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LIE GROUPS AND MECHANICS,

AN INTRODUCTION

BORIS KOLEV

Abstract. The aim of this paper is to present aspects of the use of Lie
groups in mechanics. We start with the motion of the rigid body for
which the main concepts are extracted. In a second part, we extend the
theory for an arbitrary Lie group and in a third section we apply these
methods for the diffeomorphism group of the circle with two particular
examples: the Burger equation and the Camassa-Holm equation.

Introduction

The aim of this article is to present aspects of the use of Lie groups in
mechanics. In a famous article [1], Arnold showed that the motion of the
rigid body and the motion of an incompressible, inviscid fluid have the same
structure. Both correspond to the geodesic flow of a one-sided invariant
metric on a Lie group. From a rather different point of view, Jean-Marie
Souriau has pointed out in the seventies [25] the fundamental role played
by Lie groups in mechanics and especially by the dual space of the Lie
algebra of the group and the coadjoint action. We aim to discuss some
aspects of these notions through examples in finite and infinite dimension.
The article is divided in three parts. In Section 1 we study in detail the
motion of an n-dimensional rigid body. In the second section, we treat the
geodesic flow of left-invariant metrics on an arbitrary Lie group (of finite
dimension). This permits us to extract the abstract structure from the case
of the motion of the rigid body which we presented in Section 1. Finally,
in the last section, we study the geodesic flow of Hk right-invariant metrics
on Diff(S1), the diffeomorphism group of the circle, using the approach
developed in Section 2. Two values of k have significant physical meaning
in this example: k = 0 corresponds to the inviscid Burgers equation [16] and
k = 1 corresponds to the Camassa-Holm equation [3, 4].

1. The motion of the rigid body

1.1. Rigid body. In classical mechanics, a material system (Σ) in the am-
bient space R

3 is described by a positive measure µ on R
3 with compact

support. This measure is called the mass distribution of (Σ).

• If µ is proportional to the Dirac measure δP , (Σ) is the massive point
P , the multiplicative factor being the mass m of the point.

• If µ is absolutely continuous with respect to the Lebesgue measure
λ on R

3, then the Radon-Nikodym derivative of µ with respect to λ
is the mass density of the system (Σ).
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2 BORIS KOLEV

In the Lagrangian formalism of Mechanics, a motion of a material system
is described by a smooth path ϕt of embeddings of the reference state Σ =
Supp(µ) in the ambient space. A material system (Σ) is rigid if each map
ϕ is the restriction to Σ of an isometry g of the Euclidean space R

3. Such a
condition defines what one calls a constitutive law of motion which restricts
the space of probable motions to that of admissible ones.

In the following section, we are going to study the motions of a rigid
body (Σ) such that Σ = Supp(µ) spans the 3 space. In that case, the
manifold of all possible configurations of (Σ) is completely described by the
6-dimensional bundle of frames of R

3, which we denote R(R3). The group
D3 of orientation-preserving isometries of R

3 acts simply and transitively
on that space and we can identify R(R3) with D3. Notice, however, that
this identification is not canonical – it depends of the choice of a ”reference”
frame ℜ0.

Although the physically meaningful rigid body mechanics is in dimension
3, we will not use this peculiarity in order to distinguish easier the main
underlying concepts. Hence, in what follows, we will study the motion of an
n-dimensional rigid body.

Moreover, since we want to insist on concepts rather than struggle with
heavy computations, we will restrain our study to motions of a rigid body
having a fixed point. This reduction can be justified physically by the possi-
bility to describe the motion of an isolated body in an inertial frame around
its center of mass. In these circumstances, the configuration space reduces
to the group SO(n) of isometries which fix a point.

1.2. Lie algebra of the rotation group. The Lie algebra so(n) of SO(n)
is the space of all skew-symmetric n × n matrices1. There is a canonical
inner product, the so-called Killing form [25]

〈Ω1,Ω2 〉 = −
1

2
tr(Ω1Ω2)

which permit us to identify so(n) with its dual space so(n)∗.
For x and y in R

n, we define

L∗(x, y)(Ω) = (Ωx) · y, Ω ∈ so(n)

which is skew-symmetric in x, y and defines thus a linear map

L∗ :

2
∧

R
n → so(n)∗ .

This map is injective and is therefore an isomorphism between so(n)∗ and
∧2

R
n, which have the same dimension. Using the identification of so(n)∗

with so(n), we check that the element L(x, y) of so(n) corresponding to
L∗(x, y) is the matrix

(1) L(x, y) = yxt − xyt .

where xt stands for the transpose of the column vector x.

1In dimension 3, we generally identify the Lie algebra so(3) with R
3 endowed with the

Lie bracket given by the cross product ω1 × ω2.
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1.3. Kinematics. The location of a point a of the body Σ is described by
the column vector r of its coordinates in the frame ℜ0. At time t, this point
occupies a new position r(t) in space and we have r(t) = g(t)r, where g(t) is
an element of the group SO(3). In the Lagrangian formalism, the velocity
v(a, t) of point a of Σ at time t is given by

v(a, t) =
∂

∂t
ϕ(a, t) = ġ(t) r.

