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ABSTRACT
We measure the anisotropy of dark matter flows on small scales(6 500 kpc) in the near en-
vironment of haloes using a large set of simulations. We relyon two different approaches to
quantify the anisotropy of the cosmic infall: we measure theflows at the haloes’ virial radius
while describing the infalling matter via fluxes through a spherical shell; we measure the spa-
tial and kinematical distributions of satellites and substructures around haloes detected by the
subclump finder ADAPTAHOP first described in the appendix B. The two methods are found
to be in agreement both qualitatively and quantitatively via one and two points statistics.
The peripheral and advected momentum is correlated with thespin of the embeded halo at
a level of30% and50%. The infall takes place preferentially in the plane perpendicular to
the direction defined by the halo’s spin. We computed the excess of equatorial accretion both
through rings and via a harmonic expansion of the infall.
The level of anisotropy of infalling matter is found to be∼ 15%. The substructures have
their spin orthogonal to their velocity vector in the halo’srest frame at a level of about5%,
suggestive of an image of a flow along filamentary structures which provides an explanation
for the measured anisotropy. Using a ‘synthetic’ stacked halo, it is shown that the satellites’
positions and orientations relative to the direction of thehalo’s spin are not random even in
projection. The average ellipticity of stacked haloes is10%, while the alignment excess in
projection reaches2%. All measured correlations are fitted by a simple 3 parameters model.
We conclude that a halo does not see its environment as an isotropic perturbation, investi-
gate how the anisotropy is propagated inwards using perturbation theory, and discuss briefly
implications for weak lensing, warps and the thickness of galactic disks.

Key words: Cosmology: simulations, Galaxies : formation.

1 INTRODUCTION

Isotropy is one of the fundamental assumptions in modern cosmol-
ogy and is widely verified on very large scales, both in large galax-
ies’ surveys and in numerical simulations. However on scales of a
few Mpc, the matter distribution is structured in clusters and fil-
aments. The issue of the anisotropy down to galactic and cluster
scales has long been studied, as it is related to the search for large
scale structuration in the near-environment of galaxies. For exam-
ple, both observational study (e.g. West (1994), Plionis & Basilakos
(2002), Kitzbichler & Saurer (2003)) and numerical investigations
(e.g. Faltenbacher et al. (2002)) showed that galaxies tendto be
aligned with their neighbours and support the vision of anisotropic
mergers along filamentary structures. On smaller scales, simula-
tions of rich clusters showed that the shape and velocity ellipsoids
of haloes tend to be aligned with the distribution of infalling satel-
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lites which is strongly anisotropic (Tormen (1997)). However the
point is still moot and recent publications did not confirm such an
anisotropy using resimulated haloes; they proposed 20% as a maxi-
mum for the anisotropy level of the satellites distribution(Vitvitska
et al. (2002)).

When considering preferential directions within the large
scale cosmic web, the picture that comes naturally to mind isone
involving these long filamentary structures linking large clusters to
one other. The flow of haloes within these filaments can be respon-
sible for the emergence of preferential directions and alignments.
Previous publications showed that the distributions of spin vectors
are not random. For example, haloes in simulations tend to have
their spin pointing orthogonally to the filaments’ direction (Fal-
tenbacher et al. (2002)). Furthermore, down to galactic scales, the
angular momentum remains mainly aligned within haloes (Bullock
et al. (2001)). Combined with the results suggesting that haloes’
spins are mostly sensitive to recent infall (van Haarlem & van de
Weygaert (1993)), these alignment properties fit well with accre-
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2 D. Aubert, C. Pichon and S. Colombi

tion scenarii along special directions : angular momentum can be
considered as a good marker to test this picture.

Most of these previous studies focused on the fact that align-
ments and preferential directions are consequences of the formation
process of haloes. However, the effects of such preferential direc-
tions on the inner properties of galaxies have been less addressed. It
is widely accepted that the properties of galaxies partly result from
their interactions with their environments. While the amplitude of
the interactions is an important parameter, some issues cannot be
studied without taking into account the spatial extension of these
interactions. For example, a warp may be generated by the torque
imposed by infalling matter on the disk (Ostriker & Binney (1989),
López-Corredoira et al. (2002)) : the direction but also the ampli-
tude of the warp are a direct consequence of the spatial configura-
tion of the perturbation. Similarly, it is likely that disks’ thickening
due to infall is not independent of the incoming direction ofsatel-
lites (e.g. Quinn et al. (1993), Velazquez & White (1999), Huang
& Carlberg (1997)).

Is it possible to observe the small-scale alignment ? In particu-
lar, weak lensing deals with effects as small as the level of detected
anisotropy (if not smaller) (e.g. Hatton & Ninin (2001), Croft &
Metzler (2000), Heavens et al. (2000)), hence the importance to
put quantitative constraints on the existence of alignments on small
scales. Therefore, the present paper also addresses the issue of de-
tecting preferential projected orientations on the sky of substruc-
tures within haloes.

Our main aim is to provide quantitative measurements to study
the consequences of the existence of preferential directions on the
dynamical properties of haloes and galaxies, and on the observa-
tion of galaxy alignments. Hence our point of view is more galac-
tocentric (or cluster-centric) than previous studies. We search for
local alignment properties on scales of a few hundred kpc. Using a
large sample of low resolution numerical simulations, we aim to ex-
tract quantitative results from a large number of halo environments.
We reach a higher level of statistical significance while reducing
the cosmic variance. We applied two complementary approaches to
study the anisotropy around haloes: the first one is particulate and
uses a new substructure detection tool ADAPTAHOP, the otherone
is the spherical galactocentric fluid approach. Using two methods,
we can assess the self-consistency of our results.

After a brief description of our set of simulations (§2), we
describe the galactocentric point of view and study the properties
of angular momentum and infall anisotropy measured at the virial
radius (§3). In (§4) we focus on anisotropy in the distribution of
discrete satellites and substructures and we study the properties of
the satellites’ proper spin , which provides an explanationfor the
detected anisotropy. In (§5) we discuss the level of anisotropy as
seen in projection on the plane of the sky. We then investigate how
the anisotropic infall is propagated inwards and discuss the possi-
ble implications of our results to weak lensing and to the dynam-
ics of the disk through warp generation and disk thickening (§6).
Conclusions and prospects follow. The appendix describes the sub-
structures detection tool ADAPTAHOP together with the relevant
aspects of one point centered statistics on the sphere. We also for-
mally derive there the perturbative inward propagation of infalling
fluxes into a collisionless self gravitating sphere.

