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The low temperature magnetoconductance of a large array of quantum coherent loops exhibits
Altshuler-Aronov-Spivak oscillations which periodicity corresponds to 1/2 flux quantum per loop.
We show that the measurement of the harmonics content in a square network provides an accurate
way to determine the electron phase coherence length Lϕ in units of the lattice length without
any adjustable parameters. We use this method to determine Lϕ in a network realised from a 2D
electron gas (2DEG) in a GaAS/GaAlAs heterojunction. The temperature dependence follows a

power law T−1/3 from 1.3 K to 25 mK with no saturation, as expected for 1D diffusive electronic
motion and electron-electron scattering as the main decoherence mechanism.

PACS numbers: 73.23.-b ; 73.20.Fz

The characteristic scale on which quantum interference
can occur in a conductor, the phase coherence length Lϕ,
is the key parameter of quantum transport. In particu-
lar, the dependence of Lϕ on temperature can discrim-
inate between the various scattering mechanisms which
limit phase coherence: electron-electron (e-e), electron-
phonon or electron-magnetic impurity interactions. In-
terference on the scale of Lϕ gives rise to two different
types of contributions to the conductance in a transport
experiment. Some are sample specific and depend on
the particular disorder configuration. These are conduc-
tance fluctuations (magnetofingerprints) and the φ0 peri-
odic Aharonov-Bohm (AB) oscillations (φ0 = h/e is the
flux quantum). Their amplitudes are governed both by
Lϕ and the thermal length LT which in most cases is
smaller than Lϕ. This makes an accurate determination
of Lϕ difficult [1, 2, 3]. The second type of contribu-
tion, called the weak localisation (WL) correction, is ob-
tained after ensemble averaging of quantum interferences
on many configurations of disorder. It originates from in-
terferences between time reversed electronic trajectories,
which are the only ones surviving the disorder average.
It is also observed in samples of size L ≫ (Lϕ, LT ) and
only depends on Lϕ since it involves trajectories at the
same energy. Manifestations of WL are the magneto-
conductance (MC) of large connex samples [1, 2, 3] and
the Altshuler-Aronov-Spivak (AAS) φ0/2 periodic oscil-
lations resulting from the ensemble average of AB oscilla-
tions in a long cylinder or large arrays of connected phase
coherent rings [4, 5, 6]. The WL provides thus in gen-
eral a much more direct measurement of Lϕ than sample
specific corrections.

The analysis of the MC in 1D diffusive metallic wires
(with transverse dimensions smaller than Lϕ) has led to
accurate determinations of Lϕ. It was found that the
dominant phase breaking mechanism at very low temper-
ature, in the absence of magnetic impurities, is due to e-e
scattering and is well described by the Altshuler-Aronov-

Khmelnitskii (AAK) theory [1, 7] yielding Lϕ ∝ T−1/3

with no saturation down to 40 mK [2, 3]. This analysis
requires a good knowledge of transport parameters such
as the diffusion coefficient (D), and the width of the wire
(W ) or the electronic density (ne). On the other hand
these parameters are not straightforwardly determined in
wires fabricated from GaAs/GaAlAs 2DEG, and there-
fore much less evaluations of Lϕ exist [8, 9].

Here we show that Lϕ can be determined without ad-

justable parameters from the analysis of the AAS oscil-
lations in a periodic network (Fig. 1), when the circum-
ference L of the elementary loop is of the order of Lϕ.
It is indeed known that the amplitude of AAS oscilla-
tions decreases exponentially with L/Lϕ. In this letter,
following [10, 11], we explain how to calculate the har-
monics content of the oscillations. Since it depends only
on L/Lϕ it is possible to determine unambiguously Lϕ

as a function of temperature, in a 2DEG square lattice
containing 106 loops in the diffusive transport regime.
Moreover once Lϕ is determined it is also possible from
the analysis of the high field positive MC to deduce the
elastic mean free path (le), the width of the wires, and to
make a detailed comparison with theoretical predictions
of the AAK theory on dephasing by e-e interactions. We
find a very good agreement in this regime, never explored
before, of very few conducting channels.

