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ABSTRACT
Starting from a modular artificial neural system modelling the integration of several
perceptive stimuli, this article proposes a new implementation of the central module
performing a multimodal associative memory. A Bidirectional Associative Memory
(BAM) has been emulated in temporal coding with spiking neurons. Since input pat-
terns are dynamically encoded, the effects of the latency of evocation can be simulated
with the “spiking BAM”, thus adding temporal properties to the model. For highlight-
ing the contribution of the new module and the relevance for modelling cognitive pro-
cesses, the “spiking BAM” has been tested in the context of an experimental protocol
of cognitive psychology.
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1 Introduction

Intrinsic temporal properties of biological neurons are not taken into account by com-
mon artificial neurons, currently derived from the mathematical model introduced by
McCulloch and Pitts [1]. Hence usual artificial neural networks [2, 3], even recurrent
networks, are too static to explain temporal interactions between assemblies of natu-
ral neurons. The modular network, simulating a multimodal associative memory for
binding several modalities, developed by [4] and described in [5, 6], suffers from this
drawback. The design and properties of this model are summarized in section 2.

Neuroscience experiments have shown that the average frequency of neurons is not
meaningful to explain fast computation in the brain [7], or to account for a precise se-



quence of firing for each neuron participating in the synchronisation of an assembly [8].
Following these discoveries, a more complex model, the “spiking neuron”, has been
proposed [9], where each action potential is simulated. Networks of spiking neurons
have the property to emulate networks of sigmoidal neurons or threshold units [10],
such as Hopfield networks [11]. The dynamic properties of a recurrent network better
emerge from a spiking neuron emulation. When the dynamics of the network has con-
verged, the attractor pattern is rebuilt at each new wave of spikes, allowing the network
to integrate new inputs while computing. The present article proposes an emulation of
a Bidirectional Associative Memory (BAM) [12] in temporal coding, with spiking neu-
rons. More precisely, we emulate a “multiple BAM” [4] which is the central module
of the multimodal associative memory model. The new BAM, called “spiking BAM”,
is presented in section 3. The purpose is to observe the emergence of higher-scale dy-
namics in the multimodal associative memory model, as result of integrating intrinsic
temporal properties at the neuron level in the BAM.

For highlighting the contribution of the new module and the relevance for modelling
cognitive processes, the “spiking BAM” has been tested in the context of an experimen-
tal protocol which is usually applied to human beings by psychologists. The priming
effect is a psychological phenomenon well-known in cognitive science [13]. Under cer-
tain temporal conditions, the presentation of a first stimulus, the primer, makes easier
the processing of a similar second stimulus, the target. Intermodal priming consists
in presenting a primer and a target in two different perceptive modalities. This spe-
cific aspect of priming effect, not yet widely developed in literature, is the subject of
current research in Psychology [14]. Section 4 precises the protocol applied to the
connectionist model and presents experimental results and discussion.

2 Cognitive Science inspiration

2.1 Multimodal associative memory model

Starting from a functional architecture for high-level visual perception, proposed by
Kosslyn and Koenig [15], we assume with psychologists that similar architectures hold
for other sensory modalities. Low-level processing, corresponding to the recognition
phase, is modality-specific. Similar architectures of the low-level sub-systems are repli-
cated in every modalities. High-level processing, leading to identification, is unique,
multimodal, and realizes a data fusion from the pre-processed patterns. A modular
neural network [4, 5] has been built, from several basic bricks, for modelling this mul-
timodal architecture of associative memory (figure 1).

The network is composed of several modules. Low-level: In each modality, an in-
cremental neural classifier [16] associates a prototype (result of recognition) to an input
stimulus. High-level: A global associative memory receives all the output prototypes
of the classifiers and associate them to an amodal representation. Finally, this repre-
sentation is the input of another incremental classifier which realizes the identification,
i.e. the answer of the whole model to the set of stimuli.
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Figure 1: Modular neural network modelling a multimodal associative memory. The
central module is a multiple BAM (thick boxes and arrows).

2.2 The central module, a multiple BAM

The central module, modelling the associative memory (cf. figure 1), is a “multiple
BAM” [4], an adaptation of the classical Bidirectionnal Associative Memory (BAM)
defined by Kosko [12]. In a multiple BAM, the lower layer is separated into several
sub-layers, each of them receiving different inputs (figure 2). A bimodal BAM is a
multiple BAM with two sub-layers.

upper
layer

1st
sub−layer

2nd
sub−layer

Figure 2: Connectivity of a bimodal BAM.