The kinetic energy K of the body Σ at time t is defined by

(2) K(t) =
1

2

∫

Σ
‖v(a, t)‖2 dµ =

1

2

∫

Σ
‖ġ r‖2 dµ =

1

2

∫

Σ
‖Ωr‖2 dµ

where Ω = g−1 ġ lies in the Lie algebra so(n).

Lemma 1.1. We have K = −1
2 tr(ΩJΩ), where J is the symmetric matrix

with entries

Jij =

∫

Σ
xixj dµ .

Proof. Let L :
∧2

R
n → so(n) be the operator defined by (1). We have

(3) L(r,Ω r) = (rrt)Ω + Ω(rrt) Ω ∈ so(n), r ∈ R
n,

where rrt is the symmetric matrix with entries xixj. Therefore

(4) (Ω r) · (Ω r) = L∗(r,Ωr)Ω = −
1

2
tr

(

L(r,Ω r
)

Ω) = − tr
(

Ω(rrt)Ω
)

,

which leads to the claimed result after integration. �

The kinetic energy K is therefore a positive quadratic form on the Lie
algebra so(n). A linear operator A : so(n) → so(n), called the inertia tensor
or the inertia operator, is associated to K by means of the relation

K =
1

2
〈A(Ω),Ω 〉 , Ω ∈ so(n).

More precisely, this operator is given by

(5) A(Ω) = JΩ + ΩJ =

∫

Σ

(

Ω rrt + rrtΩ
)

dµ .

Remark. In dimension 3 the identification between a skew-symmetric matrix
Ω and a vector ω is given by ω1 = −Ω23, ω2 = Ω13 and ω3 = −Ω12. If we
look for a symmetric matrix I such that A(Ω) correspond to the vector Iω,
we find that

I =

∫

Σ





y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2



 dµ,

which gives the formula used in Classical Mechanics. ♦
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1.4. Angular momentum. In classical mechanics, we define the angular
momentum of the body as the following 2-vector2

M(t) =

∫

Σ
(gr) ∧ (ġr) dµ .

Lemma 1.2. We have L(M) = gA(Ω)g−1.

Proof. A straightforward computation shows that

L(gr, ġr) = gΩrrtg−1 + grrtΩg−1.

Hence

L(M) =

∫

Σ
L(gr, ġr) dµ = gA(Ω)g−1 .

�

1.5. Equation of motion. If there are no external actions on the body,
the spatial angular momentum is a constant of the motion,

(6)
dM

dt
= 0 .

Coupled with the relation L(M) = gA(Ω)g−1, we deduce that

(7) A(Ω̇) = A(Ω)Ω − ΩA(Ω)

which is the generalization in n dimensions of the traditional Euler equation.
Notice that if we let M = A(Ω), this equation can be rewritten as

(8) Ṁ = [M,Ω ] .

1.6. Integrability. Equation (8) has the peculiarity that the eigenvalues
of the matrix M are preserved in time. Usually, integrals of motion help to
integrate a differential equation. The Lax pairs technique [19] is a method
to generate such integrals. Let us summarize briefly this technique for finite
dimensional vector spaces. Let u̇ = F (u) be an ordinary differential equation
in a vector space E. Suppose that we were able to find a smooth map
L : E → End(F ), where F is another vector space of finite dimension,
with the following property: if u(t) is a solution of u̇ = F (u), then the
operators L(t) = L(u(t)) remain conjugate with each other, that is, there is
a one-parameter family of invertible operators P (t) such that

(9) L(t) = P (t)−1L(0)P (t) .

In that case, differentiating (9), we get

(10) L̇ = [L,B ]

where B = P−1Ṗ . Conversely, if we can find a smooth one-parameter family
of matrices B(t) ∈ End(F ), solutions of equation (10), then (9) is satisfied

with P (t) a solution of Ṗ = PB . If this is the case, then the eigenvalues,
the trace and more generally all conjugacy invariants of L(u) constitute a
set of integrals for u̇ = F (u).

A Hamiltonian system on R
2N is called completely integrable if it has N

integrals in involution that are functionally independent almost everywhere.

2In the Euclidean 3-space, 2-vectors and 1-vectors coincide. This is why, usually, one
consider the angular momentum as a 1-vector.
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A theorem of Liouville describes in that case, at least qualitatively, the
dynamics of the equation. This is the reason why it is so important to find
integrals of motions of a given differential equation.

Using the Lax pairs technique, Manakov [21] proved the following theorem

Theorem 1.3. Given any n, equation (8) has

N(n) =
1

2

[n

2

]

+
n(n− 1)

4

integrals of motion in involution. The equation of motion of an n-dimensional
rigid body is completely integrable.

Sketch of proof. The proof is based on the following basic lemma.

