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Abstract

We discuss the influence of a zero-temperature environment
on a coherent quantum system. First, we calculate the re-
duced density operator of the system in the framework of
the well-known, exactly solvable model of an oscillator cou-
pled to a bath of harmonic oscillators. Then, we propose
the sketch of an Aharonov–Bohm-like interferometer show-
ing, through interference measurements, the decrease of the
coherence length of the system due to the interaction with
the environment, even in the zero temperature limit.

1 Introduction

The effects of the interaction between a quantum system
and its environment have been studied since the early days
of quantum mechanics. For instance, in quantum measure-
ment theory, a study of the role of the environment helps
to understand the transition between the quantum and the
classical world (see [1]). Another example is quantum elec-
trodynamics (see [2]), where to some extent one can consider
the electromagnetic field as the environment, influencing a
charged particle (the quantum system).

Clearly, these issues are of key importance in mesoscopic
physics. Since the discovery of mesoscopic phenomena in
solids [3], it is well-known that the transport properties
of small metallic systems at low temperatures are strongly
influenced by interference of electronic waves. Examples
are the weak localisation correction to conductivity or the
universal sample-to-sample fluctuations of the conductance.
On the other hand, the quantum behaviour of “free” elec-
trons in mesoscopic systems is affected by their interaction
with the environment, which for example consists of other
electrons, phonons, photons, or scatterers. Which environ-
ment dominates the destruction of interference phenomena,
an effect sometimes referred to as decoherence, depends in
general on the temperature. For instance, the temperature
dependence of the weak-localisation correction to the con-
ductivity reveals that in metals electron-electron interac-
tions dominate over the phonon contribution to decoherence
at the lowest temperatures.

In this connection, the question as to what happens to
interference phenomena at zero temperature has been hotly
debated over the past few years. This debate was initi-
ated by temperature-dependent weak localisation measure-
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ments [4], reporting on a residual decoherence in metals
at zero temperature, in contradiction with theoretical pre-
dictions [5]. The subsequent theoretical debate [6, 7, 8]
mainly focused on zero-temperature decoherence induced
by Coulomb interactions in disordered electron systems, but
as a spin-off has led to the more general question “Can a
zero-temperature environment induce decoherence?”. Re-
cently, Nagaev and Büttiker [10] discussed this issue in the
framework of a well-known, simple model : a harmonic os-
cillator (the “particle”) coupled to a chain of harmonic oscil-
lators (the “environment”). They showed that the particle
exchanges energy with the environment, even at zero tem-
perature. The effect of these energy fluctuations cannot be
simply captured through a renormalisation of the particle’s
parameters, but will give rise to a ground-state with non-
trivial dynamics. This can have important consequences on
ground-state properties of measured systems; an example is
the suppression of the zero-temperature persistent normal
or super current in mesoscopic rings [9, 12].

In the present paper, we are interested in the influence
of an environment at low temperature on the behaviour of
a mesoscopic system. At low energies, one may look at
the effects of the environment on the interferences rates,
especially when the coupling energy between a small system
and the environment is larger than the thermal energy. In
the following, we consider a simple, exactly solvable model
of a particle coupled with the environment. We regard the
particle as part of a larger system of a particle coupled to a
heat bath and calculate the exact reduced density operator
of the particle. Then we propose the sketch of a device
showing the decrease of the coherence length of the particle,
at zero temperature. The coherence length is investigated in
the device by an Aharonov-Bohm interference measurement.

The model, largely inspired by [10, 13, 14], is a simple par-
ticle moving lengthwise in a perfect waveguide while being
transversally coupled to a continuous set of independent os-
cillators (the “environment”), see fig. 4. The model is simple
enough to do all computations without any approximation.
We probe the state of the particle in the waveguide with
two perfect 1–dimensional leads and then we make them
interfere; the contrast of the interference fringes obtained
is related to the transversal coherence length of the par-
ticle in the waveguide. We will see that, because of the
coupling η with the environment, the particle’s behaviour
is described by an effective temperature T̃ , larger than the
real temperature T (fig. 1). The coupling also destroys the
interference fringes and thus reduces the coherence length
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ξ of the particle (fig. 5). These effects remain even in the
zero temperature limit.