In the weakly disordered diffusive regime correspond-
ing to kF le ≫ 1, the WL correction is directly related
to the Cooperon, which can be computed from the time
integrated return probability Pc(~r, ~r) for a diffusive elec-
tron. In a cylinder or an array of connected loops the
contribution to the Cooperon of trajectories enlacing at
least one loop oscillates with a flux periodicity of φ0/2
giving rise to the AAS oscillations. A systematic way
of calculating WL in a mesoscopic network of diffusive
wires was derived by Douçot & Rammal [10]. More re-
cently Pascaud & Montambaux [11] found a relation be-
tween the WL correction and the spectral determinant
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FIG. 1: a) Conductance versus magnetic field for tempera-
tures varying from 25 mK to 220 mK.
b) Fourier transform of the MC for different temperatures.
Left inset: some orbits contributing to the first harmonic.
Right inset: some orbits contributing to the second harmonic.

S(γ) = det(γ −∆) of the Laplace operator ∆ defined on
the network :

〈∆σ〉 = −2e2

π~

∫

d~r

Vol
Pc(~r, ~r) = −2e2

π~

1

Vol

∂

∂γ
lnS(γ)

(1)
where γ = 1/L2

ϕ. This approach, which is meaningful
only for regular networks, is particularly efficient because
S(γ) can be computed systematically for any given net-
work in terms of the determinant of a finite size matrix
encoding the information about the network (topology,
lengths of the wires, magnetic flux). It can also be shown
that the WL can be expressed, in the small Lϕ limit, as
a trace expansion over periodic orbits, denoted C,

∂ lnS(γ)

∂γ
=

1

2
√

γ

[

L +
V − B√

γ
+
∑

C
l(C̃)α(C)e−

√
γ l(C)+iθ(C)

]

where V , B, is the total number of vertices, bonds respec-
tively. C̃ is the primitive orbit related to C. Vol = L is
the total length. We explain briefly this formula, demon-
strated in [12] and discussed in detail in [13]. Each orbit
contributes to the MC with a phase factor which depends
on the enclosed flux: θ(C) = 4πΦ(C)/φ0. It is also char-
acterised by its length l(C) and by a geometrical weight
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FIG. 2: Left: relation between Lϕ/a and R12 on a semi-log
scale. The continuous line comes from the numerical calcula-
tion of S(γ). The dashed line is deduced from the expansion
(2). The thick points are the experimental values of R12 from
which Lϕ is determined.
Right: Lϕ versus temperature on a log-log scale. The fit (dot-
ted line) yields the power law Lϕ ∝ T−0.36. The point at 1.3K
is obtained from the fit of the envelope. The continuous line
is the AAK theory for sample A.

α(C). In the case of a square lattice of periodicity a, the
periodically oscillating conductance can be decomposed
in the Fourier space as a sum of harmonics of the funda-
mental periodicity corresponding to φ0/2 per elementary
cell. The first terms of this expansion in x = e

−2a/Lϕ

read:

〈∆σ〉 = −e2Lϕ

h

[
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+ x + .. +

x2

2
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+
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8
cos 2θ (1 − 19

12
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8
cos 3θ (1 − 15

8
x + ..)

]

.(2)

where θ = 4πφ/φ0, φ being the flux per elementary
cell. The amplitude of the nth harmonics is evaluated
by counting the paths enclosing n fluxes φ. The count-
ing becomes rapidly cumbersome, for instance 156 orbits
are involved in the last term, but the crucial point is that
the coefficient of each term depends only on the lattice
geometry.

More generally, the WL correction can be obtained for
all values of Lϕ/a from the numerical computation of
the determinant in Eq. (1). The numerical FFT of the
computed MC yields the ratio R12 of the 2 first harmon-
ics as a function of Lϕ/a (Fig. 2a). It appears that the
small orbit expansion (2) is a good approximation up to
Lϕ/a = 2. In any case the ratio of two harmonics is com-
pletely determined by Lϕ/a and provides a method for
a direct evaluation of Lϕ without any adjustable param-
eter. The square lattice is particularly appropriate for
such a determination of Lϕ due to its large harmonics
content: the second harmonic is dominated by orbits of
length 6a instead of 8a for a statistical ensemble of single
rings or a necklace of identical rings, for example.

