group

is φ(q). For example a = 2 and q = 32 leads to the period φ(9) = 6 < q − 1 = 8, as it is

shown in Table 2.
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Table 1. (Z/7Z)∗ is a cyclic group of order φ(7) = 6.

α 1 2 3 4 5 6 7 8

3α 3 2 6 4 5 1 3 2

Table 2. (Z/32Z)∗, is a cyclic group of order φ(9) = 6.

α 1 2 3 4 5 6 7 8

2α 2 4 8 7 5 1 2 4

Otherwise there is no primitive root. The period of the largest cycle in Zq = Z/qZ
can still be calculated and is called the Carmichael Lambda function λ(q). It is shown

in Table 3 for the case a = 3 and q = 8. It is λ(8) = 2 < φ(8) = 4 < 8 − 1 = 7.

Table 3. (Z/8Z)∗ has a largest cyclic group of order λ(8) = 2.

α 1 2 3 4 5 6 7 8

3α 3 1 3 1 3 1 3 1
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Figure 1. Normalized Carmichael lambda function: (
∑

t

1
λ(n))/t1.90.

Fig. 1 shows the properly normalized period for the cycles in Zq = Z/qZ. Its

fractal character can be appreciated by looking at the corresponding power spectral

density (FFT) shown in Fig. 2. It has the form of a 1/fγ noise, with γ = 0.70. For
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Figure 2. FFT of the normalized Carmichael lambda function. The straight line has

slope −0.70.

a more refined link between primitive roots, cyclotomy and Ramanujan sums see also

[11].

Let us remind that the algebraic equation (9) is used as a numerical trap door for

public key encryption (the RSA cryptosystem) [3], p.125. While it is easy to multiply

1000-digit numbers within a time of few milliseconds on a modern classical computer,

the opposite task of factorizing is impossible in a reasonable time. This impossibility

would be lifted on a quantum computer thanks to Schor’s algorithm of finding periods

efficiently in Zq (see Sect.3.3).

3.3. Quantum computation and the Bost and Connes algebra

The quantum operator corresponding to (9) is another shift µa in the space of number

states, where a ∈ Zq and (a, n) = 1. It is defined as

µa|n >= |an(mod q)〉, (10)

It is multiplicative: µkµl = µkl and µ∗
kµk = 1, k, l ∈ N . The eigenvalues and eigenvectors

of the operator (10) allow to define the order r = ordq(a) of a (mod) q which is the

smallest exponent such that (9) is satisfied. When the order is r = φ(q) then a is a

primitive root. This results from Euler theorem which states that aφ(q) = 1(mod q). If

the order is the same for any a such that (a, q) = 1 it is also called a universal exponent.

Thus φ(q) is a universal exponent. It is the smallest one if a is a primitive root, otherwise

there is a smaller one which is Carmichael lambda function introduced above. Let us

summarize

ordq(a) ≤ λ(q) ≤ φ(q) ≤ q − 1. (11)
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The eigenvalues of operator (10) are of the form exp(2iπ k
r
) and the corresponding

eigenvectors are given as a quantum Fourier transform [12], p. 22.

|uk〉 =
1√
r

r−1
∑

j=0

exp(−2iπ
kj

r
)|ajmod q〉. (12)

We observe that (12) acts on the subspace of dimension r (the least period) from the

powers of a in (9). One sees that the uk’s acquire the status of phase states in the cyclic

subspace of Zq of dimension r.

The operator µa is used in the context of quantum computation in relation to

Schor’s algorithm [12]. The goal is to factor integers efficiently (in polynomial time

instead of the exponential time needed on the classical computer). It is in fact related

to the efficient estimation of the period r taken from the eigenvalue exp(2iπ k
r
), and to

the efficient implementation of quantum Fourier transforms on the quantum computer.

The shift operator (10) which quantizes (9) plays the role of multiplication in the

language of operators. The addition operator is easier to define

ep|n〉 = exp(2iπ
p

q
n)|n〉. (13)

It encodes the individuals in the quantum Fourier transform (8). These individuals are

eigenvalues of the operator ep. One gets e0 = 1, e∗p = e−p, elem = el+m. Both operators

µa and ep form an algebra A = (µa, ep). It was used by Bost and Connes [6],[13] to build

a remarkable quantum statistical model undergoing a phase transition.