This paper is organised as follows : in section 2, we con-
sider the effects induced on a little system by the environ-
ment; in section 3, we present the Aharonov-Bohm-like in-
terferometer capable of showing that the coherence length
of the particle saturates in the zero-temperature limit. The
calculations are worked out in appendix A and B.

2 A particle coupled to the environ-

ment

2.1 The model

In order to get exact results, we will use the simplest well-
known, non-trivial model for a particle coupled to an en-
vironment : a harmonic oscillator coupled to a set of N
independent harmonic oscillators [15]. Consider the classi-
cal Hamiltonian of the whole system :

H(q, p, ϕ, π) =
p2

2m
+
mΩ2

2
q2

︸ ︷︷ ︸

particle

(1)

+

N∑

i=1

{
π2

i

2µi
+
µiω

2
i

2
(ϕi − q)

2

}

︸ ︷︷ ︸

environment

The first part represents the “particle” (of mass m, fre-
quency Ω, position q and momentum p). The second term
corresponds to a set of N independent harmonic oscilla-
tors, ωi is the frequency of the ith oscillator, µi, πi and ϕi

are its mass, momentum and position. Parameters µi and
ωi characterise entirely the environment. We will be inter-
ested in knowing the behaviour of the system when N is
large, particularly in the continuous limit. In this case, ω
is a continuous variable and the mass distribution µi is a
smooth function µ(ω) defined such that µ(ω) dω is the mass
of the oscillators with frequency between ω and ω+ dω; the
distribution µ(ω) characterises entirely the environment1.
The parameter η/mΩ defines the strength of the coupling.
In that case, one can prove [13, 14] that for the particular
case µ(ω) = 2η/mω2, the Hamiltonian leads to the well-
known classical equation of motion :

mq̈ = −mΩ2q − ηq̇ + F (t)
︸ ︷︷ ︸

env.

(2)

The environment induces a dissipative force −ηq̇ and a fluc-
tuating force F (t). For that particular environment, F (t) is
a white noise. However, for other functions µ(ω), one may
observe some memory effects. One can see that in the zero-
temperature limit, the energy of the whole system is zero
and, therefore, the particle is at rest, i.e. is in its classical
ground state. Later, we will see that this statement should
be reconsidered in quantum mechanics.

1often, instead of µ(ω) we use the spectral function of the environ-
ment [13, 15], defined by :

J(ω) = πω3µ(ω)

2.2 Reduced density operator of the parti-

cle

We consider now the quantum version of the system defined
by eq. 1, i.e. a quantum oscillator coupled to a quantum
environment. We replace the classical variables by canonical
operators :

q, p, ϕ, π, . . . −→ q̂, p̂, ϕ̂, π̂, . . .

In the case when the whole system is in equilibrium at
temperature T , its density operator is the following :

ρ̂ =
1

Z
e−Ĥ/kT where Z = tr ρ̂

The reduced density operator σ̂ of the particle is defined
as the trace over the environment of ρ̂ :

σ̂ = tr
env.

ρ̂

σ̂ completely describes the state of the particle in the sense
that it predicts any measurement made on it. As shown
in appendix A, we can write σ̂ in a canonical form with
unknown coefficients T̃ and m̃ :

σ̂ =
1

Z̃
exp

{

− 1

kT̃

(
p̂2

2m̃
+
m̃Ω2

2
q̂2

)}

(3)

In this last form we have chosen to single out the effective
Hamiltonian :

Ĥeff =
p̂2

2m̃
+
m̃Ω2

2
q̂2

which has the same frequency Ω (and therefore the same
spectrum) as the Hamiltonian of the particle in eq. 1. With
this requirement, parameters T̃ and m̃ are uniquely defined.
T̃ can be interpreted as an effective temperature a priori

different from real temperature T because of the coupling
with the environment. Similarly, the effective mass m̃ differs
from the mass m of the particle. In particular we will see
that even at zero temperature T = 0, we may have T̃ > 0.
The reason is that at zero temperature, the total system is
in its ground state; because of the coupling energy between
the particle and the environment, this ground state is not a
product state. Therefore, σ̂ is not a pure state, in particular,
the particle cannot be in its ground state. Thus, parameters
T̃ and m̃ necessarily differ from the real temperature T and
the real mass m of the particle. Z̃ is a normalisation con-
stant that ensures that tr σ̂ = 1. We can explicitly calculate
T̃ and m̃ as function of the real temperature T and the mass
distribution µ(ω) of the environment (see appendix A).

