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VAR AND ES FOR LINEAR PORTFOLIOS WITH MIXTURE OF
ELLIPTIC DISTRIBUTED RISK FACTORS

JULES SADEFO KAMDEM

UNIVERSITE DE REIMS
UNIVERSITE D’EVRY

ABSTRACT. In this paper, following the generalization of Delta Normal VaR to
Delta Mizture Elliptic VaR in Sadefo-Kamdem [E], we give and explicit formula
to estimate linear VaR and ES when the risk factors changes with the mixture
of ¢t-Student distributions. In particular, we give rise to Delta- Mizture-Student
VaR and the Delta- Mizture-Elliptic ES.

Key Words: Mixture of Elliptic distributions, Linear portfolio, Value-at-Risk, Ex-
pected Shortfall, Capital allocation.

1. Introduction

The original RiskMetrics methodology for estimating VaR was based on para-
metric methods, and used the multi-variate normal distribution. This approach
works well for the so-called linear portfolios, that is, those portfolios whose ag-
gregate return is, to a good approximation, a linear function of the returns of the
individual assets which make up the portfolio, and in situations where the latter can
be assumed to be jointly normally distributed. For other portfolios, like portfolios
of derivatives depending non-linearly on the return of the underlying, or portfolios
of non-normally distributed assets, one generally turns to Monte Carlo methods to
estimate the VaR. This is an issue in situations demanding for real-time evaluation
of financial risk. For non-linear portfolios, practitioners, as an alternative to Monte
Carlo, use A-normal VaR methodology, in which the portfolio return is linearly
approximated, and an assumption of normality is made. Such methods present us
with a trade-off between accuracy and speed, in the sense that they are much faster
than Monte Carlo, but are much less accurate unless the linear approximation is
quite good and the normality hypothesis holds well. The assumption of normality
simplifies the computation of VaR considerably. However it is inconsistent with the
empirical evidence of assets returns, which finds that asset returns are fat tailed.
This implies that extreme events are much more likely to occur in practice than
would be predicted based on the assumption of normality.

Some alternative return distributions have been proposed in the world of elliptic
distributions by Sadefo-Kamdem [E], that better reflect the empirical evidence. In
this paper, following [E], I examine one such alternative that simultaneously allows
for asset returns that are fat tailed and for tractable calculation of Value-at-Risk
and Expected Shortfall, by giving attention to mixture of elliptic distributions,
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with an explicit formula of VaR and ES in the special case where assets returns
changes with mixture of Student-t¢ distributions. Note that, the particular case
based on mixture of normal distributions, has been proposed by Zangari(1996)[ﬂ],
Subu-Venkataraman [fJ] and some references therein.

An obvious first generalization is to keep the linearity assumption, but replace the
normal distribution by some other family of multi-variate distributions. In Sadefo-
Kamdem @], we have such generalization concerning linear portfolios, in the case
where the joint risk factors changes with mixture of elliptic distributions. In this
paper, by using some generalized theorems concerning Delta-Mizture-Elliptic VaR,
and Delta-Student VaR in [i], we introduce the notion of Delta-Mizture-Student
VaR, Delta-Mizture-Elliptic ES and the Delta- Mizture-Student ES.

So the particular subject of this paper, is to give an explicit formulas that will
permit to obtain the linear VaR or linear ES, when the joint risk factors of the linear
portfolios, changes with mixture of ¢-Student distributions. Note that, since one
shortcoming of the multivariate t-distribution is that all the marginal distributions
must have the same degrees of freedom, which implies that all risk factors have
equally heavy tails, the mixture of ¢-Student will be view as a serious alternatives,
to a simple t¢-Student-distribution. Therefore, the methodology proposes by this
paper seem to be interesting to controlled thicker tails than the standard Student
distribution.

The paper is organized, as follows: In section 2, we recall some theorems con-
cerning the Delta-FElliptic, Delta-Elliptic and Delta Mixture Elliptic VaR given by
Sadefo-Kamdem [ In section 3, following the theorem concerning Delta Mizture
Elliptic VaR, we show how to reduce the computation of the Delta- Mizture-Student
VaR to finding the zeros of a mixture of special function. In section 4, we introduces
the notion of Delta Mixture Elliptic ES , by treat the expected shortfall for general
mixture of elliptic distribution, with special attention to Delta Mizture Elliptic ES
. Finally, in section 5 we discuss some potential application areas.

2. SOME NOTIONS ON LOG-ELLIPTIC LINEAR VAR

In this section, following @], we recall some notions on elliptic distributions and
Linear VaR.