2 SIMULATIONS

In order to achieve a sufficient sample and ensure a convergence
of the measurements, we produced a set of∼ 500 simulations.
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Figure 1. The number density,dN/dM , of haloes with a mass M (within
dM) detected in our simulations at redshift zero (solid line) compared to
the distribution expected by Press-Schechter (dashed line). The agreement
is good for masses between3 · 1011M⊙ and3 · 1014M⊙.

Each of them consists of a 50h−1 Mpc3 box containing1283 par-
ticles. The mass resolution is5 · 109M⊙. A ΛCDM cosmogony
(Ωm = 0.3, ΩΛ = 0.7, h = 0.7 and σ8 = 0.928) is im-
plemented with different initial conditions. These initial condi-
tions were produced with GRAFIC (Bertschinger (2001)) where
we chose a BBKS (Bardeen et al. (1986)) transfer function to com-
pute the initial power spectrum. The initial conditions were used as
inputs to the parallel version of the treecode GADGET (Springel
et al. (2001)). We set the softening length to 19h−1 kpc. The halo
detection was performed using the halo finder HOP (Eisenstein &
Hut (1998)). We employed the density thresholds suggested by the
authors (∆outer = 80, δsaddle = 2.5δouter, δpeak = 3.δouter) As
a check, we computed the halo mass distribution. It is shown in
Fig. 1 and compared to the Press-Schechter mass function (Press &
Schechter (1974)). The measured distribution is in agreement with
the theoretical curve up to masses∼ 3 · 1014M⊙ (100 000 parti-
cles), which validates our completeness in mass.

As an other means to check our simulations and to evaluate the
convergence ensured by our large set of haloes, we computed the
probability distribution of the spin parameterλ′, defined as (Bul-
lock et al. (2001)):

λ′ ≡ J√
2MVR200

. (1)

HereJ is the angular momentum contained in a sphere of virial
radiusR200 with a mass M andV 2 = GM/R200. The measure-
ment was performed on 100 000 haloes with a mass larger than
5 ·1012M⊙ as explained in the next section. The resulting distribu-
tion for λ′ is shown in Fig. 2. The distributionP (λ′) is well fitted
by a log-normal distribution (e.g. Bullock et al. (2001)):

P (λ′)dλ′ =
1

λ′
√

2πσ
exp

(
− ln2(λ′/λ′

0)

2σ2

)
dλ′. (2)

We foundλ′
0 = 0.0347 ± 0.0006 andσ = 0.63 ± 0.02 as best-

fit values and they are consistent with parameters found by Peirani
et al. (2003) (λ′ = 0.035 andσ = 0.57) but our value ofσ is
slightly larger. However, usingσ = 0.57 does not lead to a signif-
icantly different result. The value ofσ is not strongly constrained
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Figure 2. The distribution of the spin parameterλ′ defined asλ′ ≡
J/(

√
2MV R200) computed using 100 000 haloes with a mass greater than

5 ·1012M⊙. The distribution can be fit with a log-normal function with pa-
rametersλ′

0 = 0.0347 ± 0.0006 andσ = 0.63 ± 0.02 (red line). The
curve parametrized byλ′

0 = 0.035 andσ = 0.57 is also shown (black
line). The two results are almost concurrent, indicating that the value ofσ
is not so strongly constrained using a log-normal distribution.

and no real disagreement exists between our and their best-fit val-
ues. The halo’s spin, on which some of the following investigations
are based, is computed accurately.

3 A GALACTOCENTRIC POINT OF VIEW

The analysis of exchange processes between the haloes and the in-
tergalactic medium will be carried out using two methods. The first
one can be described as ‘discrete’. The accreted objects areexplic-
itly counted as particles or particle groups. This approachwill be
applied and discussed later in this paper. The other method relies on
measuring directly relevant quantities on a surface atthe interface
between the halo and the intergalactic medium. In this approach,
the measured quantities are scalar, vector or tensor fluxes,and we
assign to themflux densities. The flux density representation al-
lows us to describe the angular distribution and temporal coherence
of infalling objects or quantities related to this infall. The formal re-
lation between a flux density,̟ (Ω), and its associated total flux
through a regionS, Φ, is:

Φ ≡
∫

S

̟(Ω) · dΩ, (3)

whereΩ denotes the position on the surface where̟ is evaluated
anddΩ is the surface element normal to this surface. Examples of
flux densities are mass flux density,ρvr, or accreted angular mo-
mentum,ρvrL. In particular, this description in terms of a spherical
boundary condition is well-suited to study the dynamical stability
and response of galactic systems. In this section, these fields are
used as probes of the environment of haloes.

3.1 Halo analysis

Once a halo is detected, we study its environment using a galacto-
centric point of view. The relevant fields̟ (Ω) are measured on

the surface of a sphere centered on the halo’s centre of mass with
aR200 radius (where3M/(4πR3

200) ≡ 200ρ) (cf. fig .3). There
is no exact, nor unique, definition of the halo’s outer boundary and
our choice of aR200 (also called the virial radius) is the result of
a compromise between a large distance to the halo’s center and a
good signal-to-noise ratio in the spherical density fields determina-
tion.

We used40 × 40 regularly sampled maps in spherical angles
Ω = (ϑ, φ), allowing for an angular resolution of 9 degrees. We
take into account haloes with a minimum number of1000 parti-
cles, which gives a good representation of high density regions on
the sphere. This minimum corresponds to5 · 1012M⊙ for a halo,
and allows us to reach a total number of 10 000 haloes at z=2 and
50 000 haloes at z=0. This range of mass corresponds to a some-
what high value for a typicalL∗ galaxy but results from our com-
promise between resolution and sample size. Detailed analysis of
the effects of resolution is postponed to Aubert & Pichon (2004).

The density,ρ(Ω), on the sphere is computed using the par-
ticles located in a shell with a radius ofR200 and a thickness of
R200/10 (this is quite similar in spirit to the count in cell tech-
niques widely used in analyzing the large scale structures,but in
the context of a sphere the cells are shell segments). Weighting the
density with quantities such as the radial velocity or the angular
momentum of each particle contained within the shell, the associ-
ated spherical fields,ρvr(Ω) or ρL(Ω), can be calculated for each
halo. Two examples of spherical maps are given in Fig. 3. Theyil-
lustrate a frequently observed discrepancy between the twotypes
of spherical fields,ρ(Ω) andρvr(Ω). The spherical density field,
ρ(Ω), is strongly quadrupolar, which is due to the intersectionof
the halo triaxial 3-dimensional density field by our 2-dimensional
virtual sphere. By contrast the flux density of matter,ρvr(Ω), does
not have such quadrupolar distribution. The contribution of halo
particles to the net flux density is small compared to the contribu-
tion of particles coming from the outer intergalactic region.