2.3 An example — ohmic environment

Consider the case of an ohmic environment, defined by :

µ(ω) =

{
2η/πω2 if ω < Ωc

0 otherwise

for Ωc ≫ Ω, its classical behaviour is described by eq. 2,
see [10, 13, 14]. T̃ (T ) and m̃(T ) can be calculated explicitly
for this environment (see appendix A, page 7). They are
plotted for different values of the coupling η between the

2



particle and the environment in fig. 1 and fig. 2. At T = 0,
we find the following limit expressions, for small η :

m̃(0) ∼ m (1 + α/π) (4)

kT̃ (0) ∼ h̄Ω

2
× 2

ln(2π/α)
(5)

where α =
η

mΩ
ln(Ωc/Ω)

We can see that, even at T = 0, the behaviour of the parti-
cle is very similar to the behaviour of a particle at strictly
positive temperature : its reduced density operator is not
a pure state as it would be for an isolated particle, but a
statistical mixture. It is interesting to evaluate the entropy
of the particle, defined by S = − tr(σ̂ ln σ̂) and to see that
there is a residual entropy that does not vanish at T = 0,
see fig. 3. These statements are not really in contradiction
with the ordinary statistical mechanics (or with the 3-rd
principle of thermodynamics); indeed in statistical mechan-
ics one neglects the coupling energy between the particle
and the reservoir. That approximation is good at high tem-
perature, especially when T ≫ T̃ (0). T̃ has non-vanishing
value, which depends on the coupling strength (fig. 1).

3 Interferences in a device

In order to emphasise the physical meaning of the effec-
tive temperature T̃ , in the following section we propose the
sketch of an Aharonov-Bohm interferometer whose purpose
is to measure the spatial coherence length ξ of the charged
particle. We will see that its coherence length decreases
as the coupling between the particle and the environment
increases, even at zero temperature.

3.1 Description of the device

Consider a perfect two-dimensional waveguide. In the
lengthwise direction (z-axis) the particle is free, while in the
transversal direction (q-axis) it is confined by an harmonic
potential (see fig. 4). Its Hamiltonian in the waveguide is :

Ĥguide =
p̂2

2m
+
mΩ2

2
q̂2

︸ ︷︷ ︸

Ĥtransv.

+
p̂2

z

2m

At the origin of the z-axis are connected two 1-dimensional
leads separated by a distance 2x, as shown in fig. 4. A par-
ticle moving in the waveguide can go respectively through
the “upper” one or through the “lower” one. In each lead
the particle is described as a one-dimensional free particle,
moving along the z1-axis (respectively the z2-axis) :

Ĥlead1 =
p̂2

z1

2m
and Ĥlead2 =

p̂2
z2

2m

Thus, the Hilbert space of the particle is the direct sum of
the space of the waveguide and the space of the leads [16].

Htot = Hguide ⊕Hlead1 ⊕Hlead2

thus, a quantum state of the particle is given by writing the
state of the particle in these three spaces :





|ψ〉guide

|ψ〉lead1

|ψ〉lead2
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Figure 1: Effective temperature T̃ as function of the tem-
perature T , plotted for different values of the coupling η.
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Figure 2: Effective mass m̃ as function of the temperature
T , plotted for different values of the coupling η.
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Figure 3: Entropy S of the particle as function of the tem-
perature T , plotted for different values of the coupling η.
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Figure 4: A particle travelling lengthwise in the waveguide,
while transversally coupled to the environment is probed by
two leads.