We will use the following notational conventions for the action of matrices on
vectors: single letters z,y,--- will denote row vectors (z1,--- ,xn), (Y1, Yn)-
The corresponding column vectors will be denoted by zt, 3% the ¢ standing more
generally for taking the transpose of any matrix. Matrices A = (A;;)i,;, B , etc.
will be multiplied in the usual way. In particular, A will act on vectors by left-
multiplication on column vectors, Ay®, and by right multiplication on row vectors,
2A; v -2 =xzxt =22 + .- + 22 will stand for the Euclidean inner product.

A portfolio with time-t value TI(¢) is called linear if its profit and loss AII(t) =
TI(t)—11(0) over a time window, [0 t] is a linear function of the returns X (¢), ..., X, (¢)
of its constituents over the same time period:

ATL(t) = 61 X1 + 02X + ... + 0, Xy,
This will for instance be the case for ordinary portfolios of common stock, if we
use percentage returns, and will also hold to good approximation with log-returns,

provided the time window [0,t] is small. We will drop the time ¢ from our notations,
since it will be kept fixed, and simply write X;,All, etc. We also put

X:(Xla"' aXn)a
so that AIl =§ - X = 6§ X*.
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We now assume that the X; are elliptically distributed with mean p and corre-
lation matrix ¥ = AA":

(Xla' N ;Xn) ~ N(M527¢)
This means that the pdf of X is of the form

fx(@) =817 2g((x — @)=~z — p)"),

where |X| stands for the determinant of 3, and where g : R>¢ — 0 is such that the
Fourier transform of g(|z|?), as a generalized function on R", is equal to ¢(|£|?)

1

Assuming that g is continuous, and non-zero everywhere, the Value at Risk at a
confidence level of 1 — « is given by solution of the following equation:

Here we follow the usual convention of recording portfolio losses by negative
numbers, but stating the Value-at-Risk as a positive quantity of money.

2.1. Linear VaR with mixtures of elliptic Distributions. = Mixture distri-
butions can be used to model situations where the data can be viewed as arising
from two or more distinct classes of populations; see also [[ll. For example, in the
context of Risk Management, if we divide trading days into two sets, quiet days
and hectic days, a mixture model will be based on the fact that returns are mod-
erate on quiet days, but can be unusually large or small on hectic days. Practical
applications of mixture models to compute VaR can be found in Zangari [ﬂ] (1996),
who uses a mixture normal to incorporate fat tails in VaR estimation. In Sadefo-
Kamdem [B], we have generalized the preceding section to the situation where the
joint log-returns follow a mixture of elliptic distributions, that is, a convex linear
combination of elliptic distributions. In this section, a special attention will be give
to mixture of Student-¢ distributions.

Definition 2.1. We say that (X1, ..., X;,) has a joint distribution that is the mix-
ture of m elliptic distributions N (u;, 3;, ¢;)?, with weights {3;} (j=1,...m ; 3; >0
; 2311 B; = 1), if its cumulative distribution function can be written as

FXl,...,Xn(xla ,ZCn) = Zﬁij(,ﬁEl, ,ZCn)
Jj=1

with Fj(z1, ..., z,) the cdf of N(uj;,3;, ¢;).

Remark 2.2. In practice, one would usually limit oneself to m = 2, due to esti-
mation and identification problems; see [ﬂ]

The following lemma is given by Sadefo-Kamdem [f.

Lemma 2.3. Let Al = 61 X1+...4+6, X, with (X1,...,X,) is a mizture of elliptic
distributions, with density

F@) =3280 i = )35 @ = y)')

where p; is the vector mean, and X; the variance-covariance matriz of the j-th
component of the mizture. We suppose that each g; is integrable function over R,
and that the g; never vanish jointly in a point of R™. Then the value-at-Risk,

LOne uses ¢ as a parameter for the class of elliptic distributions, since it is always well-defined
as a continuous function: ¢(|¢|2) is simply the characteristic function of an X ~ N(0, I'd, ¢). Note,
however, that in applications we’d rather know g

2or N(pj,%;,g4) if we parameterize elliptical distributions using g instead of ¢
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or Delta mixture-elliptic VaR, at confidence 1 — « is given as the solution of the
transcendental equation

o.u5 +VaR,
(1) Zﬂy <W> )
where

—8-pj—VaRa

Sh_ e [5A;]
| 2| 2 {/ g; (23 + r2)dzl}dr.

bR
Here 6 = (61,...,0n).

Remark 2.4. In the case of a mixture of m elliptic distributions the VaR will
not depend any more in a simple way on the total portfolio mean and variance-
covariance. This is unfortunate, but already the case for a mixture of normal
distributions.