Lemma 1.4. Euler’s equations (8) of the dynamics of an n-dimensional
rigid body have, for any n, a representation in Lax’s form in matrices,
linearly dependent on a parameter λ ∈ C, given by Lλ = M + J2λ and
Bλ = Ω + Jλ.

Hence, the polynomials Pk(λ) = tr (M + J2λ)k, (k = 2, . . . , n) are time-
independent and the coefficients Pk(λ) are integrals of motion. Since M is
skew-symmetric and J is symmetric, the coefficient of λs in Pk(λ) is nonzero,
provided s has the same parity as k. The calculation of N(n) here presents
no difficulties. �

2. Geodesic flow on a Lie Group

In this section, we are going to study the geodesic flow of a left invariant
metric on a Lie group of finite dimension. Our aim is to show that all the
computations performed in Section 1 are a very special case of the theory
of one-sided invariant metrics on a Lie group. Later on, we will use these
techniques to handle partial differential equations. We refer to [2] from
where materials of this section come from and to Souriau’s book [25] for
a thorough discussion of the role played by the dual of the Lie algebra in
mechanics and physics.

2.1. Lie Groups. A Lie group G is a group together with a smooth struc-
ture such that g 7→ g−1 and (g, h) 7→ gh are smooth. On G, we define
the right translations Rh : G → G by Rg(h) = hg and the left translations
Lg : G→ G by Lg(h) = gh.

A Lie group is equipped with a canonical vector-valued one form, the so
called Maurer-Cartan form ω(Xg) = Lg−1Xg which shows that the tangent
bundle to G is trivial TG ≃ G× g. Here g is the tangent space at the group
unity e.

A left-invariant tensor is completely defined by its value at the group
unity e. In particular, there is an isomorphism between the tangent space
at the origin and left-invariant vector fields. Since the Lie bracket of such
fields is again a left-invariant vector field, the Lie algebra structure on vector
fields is inherited by the tangent space at the origin g. This space g is called
the Lie algebra of the group G.



6 BORIS KOLEV

Remark. One could have defined the Lie bracket on g by pulling back the
Lie bracket of vector fields by right translation. The two definitions differ
just by a minus sign

[ξ, ω ]R = − [ξ, ω ]L . ♦

Example. The Lie algebra so(n) of the rotation group SO(n) consists of
skew-symmetric n× n matrices. ♦

2.2. Adjoint representation of G. The composition Ig = Rg−1Lg : G →

G which sends any group element h ∈ G to ghg−1 is an automorphism, that
is,

Ig(hk) = Ig(h)Ig(k).

It is called an inner automorphism of G. Notice that Ig preserves the group
unity.

The differential of the inner automorphism Ig at the group unity e is
called the group adjoint operator Adg defined by

Adg : g → g, Adg ω =
d

dt
|t=0 Ig(h(t)),

where h(t) is a curve on the group G such that h(0) = e and ḣ(0) = ω ∈ g =
TeG. The orbit of a point ω of g under the action of the adjoint representa-
tion is called an adjoint orbit. The adjoint operators form a representation
of the group G (i.e. Adgh = AdgAdh) which preserves the Lie bracket of g,
that is,

[Adg ξ,Adg ω ] = Adg [ξ, ω ] .

This is the Adjoint representation of G into its Lie algebra g.

Example. For g ∈ SO(n) and Ω ∈ so(n), we have Adg Ω = gΩg−1. ♦

2.3. Adjoint representation of g. The map Ad, which associates the
operator Adg to a group element g ∈ G, may be regarded as a map from
the group G to the space End(g) of endomorphisms of g. The differential
of the map Ad at the group unity is called the adjoint representation of the
Lie algebra g into itself,

ad : g → End(g), adξ ω =
d

dt
|t=0 Adg(t) ω.

Here g(t) is a curve on the group G such that g(0) = e and ġ(0) = ξ. Notice
that the space {adξ ω, ξ ∈ g} is the tangent space to the adjoint orbit of the
point ω ∈ g.

Example. On the rotation group SO(n), we have adΞ Ω = [Ξ,Ω ], where
[Ξ,Ω ] = ΞΩ−ΞΣ is the commutator of the skew-symmetric matrices Ξ and
Ω. As we already noticed, for n = 3, the vector [ξ, ω ] is the ordinary cross
product ξ×ω of the angular velocity vectors ξ and ω in R

3. More generally,
if G is an arbitrary Lie group and [ξ, ω ] is the Lie bracket on g defined
earlier, we have adξ ω = [ξ, ω ]. ♦
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2.4. Coadjoint representation of G. Let g∗ be the dual vector space to
the Lie algebra g. Elements of g∗ are linear functionals on g. As we shall see,
the leading part in mechanics is not played by the Lie algebra itself but by
its dual space g∗. Souriau [25] pointed out the importance of this space in
physics and called the elements of g∗ torsors of the group G. This definition
is justified by the fact that torsors of the usual group of affine Euclidean
isometries of R