We consider that the coupling between one lead and the
waveguide corresponds to a “tunnel” coupling. The wire
and the waveguide interact only in a very localised region.
The total Hamiltonian (coupling included) can be written
as :

Ĥtot =





Ĥguide V̂1 V̂2

V̂ +
1 Ĥlead1 0

V̂ +
2 0 Ĥlead1





V̂1 = α|v1〉〈f1|
V̂2 = α|v2〉〈f2|

The coupling energy is represented by the off-diagonal
terms. The states |f1〉 and |f2〉 of the lead are supposed
to be very localised near the leads’ origin. The states in the
waveguide |v1〉 and |v2〉 are localised near the attach points
z = 0, q = x and z = 0, q = −x. The real constant α rep-
resents the strength of the coupling. When α vanishes, the
tunnelling between the waveguide and the leads disappears.
By putting a variable flux Φ between the two leads, one
can induce a phase shift φ between them. The probabil-
ity to detect the particle as a function of the flux oscillates
by varying the flux (see fig. 4). This Aharonov-Bohm in-
terferometer [17] is nearly equivalent to the Young double
slit.

3.2 Transversal coupling with the environ-

ment

Now, let us suppose that there is a region in the waveguide
where the particle is transversally coupled with an exter-
nal environment (for instance, through a capacitor for a
charged particle), see fig. 4. The environment acting in the
q-direction is represented by a linear resistor, and is well de-
scribed by the model considered in sec. 2. We suppose that
the dissipative region is large enough in the z-direction so
that any particle entering on the left will have reach thermal
equilibrium with the bath in the q-direction before leaving
it on the right. It means that if a particle enters the region
with a pure state |ψ〉⊗|k〉 where |ψ〉 is any transversal state
and |k〉 is a plane wave in the z-direction, it will leave the
dissipative region in a state described by a density operator :

σ̂ ⊗ |k〉〈k|
where σ̂ is the particle state in the q-direction, discussed in
the first section. Note that the lengthwise part of state |k〉

is not affected by the dissipative zone, since we assume a
transversal coupling.

Experimentally, the initial pure state |ψ〉 ⊗ |k〉 can be
prepared by putting a particle with fixed wave-vector k in
a single-channelled waveguide. At this stage, the only pos-
sible transversal state is the ground state. However, if the
number of transversal channels grows adiabatically along
the z-axis, it turns out that the particle will necessarily re-
main in the ground state [11]. In this case |ψ〉 = |0〉, the
transversal ground state of the waveguide.

3.3 Interference fringes

In appendix B, it is shown that in the limit when the inci-
dent wave vector satisfies the condition that its lengthwise
energy is much larger than its transverse energy, the proba-
bility that the particle be found in the cross-point of the two
leads, after a measure is in term of any transversal state σ̂ :

I(φ) = |τ |2 ×
(

σ(x, x) + σ(−x,−x)

σ(−x, x)eiφ + σ(x,−x)e−iφ
)

By using the value of σ(q, q′), discussed in appendix A :

σ(q, q′) =
1

2π〈q̂2〉e
− 1

2

[
〈p̂2〉

h̄2 (q−q′)2+ 1

4〈q̂2〉
(q+q′)2

]

we obtain :

I(φ) = 2|τ |2σ(x, x) ×
(

1 + e−x2/2ξ2

cosφ
)

where ξ2 =
h̄

2m̃Ω
× 1

1 − th h̄Ω
2kT̃

A normalised contrast of the interference fringes can be de-
fined by :

γ = exp− x2

2ξ2

This expression defines the transversal coherence length ξ of
the particle. It shows that the particle is capable to interfere
along a maximum length of ξ.

As an example, consider the environment discussed in sec-
tion 2.3. As was done with T̃ and m̃, we can explicitly cal-
culate ξ for that particular environment (see appendix B).
Fig. 5 shows the transversal coherence length of the parti-
cle, as function of the (real) temperature, for various values
of the coupling strength η. In the zero-temperature limit,
ξ(T = 0) has a finite value, showing that long range inter-
ferences are not possible. At T = 0, we find the following
limit expression of ξ, for small η :

ξ2(0) ∼ h̄

η
× π

4 ln (Ωc/Ω)

Even at zero temperature, the interference fringes are de-
stroyed because of the coupling between particle and envi-
ronment. The behaviour of the particle is similar to that of
a particle at strictly positive temperature. This effect be-
comes more pronounced as the coupling strength increases.
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Figure 5: Coherence length ξ as function of the temperature
T for several strengths η of the coupling of the particle and
the environment. The main effect is the saturation of ξ(T )
at finite value, when T → 0.