From initial states given in input to all the sub-layers, the dynamics starts and the
network reaches a stable state after a finite number of iterations, from bottom to top
and conversely. One of these up and down iterations is called a reverberation. The
number of reverberations can be considered as a measurement of time.

A multiple BAM has the ability to simulate associative recall properties, modelling
the phenomenon of mental image evocation in the context of cognitive processes [6].
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Figure 3: The dynamics of the multiple BAM shows efficient associative recall proper-
ties.

Figure 3 illustrates the property on an artificial database, with letters and digits as
modalities, learning associations between letters and digits of same rank, e.g. pairs
(A,1), (B,2) or (H,8). In generalisation phase, the dynamics of the bimodal BAM is
able to regenerate the image of a “8” from a missing input on the digit-modality and a
prototype of “H” on the letter-modality (figure 3).

2.3 Lack of temporal behavior

The model is able to simulate cognitive behavior like improvement of performance
by activation of feedback mechanisms (cf. figure 1) or mental image evocation [5].
Tested in a virtual robotic environment inhabited by animals (preys and predators), the
model controls a creature able to move around safely, according to visual and auditory
perceptions [17]. However, the model is too static to reproduce temporal behavior such
as integrating visual and auditory informations incoming at slightly different times.
One way to alleviate this drawback consists in distributing the main modules of the
model on different processors of a parallel computer. The asynchrony of message
passing is a solution for introducing temporal behavior in the model, at a macroscopic
level (see [18]). The purpose of the present article is to study how temporal behavior
can be introduced at a microscopic level, by means of spiking neurons.

The multiple BAM neurons are threshold units, with no intrinsic representation of
time properties. We wish the BAM becoming able to integrate new inputs, at any time,
while the dynamics is running. Therefore, we design a new version of BAM, starting
from spiking neurons and following the construction of Maass [11] for emulating a
Hopfield network in temporal coding. In the “spiking BAM”, the network rebuilds
the stored patterns at each reverberation. Hence the patterns are dynamically encoded,
and the latency of evocation can be simulated and analyzed. We prove that, with the
integration of intrinsic temporal properties at the neuron level, higher-scale dynamics
emerge in the model, through the mechanisms of the spiking BAM reverberations.

3 The model of “spiking BAM”

3.1 Spiking neuron model

Unlike low-level representations of the natural neuron properties, such as Hodgkin &
Huxley neuron or Integrate & Fire neuron, the spiking neuron is a phenomenological
model of the biological neuron [9]. A spiking neuron acts as a coincidence detector
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[19], since it pulses whenever a large enough number of post-synaptic potentials (PSPs)
hit simultaneously the soma of the neuron. In the ���� model [20], the state of the
neuron only depends on the last time of emission �

�
� .

The behavior of the neuron is described with two variables varying in time, the
membrane potential ���� and the threshold function ����. The membrane potential
depends on the last times of emission of the pre-synaptic neurons through the time of
impact of the resulting PSP ����, whereas the threshold only depends on the last time
of emission of the neuron:

���� �

��

���

��� ���� �
�
� � 	���

Whenever the membrane potential is higher than the threshold, the neuron sends an
action potential, i.e. the neuron updates its last time of firing to the current time.

�
�
��� � ��� ���� � ���� �

�
� �

Then the threshold highly increases, thus modelling an absolute refractory period. Af-
ter that, the neuron goes back to the reference threshold level during a relative refractory
period.

3.2 Maass construction in temporal coding

The Maass & Natschläger construction [10] is based on the fact that post-synaptic
potential can shift the time of firing of a neuron. An excitatory PSP brings forward the
time of firing, whereas an inhibitory PSP makes the neuron spiking later.

In this construction, each time of firing bears information relatively to a reference
time, where the neuron would have spiked due to stimulation of auxiliary pacemaker
neurons only. Since these auxiliary neurons fire independently of the other neurons of
the network, with a fixed period, they define a temporal coding interval centered on the
reference time. If it fires precocely (resp. lately), i.e. at the beginning (resp. the end)
of the interval, the neuron is considered as active (resp. inactive), which corresponds to
a value of +1 (resp. -1) in bipolar encoding. To emulate threshold units network, each
spiking neuron has to fire once and only once at each iteration. Since time of firing can
take any value in the temporal coding interval, the network achieves real values based
computation.