3.2 Two-points statistics: advected momentum and halo’s
spin

The influence of infalling matter on the dynamical state of a galaxy
depends on whether or not the infall occurs inside or outsidethe
galactic plane. If the infalling matter is orbiting in the galactic
plane, its angular momentum is aligned with the angular momen-
tum of the disk. Taking the halo’s spin as a reference for the direc-
tion of the ‘galactic’ plane, we want to quantify the level ofalign-
ment of the orbital angular momentum of peripheral structures (i.e.
as measured on the virial sphere) relative to that spin. The inner
spinS is calculated using the positions-velocities(rpart,vpart) of
the particles inside theR200 sphere in the centre of mass rest frame
(r0,v0):

S =
∑

part

(rpart − r0) × (vpart − v0). (4)

r0 is the position of the halo centre of mass, whilev0 stands for the
average velocity of the halo’s particles. This choice of rest frame
is not unique; another option would have been to take the most
bounded particle as a reference. Nevertheless, given the considered
mass range, no significant alteration of the results is to be expected.
The total angular momentum,LT (measured at the virial radius,
R200) is computed for each halo using the spherical fieldρL(Ω):

LT =

∫

4π

ρL(Ω)dΩ. (5)

c© 0000 RAS, MNRAS000, 000–000



4 D. Aubert, C. Pichon and S. Colombi
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Figure 3. A galactocentric point of view of the density field,ρ(Ω) (top)
and of the flux density of mass,ρvr(Ω), surrounding the same halo (bot-
tom). This measurement was extracted from aΛCDM cosmological sim-
ulation. The considered halo contained about1013M⊙ or 2000 particles.
The high density zones are darker. The density’s spherical field shows a
strong quadrupolar component with high density zones near the two poles
while this component is less important for the mass flux density field mea-
sured on the sphere. This discrepancy between the two spherical fields is
common and reflects the shape of the halo as discussed in the main text.

The angle,θ, between the spin of the inner particlesS and the total
orbital momentumLT of ‘peripheral’ particles is then easily com-
puted:

θ = cos−1(
LT · S
|LT ||S|

). (6)

Measuring this angleθ for all the haloes of our simulations al-
low us to derive a raw probability distribution of angle,dr(θ).
An isotropic distribution corresponds to a non-uniform probability
densitydiso(θ). Typicallydiso is smaller near the poles (i.e. near the
region of alignment) leading to a larger correction for these angles
and to larger error bars in these regions (see fig. 4): this is the con-
sequence of smaller solid angles in the polar regions (whichscales
like ∼ sin θ) than in equatorial regions for a givenθ aperture. The
true anisotropy is estimated by measuring the ratio:

ρL

ρvrL

ρvrL fit

ρL fit

0.8

1.0

1.2

1.4

Θ (rad)

1
+

ξ
(Θ

)

0 π/4 π/2 3π/4 π

 L
S

Figure 4. Excess probability,1+ξLS(θ), of the angle,θ, between the halo’s
spin (S) and the angular momentum (LT for total, or LA for accreted)
measured on the virial sphere using the fluid located at the virial radius.
HereLT represents thetotal angular momentum measured on the virial
sphere (corresponding curve : solid line, circle symbols) and LA the total
accretedangular momentum measured on the sphere (corresponding curve:
dashed line, diamond symbols). The error bars represent the3σ dispersion
measured on subsamples of 10 000 haloes. The correlation takes into ac-
count the uncertainty on the angle determination due to the small number
of particles at the virial radius. HereξLS(θ) ≡ 0 would be expected for an
isotropic distribution of angles betweenS andL while the measured distri-
butions indicate that the aligned configuration (θ ∼ 0) is significantly more
likely. The two excess probability distibutions are well-fitted by Gaussian
functions (red curves: see main text).

dr(θ)/diso(θ) ≡ 1 + ξLS(θ), (7)

Here, 1 + ξLS(θ) measures the excess probability of findingS

andLT away from each other, whileξLS(θ) is the cross correla-
tion of the angles ofS andLT . Thus havingξLS(θ) > 0 (resp.
ξLS(θ) < 0) implies an excess (resp. a lack) of configurations with
aθ separation relative to an isotropic situation.

To take into account the error in the determination ofθ, each
count (or Dirac distribution) is replaced with a Gaussian distribu-
tion and contributes to several bins:

δ(θ − θ0) → N (θ0, σ0) =
1

σ0

√
2π

exp

(
− (θ − θ0)

2

2σ2
0

)
, (8)

whereN stands for a normalized Gaussian distribution and where
the angle uncertainty is approximated byσ0 ∼ (4π/N)1/2 using
N particles as suggested by Hatton & Ninin (2001). IfNv is equal
to the number of particles used to computeρL(Ω) on the virial
sphere and ifNh is the number of particles used to compute the
halo spin, the error we associated to the angle between the angular
momentum at the virial sphere and the halo spin is:

σ0 =
√

(4π/Nv) + (4π/Nh) ∼
√

(4π/Nv), (9)

because we haveNv ≪ Nh. Note that this Gaussian correction
introduces a bias in mass: a large infall event (largeNv, smallσ0)
is weighted more for a givenθ0 than a small infall (smallNv , large
σ0). All the distributions are added to give the final distribution:

dr(θ) =

Np∑

p

N (θp, σp), (10)
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whereNp stands for the total number of measurements (i.e. the
total number of haloes in our set of simulations). The corresponding
isotropic angle distribution is derived using the same set of errors
randomly redistributed:

diso(θ) =

Np∑

p

N (θisop , σp). (11)

Fig. 4 shows the excess probability,1 + ξLS(θ), of the angle
between the total orbital momentum of particles at the virial radius
LT and the halo spinS. The solid line is the correlation deduced
from 40 000 haloes at redshiftz = 0. The error bars were deter-
mined using 50 subsamples of 10 000 haloes extracted from the
whole set of available data. An average Monte-Carlo correlation
and a Monte-Carlo dispersionσ is extracted. In Fig. 4, the symbols
stand for the average Monte-Carlo correlation, while the vertical
error bars stand for the3σ dispersion.