3.4. The “quantum Fechner law” and its thermodynamics

Let us now make use of the concepts of quantum statistical mechanics. Given an

observable Hermitian operator M and a Hamiltonian H0 one has the evolution σt(M)

versus time t

σt(M) = eitH0Me−itH0 , (14)

and the expectation value of M at inverse temperature β = 1
kT

is the unique Gibbs state

Gibbs(M) =Trace(Me−βH0)/Trace(e−βH0). (15)

For the more general case of an algebra of observables A, the Gibbs state is replaced by

the so-called Kubo-Martin-Schwinger (or KMSβ) state. One introduces a 1-parameter

group σt of automorphisms of A so that for any t ∈ R and x ∈ A

σt(x) = eitH0xe−itH0 , (16)

but the equilibrium state remains unique only if some conditions regarding the evolution

of the operators x ∈ A are satisfied: the so-called KMS conditions [6]. It happens quite

often that there is a unique equilibrium state above a critical temperature Tc and a

coexistence of many equilibrium states at low temperature T < Tc. There is thus a

spontaneous symmetry breaking at the critical temperature Tc. A simple example is the

phase diagram for a ferromagnet. At temperature larger than T ≃ 103K the disorder

dominates and the thermal equilibrium state is unique, while for T < Tc the individual
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magnets tend to align each other, which in the three dimensional space R3 of the

ferromagnet yields a set of extremal equilibrium phases parametrized by the symmetry

group SO(3) of rotations in R3.

In Bost and Connes approach the Hamiltonian operator is given as the logarithm

of the number operator H0 = lnN , i.e. it is a kind of “quantum Fechner law” since the

“sensor” operator H0 is the logarithm of the “physical” operator N , in contrast to the

ordinary Hamiltonian H0 = N + 1
2

of the harmonic oscillator. The dynamical system

(A, σt) is defined by its action on the Fock states

H0|n〉 = lnn|n〉. (17)

Using the relations e−βH0 |n〉 = e−β lnn|n〉 = n−β|n〉, it follows that the partition function

of the model at the inverse temperature β is

Trace(e−βH0) =
∑∞
n=1 n

−β = ζ(β), ℜβ > 1. (18)

where ζ(β) is the Riemann zeta function introduced at the end of Sect.2. Applying (16)

to the Hamiltonian H0 in (17) one gets

σt(µa) = aitµa and σt(ep) = ep. (19)

One observes that under the action of σt the additive phase operator (13) is invariant,

while the multiplicative shift operator (10) oscillates in time at angular frequency ln a.

It is found in [6],[13] that the pole β = 1 of the Riemann zeta function separates two

dynamical regimes.

In the high temperature regime 0 < β ≤ 1 there is a unique KMSβ state of the

dynamical system (A, σt). The expectation value ψβ(
p
q
) for the irreducible fractions p

q
,

(p, q) = 1 is

ψβ(
p

q
) =

∏

b prime

kb 6=0

b−kbβ
1 − bβ−1

1 − b−1
, (20)

and the kb are the exponents in the unique prime decomposition of the denominator q

q =
∏

p prime

pkp. (21)

In the low temperature regime β > 1 things become more involved. The KMSβ
state is no longer unique, as it is in the case of the low temperature ferromagnet. The

symmetry group G of the dynamical system (A, σt) is a subgroup of the automorphisms

of A which commutes with σt

w ◦ σt = σt ◦ w, ∀w ∈ G, ∀t ∈ R, (22)

where ◦ means the composition law in G. When the temperature is high the system

is disordered enough that there is no interaction between its constituents and the

equilibrium state of the system does not see the action of the symmetry group G, which

explains why the thermal state is unique. At lower temperature T < Tc the constituents

of the system may interact. The symmetry group G then permutes a family of extremal

KMSβ states generating the possible states of the system after phase transition. The
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symmetry group for the algebra A = (µa, ep) and the “quantum Fechner Hamiltonian”

H0 in (17) is the Galois group G = Gal(Qcycl/Q) of the cyclotomic extension Qcycl of Q.

The field Qcycl is the one generated on Q by all the roots of unity. The Galois group G

is the automorphism group of Qcycl which preserves the sub-field Q. It is isomorphic to

Zq = (Z/qZ)∗ which is the group of integers modulo q with the zero element removed.

One immediately sees that the action of the Galois group G commutes with the 1-

parameter group defined in (19). Hence G permutes the extremal KMSβ states of (A, σt).

To describe these thermal states for β > 1 one starts from the action of operators µa
and ep on Fock states as given in (10) and (13), and one allows the permutation by the

symmetry group G. For each w ∈ G, one has a representation πw of the algebra A so

that

πw(µa)|n〉 = |an(mod q)〉, (23)

πw(ep)|n〉 = w(exp(2iπn
p

q
)|n〉, (24)

and it is shown in [6] that the state

φβ,w(x) = ζ(β)−1Trace(πw(x)e−βH0), x ∈ A (25)

is a KMSβ state for (A, σt). The action of G on A induces an action on these thermal

states which permutes them. For β > 1 the expectation value acting on the phase

operator ep may be written as KMS(ep) = q−β ∏

p divides q

p prime

1−pβ−1

1−p−1 . But it can be also

found that formula (20) is valid in the whole range of temperatures 0 ≤ β ≤ ∞.