For storing weights, we use the method of projection encoding [2], which is the
classical way to compute weights for storing wished patterns:

��� �
�
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where 
 is the number of patterns. The weights are computed once, at the beginning
of the simulation (learning phase). They remain fixed after that. The spiking BAM is
emulated in generalisation phase, with spiking neurons in every sub-layers of a multiple
BAM architecture.
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3.3 BAM emulated by spiking neurons

For better understanding the dynamics of a spiking BAM, temporal diagrams of fir-
ings are displayed for each neuron of the network and for each reverberation, i.e. one
bottom-up, and then top-down, iteration (figure 4). The dynamic process of the net-
work appears as waves of spikes, translating in time from lower to upper layer and
conversely, with a fixed transmission delay.

Figure 4: Emulation of bimodal BAM

For sake of clarity, all the graphical diagrams (figures 4 and 5) display the behavior
of a small network. The network is composed of two lower sub-layers (#0-19 and
#20-39), each receiving inputs from a different modality, and one upper layer (#40-59).
The temporal coding interval appears as the difference between precoce and late spikes
within each reverberation. However, some of the spikes take intermediate values, which
might be responsible for faster convergence than in the original model of multiple BAM
with threshold units.

On figure 4, the pattern on the left is an exact version of the full pattern (both
modalities and abstract concept) in input. On the very right, a model of the stable state
to be recognized (target pattern) is reproduced, for helping to test the convergence.
The input of the network (starting at time 0) is an absence of information on the visual
modality and a noisy version of the pattern on the left, injected in auditory modality
only. The noise corresponds to a random value added to the pattern spikes, this value
being taken as a fraction of the temporal coding interval (here, we add�����temporal
coding interval). Next waves of spikes show the evolution of the dynamics, in the
upper layer (abstract representation of the concept) and in the lower layers (internal
representations of perceptive stimuli) alternatively. A pattern is considered as retrieved
when an error of less than 10% with target pattern is reached on the upper layer. For
the present simple example, two reverberations are sufficient to retrieve the target.

The spiking BAM reproduces all the classical BAM properties (e.g. mental image
evocation, robustness to noise). The main advantage of the spiking BAM is that the dy-
namics never stops running. Even after the network has converged, the attractor pattern
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is rebuilt continually, at every new reverberation. Hence new inputs can be integrated
while the network is still computing and the influence of a discordant information (i.e.
a pattern corresponding to another attractor basin) can be observed on the dynamics.

In order to experiment the new temporal abilities of the model, the spiking BAM
has been tested in the context of intermodal priming, involving both temporal properties
and multimodal interactions.

4 Intermodal priming test of the network

4.1 Experimental protocol, as defined by cognitive psychlogists

Priming consists in presenting two items to the system, a primer 
� and then a target

� and to measure performance and processing time of 
 �, according to 
�. To study
intermodal priming, we present 
� on one perceptive modality and 
� on the other one.
In the case of congruent priming, 
� and 
� correspond to the same concept (e.g. 
� is
a miaowing and 
� is a cat’s picture) whereas in the case of non-congruent priming, 
 �
and 
� correspond to different concepts (e.g. 
� is a barking and 
� is a cat’s picture).

The primer (resp. target) latency is the interval of time during the presentation of
the primer (resp. target). The ISI (Inter-Stimuli Interval) is defined as the time left
between the end of the primer latency and the beginning of the target stimulus presen-
tation. Results of intermodal priming, on human beings, in cognitive psychology, show
significant differences between congruent and non-congruent conditions for the time
of response and for the identification performance (percentage of right identification of
the target). Other results involving intermodal priming make evidence of an optimal
ISI, i.e. an ISI where the difference between the two opposite conditions is optimal
[14].

4.2 Test of the network

Figure 5: Protocol of an intermodal priming test
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Tests have been realized with a network of 3*64 neurons, storing 9 different pat-
terns, corresponding to letters (1st modality) and digits (2nd modality). At each test,
the patterns corresponding to primer and target are randomly chosen within the stored
patterns. Figure 5 presents an example of network dynamics evolution, with a primer
latency equal to 1 reverberation, and an ISI equal to 2 reverberations. The target la-
tency always lasts for 5 reverberations, but the network usually retrieves the target
pattern before the fifth presentation.

Successively, the pattern corresponding to the primer is presented in the first modal-
ity, the network dynamics goes on during a time corresponding to the ISI, and the pat-
tern corresponding to the target is integrated into the second modality. The integration
of new inputs while the network is computing is realized by randomly mixing reverber-
ated spikes with values corresponding to inputs, in the second modality, whereas the
first modality is not updated.