The correlation in Fig. 4 shows that all angles are not equiva-
lent sinceξLS(θ) 6= 0. It can be fitted with a Gaussian curve using
the following parametrization:

1 + ξLS(θ) =
a1√
2πa3

exp
[
−(θ − a2)

2/(2a2
3)
]

+ a4. (12)

The best fit parameters area1 = 2.351 ± 0.006, a2 = −0.178 ±
0.002, a3 = 1.343±0.002, a4 = 0.6691±0.0004. The maximum
being located at small angles, the aligned configuration,̂LT S ∼ 0,
is the most enhanced configuration (relative to an isotropicdistri-
bution of angleθ). The aligned configuration ofLT relative toS

is 35% (ξLS(0) = 0.35) more frequent in our measurements than
for a random orientation ofLT . As a consequence, matter is pref-
erentially located in the plane perpendicular to the spin, which is
hereafter referred to as the ‘equatorial’ plane.

The angles,(ϑ,φ), are measured relative to the simulation
boxes z-axes and x-axes and not relative to the direction of the spin.
Thus we do no expect artificialLT -S correlations due to the sam-
pling procedure. Nevertheless it is expected on geometrical ground
that the aligned configuration is more likely since the contribution
of recentinfalling dark matter to the halo’s spin is important. As a
check, the same correlation was computed using the totaladvected
orbital momentum:

LA =

∫

4π

Lρvr(Ω) · dΩ . (13)

The resulting correlation (see Fig. 4) is similar to the previous one
but the slope toward small values ofθ is even stronger and for ex-
ample the excess of aligned configuration reaches the level of 50%
(ξLS(0) ∼ 0.5). The correlation can be fitted following Eq. 12 with
a1 = 3.370 ± 0.099, a2 = −0.884 ± 0.037, a3 = 1.285 ± 0.016
anda4 = 0.728±0.001. This enhancement confirms the relevance
of advected momentum for the build-up of the halo’s spin, though
the increase in amplitude is limited to 0.2 forθ = 0. The halo’s in-
ner spin is dominated by the orbital momentum of infalling clumps
(given the larger lever arm of these virialised clumps) thathave just
passed through the virial sphere, as suggested by Vitvitskaet al.
(2002) (see also appendix D). It reflects a temporal coherence of
the infall of matter and thus of angular momentum, and a geomet-
rical effect: a fluid clump which is just being accreted can intersect
the virtual virial sphere, being in part both “inside” and “outside”
the sphere. Thus it is expected that the halo spinS and the momenta
LT andLA at the virial radius are correlated since the halo’s spin
is dominantly set by the properties of the angular momentum in its
outer region. The anisotropy of the two fieldsLT andLA do not
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Figure 5. Top: Normalized probability distributions (PDF) of the excess
of equatorial infall,δm, measured at the virial radius. The quantity1 + δm

stands for the ratio between the flux of matter through the equatorial sub-
region of theR200 sphere and the average flux of matter through the whole
R200 sphere. The equatorial sub-region is defined as being perpendicular
to the direction of the halo’s spin. It formally correspondsto the top-hat-
smoothed mass flux density contrast.δm = 0 is expected for an isotropic
infall of matter through the virial sphere. The average value of δm is al-
ways greater than 0 indicating that the infall of matter is, on average, more
important in the direction orthogonal to the halo’s spin vector than in other
directions.Bottom: the antisymmetric part of theδm distribution. Being
positive for positive values ofδm, the antisymmetric part of theδm distri-
butions shows that accretion in the equatorial plane is in excess relative to
the one expected from an isotropic accretion of matter.

have the same implication. The spatial distribution of advected an-
gular momentum,LA, contains stronger dynamical information. In
particular, the variation of the halo+disk’s angular momentum is in-
duced by tidal torques but also by accreted momentum for an open
system. For example the anisotropy ofLρvr should be reflected in
the statistical properties of warped disks as discussed later in sec-
tions 6.1 and 6.2.1.

c© 0000 RAS, MNRAS000, 000–000
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linear fit

3 σ error
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Figure 6. The redshift evolution of〈δm〉. The average〈·〉 is performed on a
set of 40 000 haloes atz = 0 and 10 500 haloes atz = 1.8. The error bars
stand for the error on the estimation of〈δm〉 with ∆ = σ(δm)/

√
N . N is

the number of haloes needed to compute〈δm〉. 〈δm〉 is always positive and
indicates an excess of accretion in the equatorial plane. This redshift evo-
lution can be fitted as〈δm〉(z) = 0.0161(±0.0103)z + 0.147(±0.005).
This excess is detected for every redshift smaller thanz = 2, which in-
dicates an excess of accretion in the equatorial region. We applied a mass
threshold of5 · 1012M⊙ to our haloes for every redshift. Then, the halo
population is different from one redshift to another. This selection effect
may dominate the observed time evolution.

3.3 One-point statistics: equatorial infall anisotropy

The previous measurement doesn’t account for dark matter falling
into the halo with a very small angular momentum (radial orbits).
We therefore measured the excess of equatorial accretion,δm, de-
fined as follow. We can measure the average flow density of matter,
Φr, in a ring centered on the equatorial plane:

Φr ≡ 1

Sr

∫

−π/8<θ−π/2<π/8

ρvr(Ω) · dΩ, (14)

whereSr =
∫
−π/8<θ−π/2<π/8

dΩ. The ring-region is defined by

the area where the polar angle satisfiesθpol = π/2 ± π/8 which
corresponds to about 40% of the total covered solid angle. The
larger this region is, the better the convergence of the average value
of Φr , but the lower the effects of anisotropy, since averaging over
a larger surface leads to a stronger smoothing of the field. This
value of±π/8 is a compromise between these two contradictory
trends. In the next section and in the appendix, we discuss more
general filtering involving spherical harmonics which are related to
the dynamical evolution of the inner component of the halo. We
also measure the flow averaged on all the directionsΦ:

Φ ≡ ρvr ≡ 1

4π

∫

4π

ρvr(Ω) · dΩ. (15)

Since we are interested in accretion, we computedΦr andΦ using
only the infalling part of the density flux of matter, whereρvr(Ω) ·
dΩ < 0, ignoring the outflows. We therefore defineδm as

δm ≡ Φr − Φ

Φ
. (16)

This number quantifies the anisotropy of the infall. It is positive
when infall is in excess in the galactic-equatorial plane, while for
isotropic infallδm ≡ 0. The quantityδm can be regarded as being
the ‘flux density’ contrast of the infall of matter in the ringregion
(formally it is the centered top-hat-filtered mass flux density con-
trast as shown in appendix C1). This measurement, in contrast to
those of the previous section does not rely on some knowledgeon
the inner region of the halo but only on the properties of the envi-
ronment.