3 represent the torsors or torques of mechanicians.
Let A : E → F be a linear mapping between vector spaces. The dual

(or adjoint) operator A∗, acting in the reverse direction between the corre-
sponding dual spaces, A∗ : F ∗ → E∗, is defined by

(A∗ α)(x) = α(A x)

for every x ∈ E, α ∈ F ∗.
The coadjoint representation of a Lie group G in the space g∗ is the repre-

sentation that associates to each group element g the linear transformation

Ad∗g : g
∗ → g

∗

given by Ad∗g = (Adg−1)∗. In other words,

(Ad∗g m)(ω) = m(Adg ω)

for every g ∈ G, m ∈ g∗ and ω ∈ g. The choice of g−1 in the definition of
Ad∗g is to ensure that Ad∗ is a left representation, that is Ad∗gh = Ad∗gAd

∗
h

and not the converse (or right representation). The orbit of a point m of g∗

under the action of the coadjoint representation is called a coadjoint orbit.
The Killing form on g is defined by

k(ξ, ω) = tr (adξ adω) .

Notice that k is invariant under the adjoint representation of G. The Lie
group G is semi-simple if k is non-degenerate. In that case, k induces an
isomorphism between g and g∗ which permutes the adjoint and coadjoint
representation. The adjoint and coadjoint representation of a semi-simple
Lie group are equivalent.

Example. For the group SO(3) the coadjoint orbits are the sphere centered
at the origin of the 3-dimensional space so(3)∗. They are similar to the
adjoint orbits of this group, which are spheres in the space so(3). ♦

Example. For the group SO(n) (n ≥ 3), the adjoint representation and
coadjoint representations are equivalent due to the non-degeneracy of the
Killing form3

k(Ξ,Ω) =
1

2
tr (Ξ Ω∗) ,

where Ω∗ is the transpose of Ω relative to the corresponding inner product
of R

n. Therefore

Ad∗g M = gMg−1,

for M ∈ so(n)∗ and g ∈ SO(n). ♦

3This formula is exact up to a scaling factor since a precise computation for so(n) gives
k(X, Y ) = (n − 2) tr(XY ).
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Despite the previous two examples, in general the coadjoint and the ad-
joint representations are not alike. For example, this is the case for the
Poincaré group (the non-homogenous Lorentz group) cf. [13].

2.5. Coadjoint representation of g. Similar to the adjoint representation
of g, there is the coadjoint representation of g. This later is defined as the
dual of the adjoint representation of g, that is,

ad∗ : g → End(g∗), ad∗ξ m = (adξ)
∗(m) = −

d

dt
|t=0 Ad

∗
g(t) m,

where g(t) is a curve on the group G such that g(0) = e and ġ(0) = ξ.

Example. For Ω ∈ so(n) and M ∈ so(n)∗, we have ad∗ΩM = − [Ω,M ]. ♦

Given m ∈ g∗, the vectors ad∗ξ m, with various ξ ∈ g, constitute the
tangent space to the coadjoint orbit of the point m.

2.6. Left invariant metric on G. A Riemannian or pseudo-Riemannian
metric on a Lie group G is left invariant if it is preserved under every left
shift Lg, that is,

〈Xg, Yg 〉g = 〈LhXg, Lh Yg 〉hg , g, h ∈ G.

A left-invariant metric is uniquely defined by its restriction to the tangent
space to the group at the unity, hence by a quadratic form on g. To such a
quadratic form on g, a symmetric operator A : g → g∗ defined by

〈ξ, ω 〉 = (Aξ, ω ) = (Aω, ξ ) , ξ, ω ∈ g ,

is naturally associated, and conversely4. The operator A is called the inertia
operator. A can be extended to a left-invariant tensor Ag : TgG → TgG

∗

defined by Ag = L∗
g−1ALg−1 . More precisely, we have

〈X,Y 〉g = (AgX,Y )
g

= (AgY,X )
g
, X, Y ∈ TgG.

The Levi-Civita connection of a left-invariant metric is itself left-invariant:
if La and Lb are left-invariant vector fields, so is ∇La

Lb. We can write down
an expression for this connection using the operator B : g × g → g defined
by

(11) 〈[a, b ] , c 〉 = 〈B(c, a), b 〉

for every a, b, c in g. An exact expression for B is

B(a, b) = A−1 ad∗b(Aa) .

With these definitions, we get

(12) (∇La
Lb)(e) =

1

2
[a, b ] −

1

2
{B(a, b) +B(b, a)}

4The round brackets correspond to the natural pairing between elements of g and g
∗.
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2.7. Geodesics. Geodesics are defined as extremals of the Lagrangian

(13) L(g) =

∫

K (g(t), ġ(t)) dt

where

(14) K(X) =
1

2
〈Xg,Xg 〉g =

1

2
(AgXg,Xg )g

is called the kinetic energy or energy functional.
If g(t) is a geodesic, the velocity ġ(t) can be translated to the identity via

left or right shifts and we obtain two elements of the Lie algebra g,

ωL = Lg−1 ġ, ωR = Rg−1 ġ,

called the left angular velocity, respectively the right angular velocity. Let-
ting m = Ag ġ ∈ TgG

∗, we define the left angular momentum mL and the
right angular momentum mR by

mL = L∗
gm ∈ g

∗, mR = R∗
gm ∈ g

∗.