4 Conclusion

We considered a simple exactly solvable model of a particle
coupled to the environment. Our purpose was to discuss
the influence of the environment on the particle at thermal
equilibrium. After obtaining the reduced density operator
of the particle, we proposed a sketch for a simple device ca-
pable to measure the spatial coherence length of the parti-
cle through Aharonov–Bohm interference measurement. We
saw that the coupling between the particle and the environ-
ment destroys long range interferences and reduces its spa-
tial coherence length. Even in the zero temperature limit,
this effect remains and grows with the coupling between the
particle and the environment.

We finally discuss two possible experimental realisations
of our model.

Let us first consider a confined two-dimensional electron
gas, where the coherence length of the electron is about sev-
eral hundred nanometres, comparable to the typical size of
a small mesoscopic device [23]. In view of this scenario,
an external circuit giving rise to electrodynamic noise could
play the role of the environment. The main problem prob-
ably is the construction of the point contact between the
leads and the waveguide. Actually, if the contact is very
localised, one may loose a significant part of the measured
signal. Furthermore, a direct interpretation of such an ex-
periment could be masked by many-body effects: the Pauli
principle has to be taken into account when treating deco-
herence in a two-dimensional electron gas, along the lines
presented in [21].

Another example is a cold atomic gas, localised in a mag-
netic trap. The atomic gas is a quantum system, that looses
coherence in the presence of fluctuations of the trapping po-
tential, induced by fluctuations of the applied magnetic field
(the ”environment”). Interference-like experiments, similar
to the ones discussed here, have been proposed to study
these decoherence phenomena [22]. The environment in [22]
is a high-temperature one; it would be interesting to extend
the discussion to the case of a low-temperature environment,
such that the effects discussed in the present paper become
important.

A Reduced density operator of the

particle

A.1 Classical modes

The classical system defined by eq. 1 is made of N + 1 har-
monic oscillators coupled one to each other, but since the
Hamiltonian is quadratic and positively defined, one can de-
compose the system as a set of N+1 independent harmonic
oscillators (the eigen-modes of the total system).

A.1.1 Matrix notations

Let us first rewrite the classical Hamiltonian 1 in a matrix
form, where we separate the N+1 positions from the N+1
momenta :

H =
1

2
(P |P ) +

1

2
(Q|A|Q)

where :

|P ) =










p√
m
...

πi√
µi

...










, |Q) =









q
√
m

...
φi
√
µi

...









A =









Ω2 +
∑
ω2

i
µi

m . . . −ω2
i

√
µi

m . . .
...

. . .

−ω2
i

√
µi

m ω2
i 0

... 0
. . .









We note |0), . . . , |N) the canonical base in R
N+1, so that

the vectors |Q) and |P ) in R
N+1 have components :

q
√
m = (0|Q) πi/

√
µi = (i|P )

ϕi
√
µi = (i|Q) p/

√
m = (0|P )

(6)

The eigen-vectors |Uj) and eigen-values ν2
j of the symmetric

and positive matrix A verify :

A|Uj) = ν2
j |Uj) (7)

I =

N∑

j=0

|Uj)(Uj | (8)

We can, now, rewrite the Hamiltonian with respect to a new
set of “normal” positions and momenta :

H =

N∑

j=0

Hj =
1

2

N∑

j=0

{
y2

j + ν2
j x

2
j

}
(9)

with the new canonical coordinates xj = (Uj |Q) and yj =
(Uj |P ). Conversely, because sij = (i|Uj) is an orthogonal
matrix :

q
√
m =

N∑

j=0

(0|Uj)xj p/
√
m =

N∑

j=0

(0|Uj)yj

ϕi
√
µi =

N∑

j=0

(i|Uj)xj πi/
√
µi =

N∑

j=0

(i|Uj)yj

(10)
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A.1.2 Reduced resolvent

In sec. A.2, eq. 17 and 18 we need to compute :

Mf =

N∑

j=0

(0|Uj)
2f(ν2

j )

where f is any smooth function. We will follow a standard
calculation, using the resolvent, to explicitly obtain that
expression (see [18, 19, 20]). Consider the resolvent R(z) of
the matrix A, defined by as R(z) = (z −A)−1, with z ∈ C.
In the eigen-base of A, R(z) can be written as :

R(z) =

N∑

j=0

|Uj)(Uj |
z − ν2

j

For z near the real axis, we can set z = ǫ+ iκ and take the
limit κ→ 0 in the imaginary part of R :