Fig. 5 displays the normalized distribution ofδm measured for
50 000 haloes with a mass in excess of5 ·1012M⊙ and for different
redshifts (z = 1.8, 1.5, 0.9, 0.3, 0.0). The possible values forδm

range betweenδm ∼ −1 andδm ∼ 1.5. The average value〈δm〉
of the distributions is statistically larger than zero (seealso Fig. 6).
Here 〈 〉 stands for the statistical expectation, which in this pa-
per is approximated by the arithmetic average over many haloes in
our simulations. The antisymmetric part of the distribution of δm is
positive for positiveδm. The PDF ofδm is skewed, indicating an
excess of accretion through the equatorial ring. The medianvalue
for δm is δmed = 0.11, while the first25% haloes haveδm <
δ25 ≡ −0.11 and the first75% haloes haveδm < δ75 ≡ 0.37.
Therefore we have(δ75−δmed)/(δ25−δmed) = 1.13, which quan-
tifies how the distribution ofδm is positively skewed. The skewness
S3 = 〈(δ − δ̄)3〉/〈(δ − δ̄)2〉3/2 is equal to0.44. Combined with
the fact that the average value〈δm〉 is always positive, this shows
that the infall of matter is larger in the equatorial plane than in the
other directions.

This result is robust with respect to time evolution (see Fig.
6). At redshiftz = 1.8, we have〈δm〉 = 0.17 which falls down
to 〈δm〉 = 0.145 at redshiftz = 0. This redshift evolution can be
fitted as〈δm〉(z) = 0.0161(±0.0103)z + 0.147(±0.005). This
trend should be taken with caution. Foreveryredshift z we take
in account haloes with a mass bigger than5 · 1012M⊙. Thus the
population of haloes studied at z=0 is not exactly the same asthe
one studied at z=2. Actually, at z=0, there is a strong contribution
of small haloes (i.e. with a mass close to5 · 1012M⊙) which just
crossed the mass threshold. The accretion on small haloes ismore
isotropic as shown in more details in appendix D2. One possible
explaination is that they experienced less interactions with their en-
vironment and have had since time to relax which implies a smaller
correlation with the spatial distribution of the infall. Also bigger
haloes tend to lie in more coherent regions, corresponding to rare
peaks, whereas smaller haloes are more evenly distributed.The
measured time evolution of the anisotropy of the infall of matter
therefore seems to result from a competition between the trend for
haloes to become more symmetric and the bias corresponding to a
fixed mass cut.

In short, the infall of matter measured at the virial radius in
the direction orthogonal to halo spin is larger than expected for an
isotropic infall.

3.4 Harmonic expansion of anisotropic infall

As mentioned earlier (and demonstrated in appendix A), the dy-
namics of the inner halo and disk is partly governed by the statisti-
cal properties of the flux densities at the boundary. Accounting for
the gravitational perturbation and the infalling mass or momentum
requires projecting the perturbation over a suitable basissuch as the
spherical harmonics:

̟(Ω) =
∑

ℓ,m

αm
ℓ Y

m
ℓ (Ω) , (17)
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Figure 7. The convergence of modulus of the real part of〈ãm
ℓ 〉, for ℓ =

2, 4, 6, 8. Theãm
ℓ decomposition was computed for 25 000 haloes and each

coefficient has been normalized with the correspondingC0 (see text for
details). Here,〈 〉 stands for the median while the error bars stand for the
distance between the 5th and the 95th centile. The median value of〈ãm

ℓ 〉 is
zero except for the〈ã0

ℓ 〉 coefficient: this is a signature of a field invariant to
azimuthal rotations.
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Figure 8. An illustration of the convergence of thẽaℓm presented in Fig.
7. The solid line stands for the azimuthal average of the spherical contrast
of accretion computed using Eq. (22). The dotted line for thespherical field
reconstructed withℓ 6 5. The insert represents the reconstructed spherical
field using the expansion of thẽaℓm of the mass flux measured at the virial
sphere. The sphere presents an excess of accretion in the equatorial region
because of the non-zero average value ofãℓ0 coefficients (for even values
of ℓ).

Here,̟ stands for,e.g. the mass flux density, the advected mo-
mentum flux density, or the potential perturbation. The resulting
αm

ℓ coefficients correspond to the spherical harmonic decomposi-
tion in anarbitrary reference frame. The differentm correspond
to the different fundamental orientations for a given multipoleℓ. A
spherical field with no particular orientation gives rise toa field av-
eraged over the different realisations which appear as a monopole,
i.e. 〈αℓm〉 = 0 for ℓ 6= 0. Having constructed our virial sphere
in a reference frame attached to the simulation box, we effectively
performed a randomization of the spheres’ orientation. However,
since the direction of the halo’s spin is associated to a general pre-
ferred orientation for the infall, it should be traced through theαℓm

coefficients. Let us define the rotation matrix,R, which brings the
z-axis of the simulation box along the direction of the halo’s spin.
The spherical harmonic decomposition centered on the spin of the
halo,am

ℓ , is given by (e.g. Varshalovich et al. (1988)):

am
ℓ = R[αm′

ℓ′ ] ≡
∑

ℓ′m′

Rm,m′

ℓ,ℓ′ (ϑ,ϕ)αm′

ℓ′ . (18)

If the direction of the spin defines a preferential plane of accretion,
the correspondingam

ℓ will be systematically enhanced. We there-
fore expect the equatorial direction (which corresponds tom = 0
for everyℓ) not to converge to zero.