Between these four elements, we have the relations

(15) ωR = Adg ωL, mR = Ad∗gmL, mL = AωL.

Note that the kinetic energy is given by the formula

(16) K =
1

2
〈ġ, ġ 〉g =

1

2
〈ωL, ωL 〉 =

1

2
(mL, ωL ) =

1

2
(Ag ġ, ġ )

g
.

Example. The kinetic energy of an n-dimensional rigid body, defined by

(17) K(t) =
1

2

∫

Σ
‖ġ r‖2 dµ = −

1

2
tr(ΩJΩ)

is clearly a left-invariant Riemannian metric on SO(n). In this example, we
have Ω = ωL and M = mL. Physically, the left-invariance is justified by
the fact that the physics of the problem must not depend on a particular
choice of reference frame used to describe it. It is a special case of Galilean
invariance. ♦

2.8. Euler-Arnold equation. The invariance of the energy with respect
to left translations leads to the existence of a momentum map µ : TG→ g∗

defined by

µ((g, ġ))(ξ) =
∂K

∂ġ
Zξ = 〈ġ, Rg ξ 〉g = (m,Rg ξ ) =

(

R∗
gm, ξ

)

= mR(ξ),

where Zξ is the right-invariant vector field generated by ξ ∈ g. According
to Noether’s theorem [25], this map is constant along a geodesic, that is

(18)
dmR

dt
= 0.

As we did in the special case of the group SO(n), using the relation mR =
Ad∗gmL and computing the time derivative, we obtain

(19)
dmL

dt
= ad∗ωL

mL.
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This equation is known as the Arnold-Euler equation. Using ωL = A−1mL,
it can be rewritten as an evolution equation on the Lie algebra

(20)
dωL
dt

= B(ωL, ωL) .

Remark. The Euler-Lagrange equations of problem (17) are given by

(21)

{

ġ = Lg ωL ,
ω̇L = B(ωL, ωL) .

If the metric is bi-invariant, then B(a, b) = 0 for all a, b ∈ g and ωL is
constant. In that special case, geodesics are one-parameter subgroups, as
expected. ♦

2.9. Lie-Poisson structure on g∗. A Poisson structure on a manifold M
is a skew-symmetric bilinear function {, } that associates to a pair of smooth
functions on the manifold a third function, and which satisfies the Jacobi
identity

{{f, g } , h } + {{g, h } , f } + {{h, f } , g } = 0

as well as the Leibniz identity

{f, gh } = {f, g }h+ g {f, h } .

On the torsor space g∗ of a Lie group G, there is a natural Poisson struc-
ture defined by

(22) {f, g } (m) = (m, [dmf, dmg ])

for m ∈ g∗ and f, g ∈ C∞(g∗). Note that the differential of f at each point
m ∈ g∗ is an element of the Lie algebra g itself. Hence, the commutator
[dm f, dm g ] is also a vector of this Lie algebra. The operation defined above
is called the natural Lie-Poisson structure on the dual space to a Lie algebra.
For more materials on Poisson structures, we refer to [20, 26].

Remark. A Poisson structure on a vector space E is linear if the Poisson
bracket of two linear functions is itself a linear function. This property is
satisfied by the Lie-Poisson bracket on the torsors space g∗ of a Lie group
G. ♦

To each function H on a Poisson manifold M one can associate a vector
field ξH defined by

LξH f = {H, f }

and called the Hamiltonian field of H. Notice that

[ξF , ξH ] = ξ{F,H }.

Conversely, a vector field v on a Poisson manifold is said to be Hamiltonian
if there exists a function H such that v = ξH .

Example. On the torsors space g∗ of a Lie group G, the Hamiltonian field
of a function H for the natural Lie-Poisson structure is given by ξH(m) =
ad∗dmH

m.
Let A be the inertia operator associated to a left-invariant metric on G.

Then equation (19) on g∗ is Hamiltonian with quadratic Hamiltonian

H(m) =
1

2

(

A−1m,M
)

, m ∈ g
∗,
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which is nothing else but the kinetic energy expressed in terms of m = Aω.
Notice that since mL(t) = Ad∗

g(t) mR where mR ∈ g∗ is a constant, each

integral curve mL(t) of this equation stays on a coadjoint orbit. ♦

A Poisson structure on a manifold M is non-degenerate if it derives from
a symplectic structure on M . That is

{f, g } = ω(ξf , ξg) ,

where ω is a non-degenerate closed two form on M . Unfortunately, the Lie-
Poisson structure on g∗ is degenerate in general. However, the restriction
of this structure on each coadjoint orbit is non-degenerate. The symplectic
structure on each coadjoint orbit is known as the Kirillov5 form. It is given
by

ω(ad∗am,ad
∗
b m) = (m, [a, b ] )

where a, b ∈ g and m ∈ g∗. Recall that the tangent space to the coadjoint
orbit of m ∈ g∗ is spanned by the vectors ad∗ξm where ξ describes g.