As the BAM is part of a larger modular network (see Section 2), the influence of
other modules has been simulated by presenting several times the same patterns (for
primer and target). The first presentation is the most noisy (����� temporal coding
interval), then the noise decreases linearly towards a perfect presentation for simulat-
ing the convergence of the other networks. On figure 5, the target has been retrieved
correctly after 4 reverberations, when the state of the upper layer has reached the tar-
get pattern. Before the third presentation, the state of the upper layer has not changed
enough to switch from the primer to the target, which illustrates the interest of repeating
the presentation of patterns.

4.3 Priming Results

Figure 6 presents the performance (identification rate) and figure 7 presents the latency
of the answer, i.e. the number of reverberations required to retrieve the target pattern.

Figure 6: Intermodal priming effect on identification rate
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Figure 7: Intermodal priming effect on latency of answer

Both measurements are presented as functions of ISI, in congruent (Excit) and non-
congruent (Inhib) conditions, for a primer latency of 2 reverberations. The third curve
is the difference (Diff) between the two conditions.

Each variable set (Primer latency = 1...4, ISI = 0...6) has been tested for 5 sessions
of 100 tests. The “Diff” curve stands for the effect of priming (congruent vs. non-
congruent), and has a tendency to become smaller for higher values of ISI. However,
this curves shows an intermediate peak, corresponding to an optimal value of ISI, where
the priming effect is most visible.

ANOVAs have been performed on the 5 sessions. Each session is considered as
the results of a single subject, tested for all the variable sets. First we find a sig-
nificant difference between congruent and non-congruent conditions for both latency
(F(1,4)=1003, p�0.0001) and identification rate (F(1,4)=11258, p�0.0001). Second
we find a significant effect for ISI (F(6,24)=8.8, p�0.0001 for latency, F(6,24)=35.7,
p�0.0001 for identification rate), proving that the variations observed in figures 6 and
7 are consistent.

4.4 Discussion

There is no significant effect of the primer latency. However an optimal ISI clearly
emerges only in the case where the latency of the primer is long enough (� 2 re-
verberations). In congruent condition, the network has quite better results when the
primer first drives the network to the primer pattern (what happens quite more often
with repeated presentations), and then converges to the corresponding target pattern.
Conversely, in non-congruent condition, the dynamics of the network has to change
from one attractor towards a different one, which is more difficult for small values of
the ISI. Hence the priming effect is increased, specially for ISI = 2 reverberations.

The results reported in this article reproduce qualitatively the same behavior as ob-
served on human subjects [14]. It should be noticed that the model is a mean to get
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quite complete results, including a systematic study of the ISI effect. Similar experi-
ments, on human subjects, have not been reported in litterature, for intermodal prim-
ing. A model can be experimented on a large number of tests more easily. However
quantitative comparisons are not directly possible between the behavior of the model
and human beings. Priming experiments on human beings usually involve time 	 1s
for each presentation, whereas a simulation on the network lasts 	 100ms (the delay
between two successive reverberations is 24.4ms).

Moreover, the spiking BAM is a quite simple model of associative memory, with
"directly recurrent" connections, as opposed to "polysynaptic loops" [21], that are sup-
posed to induce long-term dynamics in the brain [22].

5 Conclusion

A BAM network has been emulated in temporal coding, with spiking neurons instead of
usual threshold units. The spiking BAM reproduces the properties of a classical BAM,
but with faster convergence, as was reported by Maass & Natschläger for the emulation
of an Hopfield network. Furthermore, a spiking BAM has the property to integrate new
inputs while its dynamics is running. Adding such intrinsic temporal properties at
the neuron level induces temporal effects of higher scale in a modular neural network
modeling a multimodal associative memory. This article has proved that improvement
from experiments testing the model in intermodal priming conditions, inspired from
the protocols applied to human subjects. The behavior of the model is qualitatively
similar to the behavior of human beings. The hypothesis of existence of an optimal
value of ISI has been validated on the model.

From a computational point of view, further improvements can be considered for
the model of spiking BAM. Fixed synaptic weights have been used in the present work.
Since a spiking neuron can locally update its weights while it is computing, according
to the correlation of emissions between pre- and post-synaptic neurons, further re-
search will focus on the integration of Spike-Time Dependent Plasticity (STDP) in the
network, in order to realize on-line learning in the BAM.
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