We computed the spherical harmonic decomposition of
ρvr(ϑ, ϕ) given by Eq. (17) for the mass flux density of 25 000
haloes atz = 0, up toℓ = 15. For each spherical field of the mass
density flux, we performed the rotation that brings the halo’s spin
along the z-direction to obtain a set of ‘centered’am

ℓ coefficients.
We also computed the related angular power spectrumsCℓ :

Cℓ ≡ 1

4π

1

2ℓ+ 1

ℓ∑

m=−ℓ

|am
ℓ |2 =

1

4π

1

2ℓ + 1

ℓ∑

m=−ℓ

|αm
ℓ |2. (19)

Let us define the normalized̃am
ℓ (or harmonic contrast, see ap-

pendix C1),

ãm
ℓ ≡

√
4π
am

ℓ

a0
0

=
am

ℓ

sign(a0
0)
√
C0

. (20)

This compensates for the variations induced by our range of masses
for the halo. For eachℓ, we present in Fig. 7 the median value,
|〈Re {ãm

ℓ }〉| for ℓ = 2, 4, 6, 8 computed for 25 000 haloes. All
theãm

ℓ have converged toward zero, except for theãℓ0 coefficients.
The imaginary parts of̃am

ℓ have the same behaviour, except for
the Im{ãℓ0} coefficients which vanish by definition (not shown
here). Them = 0 coefficients are statistically non-zero. We find
〈ã0

2〉 = −0.65±0.04, 〈ã0
4〉 = 0.12±0.02, 〈ã0

6〉 = −0.054±0.015
and〈ã0

8〉 = 0.0145 ± 0.014. Errors stand for the distance between
the 5th and the 95th centile. The typical pattern corresponding an
m = 0 harmonic is a series of rings parallel to the equatorial plane.
This confirms that the accretion occurs preferentially in a plane per-
pendicular to the direction halo’s spin.

The spherical accretion contrast〈δρvr (ϑ,φ)〉 can be recon-
structed using the〈ãm

ℓ 〉 coefficients (as shown in the appendix):

δ[ρvr](ϑ, ϕ) =
∑

ℓ,m

ãm
ℓ Y

m
ℓ (ϑ,ϕ) − 1. (21)

In Fig. 8, the polar profile:

〈δ[ρvr](ϑ)〉 ≡
∑

ℓ,m

〈ãm
ℓ 〉Y m

ℓ (ϑ, 0) − 1 , (22)

of this reconstructed spherical contrast is shown. This profile has
been obtained using the〈ãm

ℓ 〉 coefficients withℓ 6 5 andℓ 6 15.
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The contrast is large and positive nearϑ = π/2 as expected for an
equatorial accretion. The profile reconstructed usingℓ 6 5 is quite
similar to the one usingℓ 6 15. This indicates that most of the
energy involved in the equatorial accretion is contained ina typical
angular scale of 36 degrees (a scale which is significantly larger
thanπ/20 corresponding to the cutoff frequency in our sampling
of the sphere as mentionned earlier).

Using a spherical harmonic expansion of the incoming mass
flux density (Eq. (17)), we confirmed the excess of accretion in the
equatorial plane found above. This similarity was expectedsince
these two measurements (using a ring or using a spherical har-
monic expansion) can be considered as two different filterings of
the spherical accretion field as is demonstrated in the appendix C.
The main asset of the harmonic filtering resides in its relevance for
the description of the inner dynamics as is discussed in section 6.

3.5 Summary

To sum up, the two measurements of section 3.2 and 3.3 (or 3.4)
are not sensitive to the same effects. The first measurement (in-
volving the angular momentumρL at the virial radius) is mostly a
measure of the importance of infalling matter in building the halo’s
proper spin. The second and the third measurements (involving the
excess of accretion in the equatorial plane,δm, using rings and har-
monic expansion) are quantitative measures of coplanar accretion.
The equatorial plane of a halo is favoured relative to the accretion
of matter (compared to an isotropic accretion) to a level of∼ 12%
betweenz = 2 andz = 0. Down to the halo scale (∼ 500 kpc),
anisotropy is detected and is reflected in the spatial configuration
of infalling matter.

4 ANISOTROPIC INFALL OF SUBSTRUCTURES

To confirm and assess the detected anisotropy of the matter in-
fall on haloes in our simulations, let us now move on to a dis-
crete framework and measure related quantities for satellites and
substructures. In the hierarchical scenario, haloes are built up by
successive mergers of smaller haloes. Thus if an anisotropyin the
distribution of infalling matter is to be detected it seems reasonable
that this anisotropy should also be detected in the distribution of
satellites. The previous galactocentric approach for the mass flow
does not discriminate between an infall of virialised objects and a
diffuse material accretion and therefore is also sensitiveto satellites
merging: one would need to consider, say, the energy flux density.
However, it is not clear if satellites are markers of the general infall
and Vitvitska et al. (2002) did not detect any anisotropy at alevel
greater than 20%.

The detection of substructures and satellites is performedus-
ing the code ADAPTAHOP which is described in details in the ap-
pendix. This code outputs trees of substructures in our simulations,
by analysing the properties of the local dark matter densityin terms
of peaks and saddle points. For each detected halo we can extract
the whole hierarchy of subclumps or satellites and their characteris-
tics. Here we consider the leaves of the trees, i.e. the most elemen-
tary substructures the haloes contain. Each halo contains a‘core’
which is the largest substructure in terms of particles number and
‘satellites’ corresponding to the smaller ones. We call theensemble
core + satellites the ‘mother’ or the halo. Naturally the number of
substructures is correlated with the mother’s mass. The bigger the
number of substructures, the bigger the total mass. Becausethe res-
olution in mass of our simulations is limited, smaller haloes tend to
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Figure 9. Excess probability,1+ξCS(θcs), of the angle between the core’s
spin and the orbital momentum of satellites. Cores have at least 1 satel-
lite (solid line), 4 satellites (dashed line) and 10 satellites (dotted line).
These curves have been normalized by the expected isotropicdistribution
and the Gaussian correction was applied to account for errors on the angle
determination. HereξCS(θ) = 0 is expected for an isotropic distribution
of angles between the core ’s spin and the orbital momentum. All satel-
lites are external to the core, yet an excess of alignment is present. The
triangles represent the angle distribution, the error barsstand for the3σ-
dispersion for 50 subsamples of 10 000 satellites (out of 35 000) while the
red curve stands for the best gaussian fit of the distributionfor systems
with at least one satellite (see Eq. 12 for parameterization). The best fit
parameters are:a1 = 0.3993 ± 0.0038, a2 = 0.0599 ± 0.0083, a3 =
0.8814 ± 0.0055, a4 = 0.9389 ± 0.0002. The isotropic case is excluded
with a good confidence level, even for systems with a large number of satel-
lites.

have only one or two satellites. Thus in the following sections we
will discriminate cases where the core have less than 4 satellites.
A total of 50 000 haloes have been examined leading to a total of
about 120 000 substructures.