Im
{

lim
κ→0+

R(ǫ+ iκ)

}

= −π
N∑

j=0

|Uj)(Uj |δ(ǫ− ν2
j )

Since ν2
j > 0, only the positive ǫ are concerned and we can

take ǫ = u2, we obtain :

Mf = − 1

π

∫ ∞

0

{

lim
κ→0+

Im (0|R(u2 + iκ)|0)

}

f(u2) du2

(11)
Let us decompose the matrix A as the sum of its diagonal
and its off-diagonal part : A = A0 + V . One can write R
as :

R = R0 +R0V R, where R0(z) = (z −A0)
−1

Consider :

(0|R|0) = (0|R0|0) + (0|R0|0)(0|V R|0)

= (0|R0|0)

[

1 +

N∑

i=1

(0|V |i)(i|R|0)

]

=
1

z − Ω2 − ∑N
i=1 ω

2
i µi/m

(12)

×
[

1 −
N∑

i=1

ω2
i

√
µi

m
(i|R|0)

]

(i|R|0) = (i|R0|0) + (i|R0|i)(i|V |0)(0|R|0)

= − 1

z − ω2
i

ω2
i

√
µi

m
(0|R|0) (13)

Finally, by combining the last two expressions, we obtain :

(0|R(z)|0)−1 = z − Ω2 − z

N∑

i=1

ω2
i µi/m

z − ω2
i

A.1.3 Continuous limit

In that form, the expression of (0|R|0) is exact but nearly
unusable. However, remember that we are mainly inter-
ested in the case where the number of oscillators in the
environment is very large, so we can take the continuous
limit N → ∞ and replace the set of frequencies ωi with a

continuous variable ω. The mass distributions is described
by the smooth function µ(ω) defined such that µ(ω) dω is
the mass of the oscillators with frequency between ω and
ω + dω. In that limit,

(0|R(z)|0)−1 = z − Ω2 −−z
∫ ∞

0

ω2µ/m

z − ω2
dω

Now, we can take z = u2 + iκ and consider the limit κ→ 0 :

lim
κ→0+

(0|R(u2 + iκ)|0) =
1

u2 − Ω2 − ∆(u) + iuΓ(u)

where :

∆(u) = P
∫ ∞

0

ω2u2/m

u2 − ω2
µ(ω) dω

Γ(u) =
πu2

2m
µ(u)

Finally, by putting the last expression in eq. 11, we obtain
in the continuous limit :

N∑

j=0

(0|Uj)
2f(ν2

j ) −→ 2

π

∫ ∞

0

Γu2f(u2) du

(u2 − Ω2 − ∆)2 + Γ2u2
(14)

A.2 Fluctuation of the position and the

momentum of the particle

We consider now the quantum version of the system defined
by eq. 1, i.e. a quantum oscillator coupled to a quantum
environment. We replace the classical variables with oper-
ators; in the case when the whole system is in equilibrium
at temperature T , its density operator is the following :

ρ̂ =
1

Z
e−Ĥ/kT where Z = tr ρ̂

From eq. 9 we can write ρ̂ as :

ρ̂ =
e−Ĥ0/kT

Z0
⊗ e−Ĥ1/kT

Z1
⊗ · · · ⊗ e−ĤN /kT

ZN
(15)

where Zj = tr
(

e−Ĥj/kT
)

(16)

The mean square fluctuations of the position of the particle
in the state ρ̂ are :

〈q̂2〉T =
1

m
〈

N∑

j=0

(0|Uj)x̂j

N∑

j′=0

(0|Uj′)x̂j′ 〉

=
1

m

N∑

j=0

(0|Uj)
2〈x̂2

j 〉

=
N∑

j=0

(0|Uj)
2

{
h̄

2mνj
coth

h̄νj

2kT

}

(17)

Where in the last step we have replaced 〈x̂2
j 〉 with its value,

obtained for a simple 1-dimensional oscillator. In the same
way, we can find the mean square fluctuations of the position
of the particle :

〈p̂2〉T =
N∑

j=0

(0|Uj)
2

{
mh̄νj

2
coth

h̄νj

2kT

}

(18)
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We see that these expressions have the form of eq. 14, so, for
a continuous environment, we can explicitly compute 〈q̂2〉
and 〈p̂2〉 for any mass distribution µ(ω). These results have
already been obtained (see [15, 10]), following a different
approach, namely the fluctuation-dissipation theorem.