Plotting the thermal state (Fig. 3) one observes the following asymptotes. In the

high temperature limit β=0 the thermal state tends to 1; in the low temperature range

β ≫ 1 the thermal state is well approximated by the function µ(q)/φ(q), where the

Möbius function µ(q) is 0 if the prime decomposition of q contains a square, 1 if q = 1

and (−1)k if q is the product of k distinct primes. Close to the critical temperature at

β = 1 the fluctuations are squeezed and the thermal state is quite close to ǫΛ(q)/q, when

ǫ = 1− β → 0, where Λ(q) is the Mangoldt function defined in (3). It is an unexpected

surprise that phase fluctuations at the critical region of the quantum perception model

resembles the ones of the classical phenomenological model of time measurements.

It is shown in our earlier papers [2], in eq. (38) that the normalized Möbius function

µ(q)/φ(q) is the dual to the Mangoldt function Λ(n) when one projects on to the basis of

Ramanujan sums. Ramanujan sums cq(n), which are defined as the sums of nth powers

of primitive roots of unity, generalize the cosine function, being quasi-periodic in n and

aperiodic in q. The thermal states in the transition region can thus be considered as an

unfolding through the dimensions q of the unique high temperature thermal state. This

also suggests to consider the inverse temperature β and the dimension q of the Hilbert

space as complementary to each other in the Heisenberg sense.

3.5. Time perception and memory recording

We tried to make clear that time perception is the quantum counterpart to time

measurements. The quantum algebra of shift and clock operators together with the
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“quantum Fechner law” lead to well defined thermal perception states, that should play

some role in memory encoding and conscious activity. There seems to be a growing

consensus that the mental activity in brain doesn’t relate to classical synchronization

rules in neurons, but to some other non local mechanism at a smaller scale, possibly at

the mesoscopic scale of microtubules within neurons [14],[15],[16].

Quantum field theory of many body systems and the mechanism of spontaneous

breakdown of symmetry was already proposed to accommodate some features of the

conscious brain function. Memory recording was represented by the ordering induced in

the ground state by the condensation of modes after symmetry breaking of the rotational

symmetry of the electrical dipoles of the water molecules. The recall mechanism was

described by the excitation of these collective modes from the ground state under the

action of an external input similar to the one which was previously produced by memory

encoding. In a dissipative extension of the model two modes squeezed coherent states

of the radiation field were found to play a role in extending considerably the memory

capacity [17].

The set of collective modes in the ground sate of Vitiello’s model is replaced in

our model by the set of thermal phase states (the extremal KMSβ states). Transitions

among the vacua are replaced by transitions among the KMSβ states under the action

of the cyclotomic group. Vitiello’s model can be seen as an attempt to include the

environment in the quantum model of brain, thus the idea of two entangled modes, one

in the brain, the other one in the environment. Our approach seems more general being

able to describe the environment thanks to a continuous temperature parameter β, and

putting on the scene more general squeezed thermal states at the transition temperature.

The discrete parameter q is the dimension of the Hilbert space of Fock states. It plays

the role of a bandwidth in conscious and unconscious activity. A very wide bandwidth

q → ∞ would mean meditation, a small bandwidth would be associated to precise

memory encoding, jumps between dimensions, with tiny energy needed, thanks to the

ridges of the KMS versus q and β diagram (see. Fig. 3). Another closely related

view of time perception based on cyclic properties of Galois Fields GF (bk) has been

proposed [18]. This pencil model sheds new light on profoundly distorted perceptions of

time characterizing a number of mental psychoses, drug-induced states, as well as many

other “altered” states of consciousness. The high temperature thermal state could be

associated to the ordinary sense of time, and the low temperature thermal states to

altered states of time perception.
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Figure 3. The KMS thermal state as given from (20). The inverse temperature scale

is from β = 0.5 to 1.5. The dimension is from q = 1 to 40 as shown. Some parts of the

graphics are truncated in the high temperature region β < 1. Thermal fluctuations

are clearly reduced at the inverse critical temperature β = 1.

References

[1] B. Flanagan. Are perception fields quantum fields? NeuroQuantology 2003; 3:334-364.

[2] M. Planat. Invitation to the “spooky” quantum phase-locking effect and its link to 1/f fluctuations.

Preprint 2003; arXiv:quant-ph/0310082.

[3] M. R. Schroeder. Number Theory in Science and Communication. Berlin: Springer 1999; 16-24.

[4] D. L. Gilden. Cognitive emissions of 1/f noise. Psychological Review 2001; 108:33-56.
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