4.1 Core spin - satellite orbital momentum correlations

In the mother-core-satellite picture, it is natural to regard the core
as the central galactic system, while satellites are expected to join
the halo from the intergalactic medium. One way to test the effect
of large scale anisotropy is to directly compare the angle between
the core’s spin,Sc, and the satellites’ angular momentum,Ls, rela-
tive to the core. These two angular momenta are chosen since they
should be less correlated with each other than e.g. the haloes’ spin
and the angular momentum of its substructures. Furthermore, par-
ticles that belong to the cores are strictly distinct from those that
belong to satellites, thus preventing any ‘self contamination’ ef-
fect. As a final safeguard, we took in account only satelliteswith
a distance relative to the core larger than the mother’s radius. The
core’s spin is:

Sc =
∑

p

(rp − rc) × (vp − vc), (23)

whererp andvp (resp.rc andvc) stands for particles’ position and
velocities (resp. the core’s centre of mass position and velocity) and
where:
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rp < dc, (24)

wheredc is the core’s radius. The angular momentum for a satellite
is computed likewise, with a different selection criterionon parti-
cles, namely:

|rp − rs| < ds, (25)

wherers stands for the satellite’s centre of mass position andds is
its radius.

Fig. 9 displays the reduced distribution of the angle,θcs, be-
tween the core’s spin and the satellites’ orbital momentum,where
θcs is defined by:

θcs = cos−1(
Ls · Sc

|Ls||Sc|
). (26)

The Gaussian correction was applied as described in section3.2, to
take into account the uncertainty on the determination ofθcs.

The correlation ofθcs indicates a preference for the aligned
configuration with an excess of∼ 12% of aligned configurations
relative to the isotropic distribution. We ran Monte-Carlorealisa-
tions using 50 subsamples of 10 000 haloes extracted from our
whole set of substructures to constrain the error bars. We found
a 3σ error of 6%: the detected anisotropy exceeds our errors, i.e.
ξCS(θcs) is not uniform with a good confidence level. The varia-
tions with the fragmentation level (i.e. the number of satellites per
system) remains within the error bars. The best fit parameters for
the measured distributions of systems with at least 1 satellite are
a1 = 0.3993 ± 0.0038, a2 = 0.0599 ± 0.0083, a3 = 0.8814 ±
0.0055, a4 = 0.9389 ± 0.0002 (see Eq. 12 for parametrization).
Not surprisingly, a less structured system shows a strongeralign-
ment of its satellites’ orbital momentum relative to the core’s spin.
In the extreme case of a binary system (one core plus a satellite),
it is common for the two bodies to have similar mass. Since the
two bodies are revolving around each other, a natural preferential
plane appears. The core’s spin will be likely to be orthogonal to
this plane. Increasing the number of satellites increases the isotropy
of the satellites’ spatial distribution (the distributions maxima are
lower and the slope toward low values ofθcs is gentler), but switch-
ing from at least 4 satellites to at least 10 satellites per system does
not change significantly the overwhole shape distribution.This sug-
gests that convergence, relative to the number of satellites, has been
reached for theθcs distribution.

As the measurements of the anisotropy factorδm indirectly
suggested, satellites have an anisotropic distribution oftheir direc-
tions around haloes. Furthermore the previous analysis of the sta-
tistical properties ofδ (section 3.3) indicated an excess of aligned
configuration of15% which is consistent with the current method
using substructures. While the direction of the core’s spinshould
not be influenced by the infall of matter, we still find the existence
of a preferential plane for this infall, namely the core’s equatorial
plane.

4.2 Satellite velocity - satellite spin correlation

The previous sections compared haloes’ properties with theprop-
erties of satellites. In a galactocentric framework, the existence of
this preferential plane could only be local. In the extreme each halo
would then have its own preferential plane without any connection
to the preferential plane of the next halo. Taking the satellite it-
self as a reference, we have analyzed the correlation between the
satellite average velocity in the core’s rest frame and the struc-
tures’ spin. Since part of the properties of these two quantities are

consequences of what happened outside the galactic system,the
measurement of their alignment should provide informationon the
structuration on scales larger than the haloes scales, while sticking
to a galactocentric point of view.

For each satellite, we extract the angle,θvs, between the veloc-
ity and the proper spin and derive its distribution using theGaussian
correction (see fig. 10). The satellite’s spinSs is defined by:

Ss =
∑

p

(rp − rs) × (vp − vs), (27)

wherers andvs stands for the satellite’s position and velocity in
the halo core’s rest frame. The angle,θvs, between the satellite’s
spin and the satellite’s velocity is:

θvs = cos−1(
Ss · vs

|Ss||vs| ). (28)

Only satellites external to the mother’s radius are considered
while computing the distribution of angles. This leads to a sample
of about 40 000 satellites, at redshiftz = 0. The distributionξ(θvs)
was calculated as sketched in section 2. An isotropic distribution of
θvs would as usual lead to a uniform distributionξ(θvs) = 0. The
result is shown in Fig. 10. The error bars were computed usingthe
same Monte-Carlo simulations described before with 50 subsam-
ples of 10 000 satellites.

We obtain a peaked distribution with a maximum forθvs =
π/2 corresponding to an excess of orthogonal configuration of5%
compared to a random distribution of satellite spins relative to their
velocities. The substructures’ motion is preferentially perpendicu-
lar to their spin. This distribution of angles for systems with at least
1 satellite can be fitted by a Gaussian function with the follow-
ing best fit parameters (see Eq 12):a1 = 0.2953 ± 0.0040, a1 =
1.5447 ± 0.0015, a2 = 0.8045 ± 0.0059, a3 = 0.9144 ± 0.0010.
The variation with the mother’s fragmentation level is within the
error bars. However the effect of an accretion orthogonal tothe di-
rection of the spin is stronger for satellites which belong to less
structured systems. This may be again related to the case where
two comparable bodies revolve around each other, but from a satel-
lite point-of-view. The satellite spin is likely to be orthogonal to the
revolution plane and consequently to the velocity’s direction.

This result was already known for haloes in filaments (Fal-
tenbacher et al. (2002)), where their motion occurs along the fila-
ments with their spins pointing outwards. The current results show
that the same behaviour is measured down to the satellite’s scale.
However this result should be taken with caution since Monte-
Carlo tests suggest that the error (deduced from the3σ dispersion)
is about4%.