3. Right-invariant metric on the diffeomorphism group

In [1], Arnold showed that Euler equations of an incompressible fluid may
be viewed as the geodesic flow of a right-invariant metric on the group of
volume-preserving diffeomorphism of a 3-dimensional Riemannian manifold
M (filled by the fluid). More precisely, let G = Diffµ(M) be the group
of diffeomorphisms preserving a volume form µ on some closed Riemannian
manifold M . According to the Action Principle, motions of an ideal (incom-
pressible and inviscid) fluid in M are geodesics of a right-invariant metric
on Diffµ(M). Such a metric is defined by a quadratic form K (the kinetic
energy) on the Lie algebra Xµ(M) of divergence-free vector fields

K =
1

2

∫

M

‖v‖2 dµ

where ‖v‖2 is the square of the Riemannian length of a vector field v ∈
X (M). An operator B on Xµ(M) ×Xµ(M) defined by the relation

〈[u, v ] , w 〉 = 〈B(w, u), v 〉

exists. It is given by the formula

B(u, v) = curlu× v + grad p ,

where × is the cross product and p a function on M defined uniquely (mod-
ulo an additive constant) by the condition divB = 0 and the tangency of
B(u, v) to ∂M . The Euler equation for ideal hydrodynamics is the evolution
equation

(23)
∂u

∂t
= u× curlu− grad p .

If at least formally, the theory works as well in infinite dimension and the
unifying concepts it brings form a beautiful piece of mathematics, the details
of the theory are far from being as clear as in finite dimension. The main
reason of these difficulties is the fact that the diffeomorphism group is just a

5Jean-Marie Souriau has generalized this construction for other natural G-actions on
g
∗ when the group G has non null symplectic cohomology [25].
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Fréchet Lie group, where the main theorems of differential geometry like the
Cauchy-Lipschitz theorem and the Inverse function theorem are no longer
valid.

In this section, we are going to apply the results of Section 2 to study the
geodesic flow of a Hk right-invariant metrics on the diffeomorphism group
of the circle S

1. This may appear to be less ambitious than to study the 3-
dimensional diffeomorphism group. However, we will be able to understand
in that example some phenomena which may lead to understand why the
3-dimensional ideal hydrodynamics is so difficult to handle. Moreover, we
shall give an example where things happen to work well, the Camassa-Holm
equation.

3.1. The diffeomorphism group of the circle. The group Diff(S1) is
an open subset of C∞(S1,S1) which is itself a closed subset of C∞(S1,C).
We define a local chart (U0,Ψ0) around a point ϕ0 ∈ Diff(S1) by the
neighborhood

U0 =
{

‖ϕ− ϕ0‖C0(S1) < 1/2
}

of ϕ0 and the map

Ψ0(ϕ) =
1

2πi
log(ϕ0(x)ϕ(x)) = u(x), x ∈ S

1.

The structure described above endows Diff(S1) with a smooth manifold
structure based on the Fréchet space C∞(S1). The composition and the in-
verse are both smooth maps Diff(S1)×Diff(S1) → Diff(S1), respectively
Diff(S1) → Diff(S1), so that Diff(S1) is a Lie group.

A tangent vector V at a point ϕ ∈ Diff(S1) is a function V : S
1 → TS

1

such that π(V (x)) = ϕ(x). It is represented by a pair (ϕ, v) ∈ Diff(S1) ×
C∞(S1). Left and right translations are smooth maps and their derivatives
at a point ϕ ∈ Diff(S1) are given by

Lψ V = (ψ(ϕ), ψx(ϕ) v)

Rψ V = (ϕ(ψ), v(ψ))

The adjoint action on g = V ect(S1) ≡ C∞(S1) is

Adψ u = ψx(ψ−1)u(ψ−1),

whereas the Lie bracket on the Lie algebra TIdDiff(S1) = V ect(S1) ≡
C∞(S1) of Diff(S1) is given by

[u, v] = −(uxv − uvx), u, v ∈ C∞(S1)

Each v ∈ V ect(S1) gives rise to a one-parameter subgroup of diffeomor-
phisms {η(t, ·)} obtained by solving

(24) ηt = v(η) in C∞(S1)

with initial data η(0) = Id ∈ Diff(S1). Conversely, each one-parameter
subgroup t 7→ η(t) ∈ Diff(S1) is determined by its infinitesimal generator

v =
∂

∂t
η(t)

∣

∣

∣

t=0
∈ V ect(S1).