Remark 2.5. One might, in certain situations, try to model with a mixture of
elliptic distributions which all have the same variance-covariance and the same
mean, and obtain for example a mixture of different tail behaviors by playing with
the g;’s. In that case the VaR again simplifies to: VaRy, = —3 - pt + go - VILI?,
with ¢, now the unique positive solution to

= ZBJG (qa)
j=1

The preceding can immediately be specialized to a mixture of normal distributions.
the details is left to the reader.

3. VAR WITH MIXTURE STUDENT-{ DISTRIBUTIONS

We now consider in detail the case where our mixture of elliptic distributions is
a mixture of multivariate Student-t. We will, unsurprisingly, call the corresponding
VaR the Delta mizture-Student VaR.

In the case of our mixture of multi-variate t-Student distributions, the portfolio
probability density function is given by:

rg) (@ = )5 (@~ 1)
?) ZBJ t e ; )

j
z € R" and v; > 2. Hence g; is given by

rep)

gj(s>:0(yj’ )(1+S/VJ) , §2>0,

where we have put
R

) = e

Using this g; in (ﬂl), we find that

ntv;
2

Q Gys) = “18umalClsm) [ )i,

where we have put

oo g n=3 ()
(@) L= [ =D o0 F

2
1
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Following [H], we have the following expression

1 /2F(—”j+1) 1+

Vi\Yi 2 Vi Uj V; V;
5 Gi(s) = (—J) : F( i Uiy _J;__J)
G G =7 e ey ettty

we obtain the following corollary

Corollary 3.1. Let AIl = 51 X1 + ...+ 0, X, with (X1,...,X,,) is a mizture of m
t-Student distributions, with density hx defined by (4),where u; is the vector mean,
and X; the variance-covariance matric of the j-th component of the mizture. Then
the value-at-Risk, or Delta mixture-student VaR, at confidence 1 — « is given as
the solution of the transcendental equation

(6)

—vs

_J
) y (045 +VaRy\ F (1+Vj Vi g ﬁ__Vj(5-M§+VaRa))
Vi 520 W2 T2 520

_iﬁa (5
1/]\/_1"
where Gj is defined by (B’) with g = g;. Here 6 = (61,...,0n).

Corollary 3.2. One might, in certain situations, try to model with a mixture of
t-Student distributions which all have the same variance-covariance ¥ = ¥; and
the same mean p = 1, and obtain for example a mizture of different tail behaviors
by playing with the v;’s. In that case the VaR again simplifies to:

VaRy = =6 - 4 qo - VIXIE,

with g, now the unique positive solution to

m BT (4t . t . o ‘ (5t
oz:z J ( 2Vj) v (6.u —;—Z‘gaRa) 2 2F1(1+1/] 1/_]_1+ﬁ.7y](6.u +VaRa)).
j=1 Vjﬁr (7)

2 727 2’ 039

Remark 3.3. One might, in certain situations, try to model with a mixture of
t-Student distributions which all have the same v; = v and the same mean p; ~ 0,
and obtain for example a mixture of different tail behaviors by playing with the
>;’s. In that case the VaR is the unique positive solution to

=3 v(VaR,) 1+v v v v(VaRy)
F 14 o).
V\/_ngﬁj( 525)21(2 ity 52j5)

3.1. Some Numerical Result of Delta Mixture-Student VaR coefficient.
Here we give some numerical results when applying the corollary @, in the situation
where m = 2.

By introducing the function F' such that

(7) F(s,B,v1,v2) = B-G1(s) + (1 = B) - Ga(s),
where G is define in (E), for 7 = 1,2, for given as inputs 3, 1 and vy, we give
a table that contains some solutions s = g, ., = ¢°~VE of the following

transcendental equation:

F(s,B,v1,v2) = a.
For given %, u, and ¢, these solutions will permit to calculate VaR,, when the
confidence is 1 — a.
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(1) In the case where a = 0.01, we obtain some solutions of (B.1]) in the following

table:

(v1,12) (2,3) (3,4) (4,6) (5,8) (6,10) | (7,15) | (8,40) | (9, 16)
40.05,01 v, | 4.64839 | 3.78507 | 3.17184 | 3.91919 | 2.78228 | 2.62175 | 2.44602 | 2.59524
40.10,01,0, | 4.7586 | 3.82348 | 3.20124 | 2.94213 | 2.80092 | 2.64116 | 2.46906 | 2.60704
40.15,01 v, | 4.87115 | 3.86216 | 3.23086 | 2.9652 | 2.81965 | 2.6607 | 2.49235 | 2.61887
40.20,01,0, | 4.98587 | 3.9011 | 3.26066 | 2.98846 | 2.83846 | 2.68035 | 2.51586 | 2.63073
40.25,01 v | 5.10258 | 3.94025 | 3.29063 | 3.01177 | 2.85734 | 2.70009 | 2.53957 | 2.64261
40.30,01 v | 9-22106 | 3.97962 | 3.32075 | 3.03518 | 2.87629 | 2.71991 | 2.56344 | 2.65452
40.35,01,05 | D.34113 | 4.01917 | 3.35100 | 3.05866 | 2.89528 | 2.7398 | 2.58744 | 2.66644
40.40,01 vo | D-46259 | 4.05888 | 3.38136 | 3.08221 | 2.91432 | 2.75974 | 2.6115 | 2.67838
40.45,0, 0, | D.D8523 | 4.09873 | 3.41180 | 3.10502 | 2.93339 | 2.77972 | 2.6357 | 2.69033
40.50,01 v, | D-70886 | 4.13870 | 3.44231 | 3.12946 | 2.95248 | 2.79972 | 2.65989 | 2.70228
(v1,v2) | (10,20) | (20,30) | (200, 300) | (250,50) | (275,15) | (300,55) | (400,10) | (1000,5)
40.05,01 v | 2.53963 | 2.46079 | 2.33916 | 2.40018 | 2.58957 | 2.39322 | 2.7432 | 3.3202
40.10,01,0, | 2.55132 | 2.46432 | 2.33947 | 2.39709 | 2.57661 | 2.39036 | 2.72242 | 3.27401
40.15,01 v | 2.56304 | 2.46785 | 2.33978 | 2.39399 | 2.56359 | 2.38750 | 2.7014 | 3.22632
40.20,01,0 | 2.5748 | 2.47139 2.3401 2.3909 | 2.55051 | 2.38464 | 2.68019 | 3.17715
40.25,01 v, | 2.58658 | 2.47492 | 2.34041 2.3878 | 2.53738 | 2.38178 | 2.6588 | 3.12651
40.30,01 v, | 2.59838 | 2.47846 | 2.34073 | 2.38471 | 2.52422 | 2.37892 | 2.63726 | 3.07446
40.35,01,0 | 2.6102 | 2.482 2.34104 | 2.38161 | 2.51102 | 2.37605 | 2.61559 | 3.02112
40.40,01 v | 2.62204 | 2.48553 | 2.34136 | 2.37851 | 2.49779 | 2.37319 | 2.59382 | 2.96663
40.45,01,0, | 2.63389 | 2.48907 | 2.34167 | 2.37541 | 2.48455 | 2.37033 | 2.57198 | 2.91121
40.50,01 v, | 2.64574 | 2.49261 | 2.34199 | 2.37232 | 2.4713 | 2.36746 | 2.55009 | 2.85513

(2) In the case where a = 0.001,

following table:

we obtain some solutions of (B.]]) in the

Lm) | (23) | BA) | 46) | 5.3) | (6,10) | (7, 15) | (8, 40) | (9, 16)
90.20,01,1, | 12.8878 | 7.84891 | 5.66393 | 4.82769 | 4.39245 | 3.98902 | 3.62286 | 3.82625
40.25,01 0, | 13.5577 | 8.01412 | 5.77451 | 4.90665 | 4.45334 | 4.05064 | 3.69896 | 3.86013
40.30,01,00 | 14.2205 | 8.17734 | 5.88317 | 4.98414 | 4.51241 | 4.11084 | 3.77242 | 3.89346
40.35,01,0, | 14.874 | 8.33840 | 5.98975 | 5.06004 | 4.57030 | 4.16948 | 3.84285 | 3.92621
40.40,01 v | 15.5168 | 8.49717 | 6.09412 | 5.13427 | 4.62694 | 4.22648 | 3.91007 | 3.95838
40.45,01 0, | 16.1480 | 8.65357 | 6.19624 | 5.20677 | 4.68229 | 4.28179 | 3.97400 | 3.98993
90.50,01,0, | 16.7671 | 8.80753 | 6.29604 | 5.27752 | 4.73634 | 4.33537 | 3.03470 | 4.02087

(3) In the case where a = 0, we obtain some solutions of (B.1]) in the following
table:

(v1,12) (2,3) (3,4) (4,6) (5,8) (6,10) | (7,15) | (8,40) | (9, 16)
40.20,01 5 | 322.785 | 82.6688 | 31.0894 | 20.7154 | 15.8813 | 11.4371 | 10.1089 | 9.25604
q0.25,01 00 | 392.09 | 87.1881 | 32.5561 | 21.541 | 16.42471 | 11.7949 | 10.3957 | 9.47529
40.30,1,, | 378.302 | 91.2285 | 33.8309 | 22.2487 | 16.88721 | 12.0958 | 10.6352 | 9.66243
40.35,01 v | 402.155 | 94.8927 | 34.9619 | 22.8697 | 17.2907 | 12.3561 | 10.8414 | 9.82571
40.40,01 v, | 424.137 | 98.2529 | 35.981 | 23.4244 | 17.6493 | 12.5858 | 11.0227 | 9.97061
q0.45,0, 0o | 444.591 | 101.362 | 36.9102 | 23.9265 | 17.9726 | 12.7919 | 11.1848 | 10.1009
40.50,01,, | 463.771 | 104.26 | 37.7655 | 24.3858 | 18.2673 | 12.9789 | 11.3316 | 10.2194

Remark 3.4. Note that, the precedent results are available when o = 0. This
means that with our model, one would calculate the linear VaR with mixture of
elliptic distributions, for 100 percent confidence level.
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4. EXPECTED SHORTFALL WITH MIXTURE OF ELLIPTIC DISTRIBUTIONS

Expected shortfall is a sub-additive risk statistic that describes how large losses
are on average when they exceed the VaR level. Expected shortfall will therefore
give an indication of the size of extreme losses when the VaR threshold is breached.
We will evaluate the expected shortfall for a linear portfolio under the hypothesis
of mixture of elliptically distributed risk factors. Mathematically, the expected
shortfall associated with a given VaR is defined as:

Expected Shortfall = E(—AII| — AIl > VaR),

see for example [ﬂ] Assuming again a multivariate mixture of elliptic probability

density fx(z) = S0, BilSi 720 (@ — pa)S7 (@ — wi)t), the Expected Shortfall
at confidence level 1 — « is given by

—ES, = E(AIl|AI < —VaR,)

1
= —E (Al 1{an< var.})

_ 1 / sat fx(z) de
@ J{sst<—VaRa}

= |‘”2 :
- z@ /{ 52t gul(@ — 1) (& — o))

dxt<—VaRu,}

Let ¥ = Al A;, as before.Doing the same linear changes of variables as in section
2, we arrive at:

1 m
BS. = 2y (54121 +5 - ) g1(]2] )=

i=1 {I6A;|z1<=6-pi—VaRa}

1 m
- _Zﬂi[/ 64121 gi(2]1%) dz + 5'Ui:|'
> {|6A]z1<—6-mi—VaRa}

The final integral on the right hand side can be treated as before, by writing ||z||* =

7,2 ’
22+ ||z'||” and introducing spherical coordinates z = 1€, £ € S,,_2, leading to:

—sut —VaRg
m Snf m 0o o \Z‘ST
—-ES, = Zﬁﬁ-uﬁ-% Zﬁi/o P2 {/ [0A;] z1 gi(zf—i—rQ)dzl}dr
i=1 i=1 —oo

We now first change z; into —z;, and then introduce v = zf + 72, as before. If we
recall that, by theorem ,
g _ 0-pi+VaR,
Govi [5A,]

then, simply writing ¢, ; for ¢!X | we arrive at:

a,n?

ESa - - Zﬂz |:5 /1/1 + |5A| |Sn 2| / / ’lL - Zl 2 ( ) du le:|
= S+ Yol Bl [T ) g
i=1 ' i=1 T a g2, n—1 - Z ,
since
& 2\ 252 1 2\
/ 21 (u—zl) dz) = — (u—qaﬂ-) .

i

After substituting the formula for |S,,_2| and using the functional equation for the
DP-function, I'(z + 1) = zI'(z), we arrive at the following result:
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Theorem 4.1. Suppose that the portfolio is linear in the risk-factors X = (X1, , Xp):
All = §- X and that X ~ N(u,X,¢), with pdf fx(z) = >, ﬂi|2i|71/2g((z
W)X, Y — py)b). If we replace qo by his value, then the expected Shortfall at level

« s given by :

(8)

m m n—1 oo
2 n—1
- Zﬂi(5'ﬂi)+z 6i|52i5t|1/2'%'/ (u - (qi,i)Q) * gi(u) du.
i=1 i=1 a-T(%5) (5,:)?
Remark 4.2. If we are in situations where = u; and X; = X foralli =1,... n,

therefore g, ,; does not depend to i. It will depend only to the g, given by the
mixture of elliptic VaR. In effect, ¢, ; = go = ¢ ¥~V R such that

VaRy, = =6 - u+qME VaRa . \/§56t.