A.3 Reduced density operator of the par-

ticle

The reduced density operator σ̂ of the particle is defined as
the trace over the environment of ρ̂ :

σ̂ = tr
env.

ρ̂

Since the total Hamiltonian is quadratic in position and
momentum, ρ̂ is Gaussian in these operators; when we trace
over the degrees of freedom of the environment, σ̂ remains
Gaussian and we can write :

σ̂ = eap̂2+bq̂2+c

with unknown coefficients a, b, c. Note that there is not a
term of the form p̂q̂ because the total Hamiltonian is invari-
ant by time reversal and therefore ρ̂ and σ̂ are also invariant.
We can rewrite σ̂ in a canonical form with unknown coeffi-
cients T̃ and m̃ :

σ̂ =
1

Z̃
exp

{

− 1

kT̃

(
p̂2

2m̃
+
m̃Ω2

2
q̂2

)}

Let us now determine Z̃, T̃ and m̃. Z̃ is a normalisation
constant that ensures that tr σ̂ = 1. We can explicitly cal-
culate :

〈p̂2〉def
= tr(p̂2σ̂) =

h̄m̃Ω

2
coth

h̄Ω

2kT̃
(19)

〈q̂2〉def
= tr(q̂2σ̂) =

h̄

2m̃Ω
coth

h̄Ω

2kT̃
(20)

Conversely, we obtain :

kT̃ =
h̄Ω

2

1

Argth
√

h̄2

4〈p̂2〉〈q̂2〉

(21)

m̃ =

√

〈p̂2〉
Ω2〈q̂2〉 (22)

Finally, since according to eq. 17, 18 and 14, 〈q̂2〉 and 〈p̂2〉
can be written as function of the mass distribution of the
environment µ(ω), we can do either for m̃ and T̃ . Finally,
we have obtained the expression of the reduced density op-
erator, which, in position representation, can be written as :

σ(q, q′) =
1

2π〈q̂2〉e
− 1

2

[
〈p̂2〉

h̄2 (q−q′)2+ 1

4〈q̂2〉
(q+q′)2

]

(23)

B Interference fringes

B.1 Scattering coefficients

Consider the coupling between the waveguide and the leads,
discussed in sec. 3.1. We will rewrite it in the following way :

V̂1 = α(|g1〉 ⊗ |f〉)〈f1|
V̂2 = α(|g2〉 ⊗ |f〉)〈f2|

The states |f1〉 and |f2〉 of the lead are supposed to be very
localised near the leads’ origin. The transversal states in the
waveguide |g1〉 and |g2〉 are localised near the attach points
q = x and q = −x and the lengthwise state |f〉 is localised
around the origin z = 0. The real constant α represents
the strength of the coupling. Note that the later states are
normalised and not Dirac peaks, they are such that :

〈f |f〉 = 1

〈z|f〉 ∼
√
ε δ(z)

where ǫ is the typical spatial width of the state |f〉. We
are interested by the stationary state of the particle, made
of an incident wave, a reflected wave and three transmit-
ted waves (one through the waveguide and two through the
pair of leads). Suppose that the incident wave is in the n′-th
channel (n′-th excited transversal state). It may be trans-
mitted and reflected in the other channels, we can write the
stationary wave function in the n-th channel and the leads
as :

ψn(q, z) = χn(q)φn(z)

where χn(q) is the stationary wave-function of the transver-
sal “harmonic oscillator” with energy En = h̄Ω(n + 1/2);
the lengthwise part φn(z) of the wave-function is made by
an incident, a reflected and a transmitted wave :

φn(z) =

{
if z < 0 δnn′eiknz + rne

−iknz

if z > 0 tne
iknz

δnn′ is the Kronecker symbol, tn and rn respectively are
the transmission and the reflection coefficients in the n-th
channel and kn is the corresponding wave-vector :

kn =

√

k2 + 2m(En′ − En)/h̄2

Finally, the wave-function in each lead is just a transmitted
plain-wave, it can be written as :