Evaluating the flow t 7→ η(t, ·) of (24) at t = 1 we obtain an element expL(v)
of Diff(S1). The Lie-group exponential map v → expL(v) is a smooth map
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of the Lie algebra to the Lie group [23]. Although the derivative of expL at
0 ∈ C∞(S1) is the identity, expL is not locally surjective [23]. This failure, in
contrast with the case of Hilbert Lie groups [18], is due to the fact that the
inverse function theorem does not necessarily hold in Fréchet spaces [15].

3.2. Hk metrics on Diff(S1). For k ≥ 0 and u, v ∈ V ect(S1) ≡ C∞(S1),
we define

(25) 〈u, v〉k =

∫

S1

k
∑

i=0

(∂ixu) (∂ixv) dx =

∫

S1

Ak(u) v dx ,

where

(26) Ak = 1 −
d2

dx2
+ ...+ (−1)k

d2k

dx2k

is a continuous linear isomorphism of C∞(S1). Note that Ak is a symmetric
operator for the L2 inner product

∫

S1

Ak(u) v dx =

∫

S1

uAk(v) dx.

Remark. What should be g∗ for G = Diff(S1) and g = vect(S1) ? If we let
g∗ be the space of distributions, Ak is no longer an isomorphism. This is the
reason why we restrict g∗ to the range of Ak

Im(Ak) = C∞(S1).

The pairing between g and g∗ is then given by the L2 inner product

(m,u ) =

∫

S1

mudx.

With these definitions, the coadjoint action of Diff(S1) on g∗ = C∞(S1) is
given by

Ad∗ϕm =
1

(ϕx(ϕ−1))2
m(ϕ−1).

Notice that this formula corresponds exactly to the action of the diffeomor-
phism group Diff(S1) on quadratic differentials of the circle (expressions
of the form m(x) dx2). This is the reason why one generally speaks of the
torsor space of the group Diff(S1) as the space of quadratic differentials.
♦

We obtain a smooth right-invariant metric on Diff(S1) by extending the
inner product (25) to each tangent space TϕDiff(S1), ϕ ∈ Diff(S1), by
right-translations i.e.

〈V,W 〉ϕ =
〈

Rϕ−1V,Rϕ−1W
〉

k
, V,W ∈ TϕDiff(S1).

The existence of a connection compatible with the metric is ensured (see
[10]) by the existence of a bilinear operator B : C∞(S1)×C∞(S1) → C∞(S1)
such that

〈B(u, v), w〉 = 〈u, [v,w]〉, u, v, w ∈ V ect(S1) = C∞(S1).

For the Hk metric, this operator is given by (see [11])

(27) Bk(u, v) = −A−1
k

(

2vxAk(u) + vAk(ux)
)

, u, v ∈ C∞(S1).



14 BORIS KOLEV

3.3. Geodesics. The existence of the connection ∇k enables us to define
the geodesic flow. A C2-curve ϕ : I → Diff(S1) such that ∇ϕ̇ ϕ̇ = 0, where
ϕ̇ denotes the time derivative ϕt of ϕ, is called a geodesic. As we did in
Section 2, in the case of a left-invariant metric, we let

u(t) = Rϕ−1 ϕ̇ = ϕt ◦ ϕ
−1

which is the right angular velocity on the group Diff(S1). Therefore, a
curve ϕ ∈ C2(I,Diff(S1)) with ϕ(0) = Id is a geodesic if and only if

(28) ut = Bk(u, u), t ∈ I.

Equation (28) is the Euler-Arnold equation associated to the right-invariant
metric (25). Here are two examples of problems of type (28) on Diff(S1)
which arise in mechanics.

Example. For k = 0, that is for the L2 right-invariant metric, equation (28)
becomes the inviscid Burgers equation

(29) ut + 3uux = 0.

All solutions of (29) but the constant functions have a finite life span and
(29) is a simplified model for the occurrence of shock waves in gas dynamics
(see [16]). ♦

Example. For k = 1, that is for the H1 right-invariant metric, equation (28)
becomes the Camassa-Holm equation (cf. [24])

(30) ut + uux + ∂x (1 − ∂x2)−1

(

u2 +
1

2
ux2

)

= 0.

Equation (30) is a model for the unidirectional propagation of shallow wa-
ter waves [3, 17]. It has a bi-Hamiltonian structure [14] and is completely
integrable [12]. Some solutions of (30) exist globally in time [5, 6], whereas
others develop singularities in finite time [6, 7, 8, 22]. The blowup phe-
nomenon can be interpreted as a simplified model for wave breaking – the
solution (representing the water’s surface) stays bounded while its slope
becomes unbounded [8]. ♦

3.4. The momentum. As a consequence of the right-invariance of the met-
ric by the action of the group on itself, we obtain the conservation of the
left angular momentum mL along a geodesic ϕ. Since mL = Ad∗

ϕ−1 mR and

mR = Ak(u), we get that

(31) mk(ϕ, t) = Ak(u) ◦ ϕ · ϕ2
x,

satisfies mk(t) = mk(0) as long as mk(t) is defined.