We therefore obtain the following corollary:

Corollary 4.3. Suppose that the portfolio is linear in the risk-factors X = (Xy,--- , X,):
All = §- X and that X ~ N(u,X,¢), with pdf fx(z) = >, ﬂi|2|71/2gi((x —
WX @ —p)b). If we replace qo by his value, then the expected Shortfall at level o

is given by :

(9) ES,=—0-p + ¢ME-ES . /554t
where
ME-ES _ = ME-VaRy2\ "2
(10) qq PRYEEEy Zﬁz /ME v, (v~ (ga )?) 7 gilu) du.

4.1. Application: Mixture of Student-{ Expected Shortfall. In the case of
tvi)
multi-variate t-student distributions we have that g;(u) = C(v;,n)(1 + u/v;)” ,

with C'(v;,n) given in section 2. Let us momentarily write ¢ for an. Followmg
@], we can evaluate the integral as follows:

ntv;

/:(uq) gt <1+VZ) C du

= Vi%(qZ _’_Vi)*(yinl)B (—Vi2 1, n;L 1) .

If we pose that :

1—v,

—1
i

quT ES _ — \/—Zﬁl ( )) vi/2 ((q;%)z_i_yi)T

After substitution in (E), we find, after some computations, the following result:

Theorem 4.4. The Expected Shortfall at confidence level 1 — a for a multi-variate
Student-distributed linear portfolio § - X, with

P2 (2~ w5 @ — )y ")
- e )
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is given by:
ESt - 5. Miﬂi + |525t|1/2i@_ 1 T (%) Jril? ((qMST—VaR>2 + Vz)(%)
o i=1 - A VA T (%) ' “
m v;—1 vi/2 2 (1;Ui)
- _5. t11/2 g T(*5)w d0-p+VaRg _

_ 7(;# + q(]l\/IST—ES . S35t

The Expected Shortfall for a linear Student portfolio is therefore given by a com-
pletely explicit formula, once the VaR is known. Observe that, as for the VaR, the
only dependence on the portfolio dimension is through the portfolio mean ¢ - i and
the portfolio variance d%6¢.

4.2. Some Numerical Result of Delta Mixture-Student Expected Short-
fall. Here we give some numerical results when applying the corollary @, in the
situation where m = 2.

For given s = qg ., 1, = ¢S~V 2% which is the solution of

F(SvﬂvljlvVQ) = G,
by introducing the fonction H such that

(11) H(s,B,vi,1v2) =B Hi(s)+ (1 = 3) - Ha(s),
where

v;—1 1—vy

Hj(s): Bi F( 2 )V;/i/2(82+yi) 2

o VF T (%)
for j = 1,2. For given as inputs 0, v; and 15, we give a table that contains some

. MST—ES _ MST-VaR _ MST-ES
values of ¢, = H(q, ot B, 1) = 450 m

(1) In the case where a = 0.01, we obtain some solutions of ([.9) in the following

table:

(v1, 1) (2,3) (3.4) (4,6) (7,15) (8,40)

Q55 o0 | 6.36587 | 1.29375 | 0.243125 | 0.00290856 | 0.000681262
Q0 50 w0 | 7.01881 | 1.41000 | 0.279435 | 0.00341273 | 0.000793844
Q5 o0 | 7.64714 | 1.52252 | 0.31424 | 0.00389277 | 0.0008997532
Qo oy ] 8.25196 | 1.63141 | 0.34759 | 0.0043495 | 0.000997532
Qs v | 8.83444 | 1.73679 | 0.379538 | 0.00478369 | 0.00108926
Do ve | 9.3957 | 1.83877 | 0.410131 | 0.00519619 | 0.00117468

(2) In the case where a = 0.001, we obtain some solutions of (f.d) in the
following table:

(v1,v2) (2,3) (3,4) (4,6) (7,15) (8,40)

G5, ne | 20.8961 | 3.03289 | 0.576689 | 0.00661826 | 0.00164597
D500 v | 23.1642 | 3.32289 | 0.666054 | 0.0074621 | 0.00180969
Q5 vs | 25.2707 | 358757 | 0.716427 | 0.008196 | 0.00194229
Doio o ve | 27.239 | 3.83719 | 0.776394 | 0.00883632 | 0.00205071
Qs vs | 29.0885 | 4.07077 | 0.830853 [ 0.00939711 | 0.00214048
Qoo vs | 30.8351 | 4.28993 | 0.880508 | 0.00989055 | 0.00221577
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4.3. Delta-Theta Approximation of a Portfolio. In the case where we dealt
with portfolio that contains derivatives, we will consider the Greek Theta of the
portfolio by replace the Delta approximation known in financial literature by the
Delta-Theta approximation.