We now use this method to determine the phase co-
herence length of square networks etched in a 2DEG of
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a GaAs/AlGaAs heterostructure. The networks consist
of 106 square loops of side a = 1 µm and nominal width
W0 = 0.5µm and cover a total area of 1mm2. A metallic
(Au) gate deposited 100 nm above the 2DEG offers the
possibility to increase or decrease the number of electrons
in the network. Measurements were done on two identi-
cal networks (A and B), giving the same results. Except
when specified, figures show the data for sample A. We
have measured the MC up to 4.5 T between 25 mK and
1.3 K, using a standard lock-in technique (ac current of
1 nA at 30 Hz).

The samples were in general strongly depleted at low
temperature because of the etching. The intrinsic elec-
tron density of the 2DEG, ne = 4.4 × 1015 m−2, was
recovered after illuminating the samples during several
minutes at 4.2 K. This density was determined from the
period of Shubnikov-de Haas oscillations visible above
1 T. It was found to vary only by less than 30% when
the gate voltage was varied between −0.3 V and +0.3 V,
whereas the network resistance varied by a factor 5. This
shows that the main effect of the gate voltage is to change
the width of the wires and disconnect some bonds. Be-
cause of depletion after etching of the 2DEG, it is difficult
to estimate the real width of the wires and the elastic
mean free path. The mobility of the carriers was esti-
mated to be µ = 3 m2V−1s−1 i.e. 10 times smaller than
the mobility of the original 2DEG .

In the following we focus on the MC data at low mag-
netic field (Fig. 1a). The data exhibit large AAS oscilla-
tions with a period 12.6 G corresponding to a flux φ0/2
in a square cell of area a2. The oscillations are clearly
not purely sinusoidal. At the lowest temperature, 25mK,
three harmonics are visible in the Fourier spectrum of the
MC (Fig. 1b). Moreover, as shown in Fig. 3 which repre-
sents the conductance for a wider range of magnetic field,
the oscillations disappear above 60 G but the WL mag-
netoconductance due to the penetration of the magnetic
field through the finite width of the wires constituting
the network is still clearly visible. At high temperature,
above 400mK, the AAS oscillations disappear even at low
field. Only the positive MC remains with a smaller am-
plitude. The same experiments for different gate voltages
were also performed.

We first concentrate on the AAS oscillations (Fig. 1a).
The Fourier spectrum of the MC exhibits a series of
peaks corresponding to successive harmonics of the φ0/2
periodicity. The finite width of the peaks (Fig. 1b) is
due to the penetration of the magnetic field in the wires
which damps the AAS oscillations at high field. We have
checked that the mechanisms responsible for the broad-
ening of the Fourier components do not affect their inte-
grated values which we have computed in order to com-
pare with the theory depicted above. From the ratio R12

of integrated peaks of the two first harmonics it is thus
possible to directly determine Lϕ/a via the theoretical
relation between Lϕ and R12. The temperature depen-
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FIG. 3: High field MC, the continuous lines are the experi-
mental data, the dots are the fits with formula (4). At 30mK,
parameters of the fit are le and W . At 1 K, parameters are
Lϕ and le.

dence is deduced this way between 25 mK and 250 mK
as shown in Fig. 2. We find that Lϕ follows a power
law T−η, where η = 0.36 ± 0.05. The coherence length
reaches almost 3 µm at 25 mK and there is no sign of
saturation.

Once Lϕ is determined, the sample parameters (W ,le)
can be deduced from the WL envelope. The magnetic
field appears as an additional effective phase breaking
rate for the time reversed trajectories responsible of the
WL leading to an effective Lϕ given by [14]:

1

Lϕ(φ)2
=

1

Lϕ(0)2

[

1 +
1

3

(

2π
φ

φ0

WeffLϕ(0)

a2

)2
]

(3)

where Weff = W
√

(3W )/(C1le) can be understood as a
renormalized width which appears in the WL correction
for a semi ballistic wire in the regime le ≫ W due to
the phenomenon of flux cancellation. The coefficient C1

depends on the specific boundary conditions. The sam-
ples under consideration are close to the case of specular
boundary scattering [8] for which C1 = 9.5. The envelope
of the MC, given by 〈∆σ(φ = 0, Lϕ(φ))〉, can be analyt-
ically computed for the square lattice geometry and is
given by:

〈∆σ〉 = −e2Lϕ

h

[

coth
a

Lϕ
− Lϕ

a
+

2

π
th

a

Lϕ
K

(

1

ch a
Lϕ

)]

(4)
where K(x) is a complete elliptic integral. We can then
fit the measured ∆G/GD = ∆σ/σD where σD and GD

are the Drude conductivity and conductance. GD is de-
duced from the high field measurements when the WL
vanishes, and the parameters of the fit are Weff and le.
By fitting the WL envelope at different temperatures we
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extract the parameters le and W which are found inde-
pendent of temperature: this confirms the consistency of
our analysis. We obtain Weff = 85 nm and le = 220 nm,
yielding W = 170 nm. This shows that the networks
are indeed in the diffusive regime. Knowing k−1

F = 6 nm
from the Shubnikov-de Haas measurement, these num-
bers correspond to M = kF W/π = 9 transverse channels
per wire and the number of effective conducting channels
Meff = Mle/a ∼ 2 on the scale of a is of the order of
unity. At higher temperature where no oscillations are
visible, we can nevertheless deduce Lϕ and le by fitting
the envelope of the MC, knowing the values of W and GD

(Fig. 3). The knowledge of these parameters makes pos-
sible a quantitative comparison of Lϕ with the theoretical

prediction of AAK [7] Lϕ =
√

2(D2m∗W
πkBT )1/3 written for

a 2D wire. This theory applies to diffusive metallic wires
with a large number of conducting channels in a limit
where e-e interaction is treated perturbatively. We find
a very good agreement (see Fig. 2b) which is surprising
for two reasons: (i) we are confronted here with a small
number of conducting channels where strong interaction
effects could be expected, (ii) the result of AAK was not
extended to network geometry. Recently it was found
in [15] that Lϕ extracted from the AB or AAS oscilla-
tions in a single ring of perimeter L behaves rather like
Lϕ ∝ (LT )−1/2. This behaviour is not observed in our
experiment. For the second sample we have applied gate
voltages between −0.3 V and 0.3 V changing the resis-
tance from 30 kΩ to 400 kΩ. A good filtering of the gate
voltage line is needed to avoid saturation of the coher-
ence length. We find again a T−1/3 law for Lϕ. It is also
possible to estimate for each gate voltage the values of W
and le. The width W is not found to change within our
experimental accuracy but le decreases with the number
of electrons by a factor 1.5 when the gate voltage varies
between −0.15 V and 0.15 V; at the same time GD de-
creases by a factor 5. This shows that the effect of the
gate is also to disconnect bonds of the network.

As a consistency check we have computed numerically
the oscillating part of the MC with formula (1) et (3)
using the value of Weff determined above from the WL
envelope of the MC curves. We find that this value also
precisely describes the damping of the AAS oscillations, if
the oscillations amplitude is multiplied by a factor rang-
ing from 1.6 to 2 depending on the gate voltage. This
can be explained by the existence of broken bonds in the
network which influences envelope and oscillations differ-
ently. We obtain a very good agreement between theory
and experiments (Fig. 4).

In conclusion we have shown that magnetoconductance
experiments in GaAs/GaAlAs networks can be described
very accurately by the diagrammatic theory of quantum
transport in diffusive networks. It is remarkable that
this agreement is achieved in a limit where the conduc-
tance on the scale of the period of the network, Mle/a,
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FIG. 4: Comparison between experiment (symbols) and the-
ory (continuous line) for the oscillating part of the conduc-
tance for sample A (�) with Vg = 0 and sample B (⋆)(shifted
down for visibility) with Vg = −0.15 V. The only adjustable
parameter is the amplitude of the oscillations.

is of the order of the quantum conductance, in contrast
with metallic wires where the number of channels is of
order 1000. Moreover we extracted from the AAS oscilla-
tions the temperature dependance of the phase coherence
length Lϕ ∝ T−1/3 that agrees with AAK theory down
to 25 mK.
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