3.5. Existence of the geodesics. In a local chart the geodesic equation
(28) can be expressed as the Cauchy problem

(32)

{

ϕt = v,
vt = Pk(ϕ, v),

with ϕ(0) = Id, v(0) = u(0). However, the local existence theorem for
differential equations with smooth right-hand side, valid for Hilbert spaces
[18], does not hold in C∞(S1) (see [15]) and we cannot conclude at this
stage. However, in [11], we proved
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Theorem 3.1. Let k ≥ 1. For every u0 ∈ C∞(S1), there exists a unique
geodesic ϕ ∈ C∞([0, T ),Diff(S1)) for the metric (25), starting at ϕ(0) =
Id ∈ Diff(S1) in the direction u0 = ϕt(0) ∈ V ect(S1). Moreover, the
solution depends smoothly on the initial data u0 ∈ C∞(S1).

Sketch of proof. The operator Pk in (32) is specified by

Pk(ϕ, v) =
[

Qk(v ◦ ϕ
−1)

]

◦ ϕ,

where Qk : C∞(S1) → C∞(S1) is defined by Qk(w) = Bk(w,w) + wwx.
Since

C∞(S1) =
⋂

r≥n

Hr(S1)

for all n ≥ 0, we may consider the problem (32) on each Hilbert space
Hn(S1). If k ≥ 1 and n ≥ 3, then Pk is a smooth map from Un ×Hn(S1)
to Hn(S1), where Un ⊂ Hn(S1) is the open subset of all functions having
a strictly positive derivative. The classical Cauchy-Lipschitz theorem in
Hilbert spaces [18] yields the existence of a unique solution ϕn(t) ∈ Un of
(32) for all t ∈ [0, Tn) for some maximal Tn > 0. Relation (31) can then be
used to prove that Tn = Tn+1 for all n ≥ 3. �

Remark. For k = 0, in problem (32), we obtain

P0(ϕ, v) = −2
v · vx
ϕx

which is not an operator from Un × Hn(S1) into Hn(S1) and the proof
of Theorem 3.1 is no longer valid. However, in that case, the method of
characteristics can be used to show that even for k = 0 the geodesics exists
and are smooth (see [10]). ♦

3.6. The exponential map. The previous results enable us to define the
Riemannian exponential map exp for the Hk right-invariant metric (k ≥ 0).
In fact, there exists δ > 0 and T > 0 so that for all u0 ∈ Diff(S1) with
‖u0‖2k+1 < δ the geodesic ϕ(t;u0) is defined on [0, T ] and we can define
exp(u0) = ϕ(1;u0) on the open set

U =

{

u0 ∈ Diff(S1) : ‖u0‖2k+1 <
2 δ

T

}

of Diff(S1). The map u0 7→ exp(u0) is smooth and its Fréchet derivative
at zero, Dexp0, is the identity operator. On a Fréchet manifold, these facts
alone do not necessarily ensure that exp is a smooth local diffeomorphism
[15]. However, in [11], we proved

Theorem 3.2. The Riemannian exponential map for the Hk right-invariant
metric on Diff(S1), k ≥ 1, is a smooth local diffeomorphism from a neigh-
borhood of zero on V ect(S1) to a neighborhood of Id on Diff(S1).

Sketch of proof. Working in Hk+3(S1), we deduce from the inverse function
theorem in Hilbert spaces that exp is a smooth diffeomorphism from an
open neighborhood Ok+3 of 0 ∈ Hk+3(S1) to an open neighborhood Θk+3

of Id ∈ Uk+3.
We may choose Ok+3 such that Dexpu0

is a bijection of Hk+3(S1) for
every u0 ∈ Ok+3. Given n ≥ k + 3, using (31) and the geodesic equation,



16 BORIS KOLEV

we conclude that there is no u0 ∈ Hn(S1) \Hn+1(S1), with exp(u0) ∈ Un+1.
We have proved that for every n ≥ k + 3,

exp : O = Ok+3 ∩ C∞(S1) → Θ = Θk+3 ∩ C∞(S1)

is a bijection. Using similar arguments, (31) and the geodesic equation can
be used to prove that there is no u0 ∈ Hn(S1)\Hn+1(S1), with Dexpu0

(v) ∈

Hn+1(S1) for some u0 ∈ O. Hence, for every u0 ∈ O and n ≥ k + 3, the
bounded linear operator Dexpu0

is a bijection from Hn(S1) to Hn(S1). �

Remark. For k = 0 we have that exp is not a C1 local diffeomorphism from
a neighborhood of 0 ∈ V ect(S1) to a neighborhood of Id ∈ Diff(S1), as
proved in [10]. The crucial difference with the case (k ≥ 1) lies in the fact
that the inverse of the operator Ak, defined by (26), is not regularizing.
This feature makes the previous approach inapplicable but the existence of
geodesics can nevertheless be proved by the method of characteristics. ♦
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