In clear, suppose that we are holding a portfolio of derivatives depending on
n underlying assets X (t) = (X1(t),...,X,(t)), with elliptically distributed log-
returns r; = log(X,;(t)/X,;(0)), over some fixed small time-window [0,t]. The port-
folio’s present value V will in general be some complicated non-linear function of
the X;’s. To obtain a first approximation of its VaR, we simply approximate the
present Value V of the position using a first order Taylor expansion:

VX0 = VX0),00+ Y 2 (KOL0)(Xi(0) — Xi(0) + - Z(x(0),0
= OV

= VIX(0),0)+ > 55 (X(0),00X:(0) (exp(ri) = 1) + 6 - ¢

(12) ~ V(X(0),0)+ ) biri+0O-t
i=1
From this, we can then approximate the Profit & Loss function as
AV ~6§-rt+0-t,

where we put r = (r1,...,7,) and 6 = (d1,...,0,) with §; = X;(0) - g—)‘é(X(O),O).
The entries of the § vector are called the ”delta equivalents ” for the position, and
they can be interpreted as the sensitivities of the position with respect to changes
in each of the risk factors. In this particular case, we have substitute the Delta
normal VaR as known in the financial literature, by the Delta-Theta Elliptic VaR

given by the following corollary of the theorem (P.1]) :

Corollary 4.5. Suppose that the portfolio’s Profit & Loss function over the time
window of interest is, to good approzimation, given by AIl = §-rt +© -t , with con-
stant portfolio weights 6 = (01,...,0,). Suppose moreover that the random vector
r=(ry,--,rn) of underlying log-returns follows a continuous elliptic distribution,
with probability density given by f.(x) = |Z|71/Qg((ac — )X N — p)t) where u is
the vector mean and X is the variance-covariance matrix, and where we suppose
that g(s?) is integrable over R, continuous and nowhere 0. Then the portfolio’s
Delta-Theta-elliptic VaR VaR, at confidence 1 — « is given by

VaR, =—6-p' +0© -t + ¢, - VX,
where s = ¢, ,, is the unique positive solution of the transcendental equation
a=G(q] ,)-

The Expected Shortfall of such portfolios is given by the following corollary
Corollary 4.6. Suppose that the portfolio’s Profit & Loss function over the time
window of interest is, to good approzimation, given by AIl =6 -7t +0O -t ,and that
r~ N(u,X, ), with pdf f(x) = |E|_1/Qg((x—,u)2_1(ac—,u)t), then the Delta-Theta
Elliptic Expected Shortfall or Delta-Theta ES at confidence level 1 — « is :

n—1

T2 o0 n—1
(13) ES, = —5-ut+®~t+|525t|1/2~7n~/ u—(¢2,)%) % g(u) du.
o TR St )

Remark 4.7. In short-term Risk Management, one can usually assume that @ ~ 0.
In that case, for t = 1 we have

VaR, = © +Vo%5t - g2,
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n—1

Tz o0 n—1

ES, =0+ [onat| /2. — T . / (u—(g2,)2)" " glu) du.
- T g ’

As before, The preceding can immediately be specialized to a Student t-distributions

to estimate the Delta-Theta Student VaR and the Delta-Theta Student ES. The

details will be left to the reader.

4.4. Portfolios of Equities. A special case of the preceding is that of an equity
portfolio, build of stock Si, ..., S, with joint log-returns r = (r1(¢),...,r,(¢)). In
this case, the portfolio’s Profit & Loss function over the time window [0,t] of interest
is, to good approximation, given by

II(t) - 11(0) = ZwiSi(O)(Si(t)/Si(O)*l)

~ ZwiSi(O)ri(t) =4d- Tt,
i=1

where this approximation will be good if the r;(t) are small. In this case the
preceded theorems are applicable where 6 = (w151(0),...,w,S5,(0)) and r;(t) =
log(X;(t)/X;(0)) for j=1,...,n.

4.5. Businesses as Linear Portfolios of Business Units. An interesting way
of looking upon an big enterprize, e.g. a multi-national or a big financial institution,
is by considering it as a sum of its individual business units, cf. Dowd [E] If X,
is the variation of price or of profitability of business unit j in one period, then the
variation of price of the agglomerate in the same period will be

Al = X1 + - + X

The entire institution is therefore modelled by a linear portfolio, with 6 = (1,1,...,1),
to which the results of this paper can be applied, if we model the vector of indi-
vidual price variations by a multi-variate elliptic distribution. VaR, incremental
VaR (see below) and Expected Shortfall will be relevant here. For more details see
Dowd [{], chapter XI .