σ1(z1) = s1e
iκ|z1|

σ2(z2) = s2e
iκ|z2|

where s1, s2 are the transmission coefficients in the guide
and κ the corresponding wave-vector :

κ =

√

k2 + 2mEn′/h̄2

Since this state is supposed to be stationary, it is an eigen-
vector of the Hamiltonian in 3.1, we can write :

− h̄2

2m
σ′′

1 + αε3/2δ(z1)

∞∑

n=0

χn(x)φn(0) = Eσ1

− h̄2

2m
σ′′

2 + αε3/2δ(z2)

∞∑

n=0

χn(−x)φn(0) = Eσ2

Enφn − h̄2

2m
φ′′n + αε3/2δ(z)σ1(0)χ̄n(x)δ(z1)

+αε3/2δ(z)σ2(0)χ̄n(−x)δ(z2) = Eφn

These three equations, and the continuity condition on φn,
leads to the following set of linear equations :

−h̄2ikn(tn − δnn′ + rn)/2m+ αε3/2s2χn(−x) = 0

−h̄2iκs1/2m+ αε3/2
∑∞

n=0 χn(x)tn = 0

−h̄2iκs2/2m+ αε3/2
∑∞

n=0 χn(−x)tn = 0
δnn′ + rn − tn = 0
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finally, we obtain :

s1 =
αε3/2m

ih̄2κ

1

R2 + |Z|2 [Rχn′(x) − Zχn′(−x)]

s2 =
αε3/2m

ih̄2κ

1

R2 + |Z|2 [Rχn′(−x) − Z̄χn′(x)]

where :

R = 1 +
α2ε3m2

h̄2κ2

∑ 1

λn
|χn(x)|2 (24)

Z =
α2ε3m2

h̄2κ2

∑ 1

λn
χn(x)χ̄n(−x) (25)

λn =

√

1 − 2mEn

h̄2/κ2
(26)

Consider, now, the much simpler case where h̄2k2 ≫ En′ . In
that case, λn → 1, and thus Z → 0 and R → 1+(αǫm/h̄k)2,
finally, the transmission coefficients can be written as :

s1 = τ χn′(x) (27)

s2 = τ χn′(−x) (28)

where :

τ =
αǫm

ih̄k

ǫ1/2

1 +
(αǫm

h̄k

)2

B.2 Interference fringes

For an incident state in the waveguide of the form |χn〉⊗|k〉,
where |χn〉 is an eigenstate of Ĥtransv. and |k〉 a plane wave
in the z-direction, one associates the transmitted states in
the lead, written :

(
s1n|k1〉
s2n|k2〉

)

where |k1〉, |k2〉 are plane waves and (s1n, s2n) ∈ C
2 are

transmission coefficients which may depend on n and k.
Thus, by the separation principle, if the particle in the guide
is described by a density operator :

σ̂ ⊗ |k〉〈k| =




∑

n,n′

σnn′ |χn〉〈χn′ |



 ⊗ |k〉〈k|

the transmitted state is described by the density operator :

ŵ = |τ |2
(

σ(x, x) |k1〉〈k1| σ(x,−x) |k1〉〈k2|
σ(−x, x) |k2〉〈k1| σ(−x,−x) |k2〉〈k2|

)

The probability that the particle be found in the cross-point
of the two leads, after a measure is :

I(φ) = 〈z1|〈z2|ŵ|z1〉|z2〉 (29)

= |τ |2
[

σ(x, x) + σ(−x,−x) (30)

+σ(−x, x)eiφ + σ(x,−x)e−iφ
]

(31)

By replacing σ(x, x′) with its value form eq. 23 we can ex-
plicitly evaluate I(φ) :

I(φ) = 2|τ |2σ(x, x) ×
(

1 + e−x2/2ξ2

cosφ
)

where ξ2 =
〈q̂2〉h̄2

4〈p̂2〉〈q̂2〉 − h̄2

By using eq. 17 and eq. 18 we see that ξ is related to the
effective temperature and to the effective mass in the fol-
lowing way :

ξ2 =
h̄

2m̃Ω
× 1

1 − th h̄Ω
2kT̃

Since, in appendix A, T̃ and m̃ were written as functions
of the internal parameters of the environment, we can do
either with ξ.
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