4.6. Incremental VaR. Incremental VaR is defined in [m] as the statistic that
provides information regarding the sensitivity of VaR to changes in the portfolio
holdings. It therefore gives an estimation of the change in VaR resulting from a
risk management decision. Results from ] for incremental VaR with normally
distributed risk-factors generalize straightforwardly to elliptically distributed ones:
if we denote by IVaR; the incremental VaR for each position in the portfolio, with
0; the percentage change in size of each position, then the change in VaR will be
given by
AVaR = 6;IVaR;
By using the definition of IVaR; as in [f]] (2001), we have that

oVaR
14 IVaR; = wij————
( ) ! ! Gwi
with w; is the amount of money invested in instrument 7. In the case of an equity
portfolio in the elliptically distributed assets, we have seen that, assuming u = 0,

VaR, = —q5 Vo505,

We can then calculate IV aR; for the i-th constituent of portfolio as

IVaR, — w2V R _
8%-
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with
9 Yw
Y= _qa,n .
VXt
The vector v can be interpreted as a gradient of sensitivities of VaR with respect
to the risk factors. This is the same as in ], except of course that the quantile has
changed from the normal one to the one associated to g.

4.7. Problem of the aggregation of risks. Suppose that we have a constituted
portfolio with several under portfolios of assets from different markets. Given the
Value-at-Risk of the portfolios constituting the global portfolio, under the hypoth-
esis that the joined risks factors follow an elliptic distribution , the question is how
to get the VaR of the global portfolio.

In order to be clearer and simpler, let us consider a global constituted portfolio
of 2 under portfolios from different markets with respective weights d1 and d3. 34
represents the matrix of interrelationship in the under portfolio of market 1; 3o
represents the matrix of interrelationship in the under portfolio of market 2. One
will be able to write the matrix of interrelationship of a global portfolio like this:

= (o 3 )
where 312 is the correlation matrix that takes into consideration the interaction
between the market M; and the market My . If 6 = (41, d2), we have
(15) 8185 = 61"101 + 02" 2202 +2 - 61T 1202.
Therefore, since we know that when p =~ 0, we have
VaR, = ¢}, - Vst
the Value-at-Risk of the global portfolio will be given by

(16) VaR,(M) = \/VaRa(M1)2 + VaR,(M3)2 + 2[q% ]2 - 61" 1202.

An implicit interrelationship with the hypothesis of elliptic distribution is ob-
tained in an analogous way, like in the case where one works with the hypothesis of
the normal distribution. Note that, one will distinguish several situations from the
behavior of 315. With some simple operations, the implicit interrelationship is

61'21202
V(0115161) (52 5252)

with the Value-at-Risk VaR, (M) of the global portfolio being given as follows:
(18)
VaR,(M) = v/[VaR,(M;)]2 + [VaR,(M2)]2 + 26 - VaR,(M;)VaR,(M)).

(17) ¢ =

Also, for p =~ 0,
ES, = K]g;sya SV OXHE,

therefore by using the same technics that proves (E), we have that the expected
shortfall of the global portfolio is given by:

(19)  ES,(M) = \/BSa(M1)? + ESo(M2)? + 2[Kg )2 - 01" S120.

This imply that

(20)  ESo(M) = /[ES,(M1)]2 + [ES,(M2)]2 + 2¢gs - ES,(M;)ES,(Mz)),
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where

s = 61" 31202
\/(51t2151)(52t2252)

Remark 4.8. The result about the agregation of risks work so well in the situation
where, the joint risk factors of our portfolio changes with mixture of ellitic distri-
butions as define in (E), and where all ¥; = X, for ¢ = 1,...,m. In particular,
when j; = p1, we have the results (2() and ([[6).

(21)

5. CONCLUSION

In this paper, we have shown how to reduce the estimation of Value-at-Risk for
linear elliptic portfolios to the evaluation of one dimensional integrals which, for
the special case of a mixture of ¢-Student distributions, can be explicitly evaluated
in terms of a hypergeometric function. We have also given a similar, but simpler,
integral formula for the expected shortfall of such portfolios which, again, can be
completely evaluated in the Student case. Following the calculations in the case of
Delta mixture-Student VaR, we indicated how to extend it to the case of mixture of
t-distributions expected shortfall . We finally surveyed some potential application
areas.
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