This configuration where the spins of haloes and satellites are
orthogonal to their motion fit with the image of a flow of structures
along the filaments. Larger structures are formed out of the merging
of smaller ones in a hierarchical scenario. Such small substructures
should have small relative velocities in order to eventually merge
while spiraling towards each other. The filaments correspond to re-
gions where most of the flow is laminar, hence the merging between
satellites is more likely to occur when one satellite catches up with
another, while both satellites move along the filaments. During such
encounter, shell crossing induces vorticity perpendicular to the flow
as was demonstrated in Pichon & Bernardeau (1999). This vortic-
ity is then converted to momentum, with a spin orthogonal to the
direction of the filament.

Finally, the flow of matter along the filaments may also pro-
vide an explanation for the excess of accretion through the equa-
torial regions of the virial sphere. If a sphere is embedded in a
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Figure 10. Excess probability,1 + ξvs, of the angle between the substruc-
tures’ spin and their velocities in the mother’s rest frame.The Gaussian cor-
rection was applied to take into account uncertainty on the angle determina-
tion. The distributions was measured for all mothers (solid), mothers with at
least 4 substructures (dot) and mothers with at most 3 substructures (dash).
The triangles represent the mean angle distribution. The error bars represent
the Monte Carlo3σ-dispersion for 50 subsamples of 10 000 haloes (out of
35 000). The red dash-dotted curve stands for the best fit of the distribution
with a Gaussian function for systems with at least 1 satellite (see Eq. 12 for
parametrization). The best fit parameters are:a1 = 0.2953±0.0040, a1 =
1.5447± 0.0015, a2 = 0.8045± 0.0059, a3 = 0.9144± 0.0010. In the
core’s rest frame, the satellites’ motion is orthogonal to the direction of the
satellites’ spin. This configuration would fit in a picture where structures
move along filamentary directions.

‘laminar’ flow, the density flux detected near the poles should be
smaller than that detected near the ‘equator’ of the sphere.The flux
measured on the sphere is larger in regions where the normal to
the surface is collinear with the ‘laminar’ flow, i.e. the ‘equator’.
On the other hand, a nil flux is expected near the poles since the
vector normal to the surface is orthogonal to direction of the flow.
The same effect is measured on Earth which receives the Sun radi-
ance: the temperature is larger on the Tropics than near the poles.
Our observed excess of accretion through the equatorial region sup-
ports the idea of a filamentary flow orthogonal to the direction of
the halo’s spin down to scales6 500 kpc.

5 PROJECTED ANISOTROPY

5.1 Projected satellites population

We looked directly into the spatial distributions of satellites sur-
rounding the haloes cores to confirm the existence of a preferential
plane for the satellites locations in projection. In Fig. 11, we show
the compilation of the projected positions of satellites inthe core’s
rest frame. The result is a synthetic galactic system with 100 000
satellites in the same rest frame. We performed suitable rotations to
bring the spin axis collinear to the z-axis for each system ofsatel-
lites, then we added all these systems to obtain the actual synthetic
halo with 100 000 satellites. The positions were normalizedusing
the mother’s radius (which is of the order of the virial radius). A
quick analysis of the isocontours of the satellite distributions in-
dicates that satellites are more likely to be found in the equatorial

plane, even in projection. The axis ratio measured at one mother’s
radius isǫ(Rm) ≡ a/b − 1 = 0.1 with a > b. We compared
this distribution to an isotropic ‘reference’ distribution of satellites
surrounding the core. This reference distribution has the same av-
erage radial profile as the measured satellite distributions but with
isotropically distributed directions. The result of the substraction of
the two profiles is also shown in Fig. 11. The equatorial plane(per-
pendicular to the z-axis) presents an excess in the number ofsatel-
lites (light regions). Meanwhile, there is a lack of satellites along
the spin direction (dark regions). This confirms our earlierresults
obtained using the alignment of orbital momentum of satellites with
the core’s spin,i.e.satellites lie more likely in the plane orthogonal
to the halo spin direction. Qualitatively, these results have already
been obtained by Tormen (1997), where the major axis of the el-
lipsoid defined by the satellite’s distribution is found to be aligned
with the cluster’s major axis. This synthetic halo is more directly
comparable to observables since, unlike the dark matter halo itself,
the satellites should emit light. Even thoughΛCDM predicts too
many satellites, its relative geometrical distribution might still be
correct. In the following sections, our intent is to quantify more
precisely this effect.

The propension of satellites to lie in the plane orthogonal to
the direction of the core’s spin appears as an ‘anti-Holmberg’ ef-
fect. Holmberg (1974) and more recently Zaritsky et al. (1997) have
found observationnally that the distribution of satellites around
disks is biased towards the pole regions. Thus if the orbitalmo-
mentum vector of galaxies is aligned with the spin of their parent
haloes, our result seems to contradict these observations.One may
argue that satellites are easier to detect out of the galactic plane.
Furthermore our measurements are carried far from the disk while
its influence is not taken in account. Huang & Carlberg (1997)have
shown that the orbital decay and the disruption of satellites are
more efficient for coplanar orbits near the disk. It would explain the
lack of satellites in the disk plane. Thus our distribution of satellites
can still be made consistent with the ‘Holmberg effect’.

5.2 Projected satellite orientation and spin

In addition to the known alignment on large scales, we have shown
that the orientation of structures on smaller scales shouldbe dif-
ferent from the one expected for a random distribution of orienta-
tions. Can this phenomenon be observed ? The previous measure-
ments were carried in 3D while this latter type of observations is
performed in projection on the sky. The projection ‘dilutes’ the
anisotropy effects detected using three-dimensional information.
Thus an effect of15% may be lowered to a few percents by project-
ing on the sky. However, even if the deviation from isotropy is as
important as a few percents, as we will suggest, this should be rel-
evant for measurements involved in extracting a signal justabove
the noise level, such as weak lensing.

To see the effect of projection on our previous measurements,
we proceed in two steps. First, every mother (halo core + satellites)
is rotated to bring the direction of the core’s spin to the z-axis. Sec-
ond, every quantity is computed using only the y and z components
of the relevant vectors, corresponding to a projection along the x-
axis.

The first projected measurement involves the orientation of
satellites relative to their position in the core’s rest frame. The spin
of a halo is statistically orthogonal to the main axis of the distri-
bution of matter of that halo (Faltenbacher et al. (2002)), and as-
suming that this property is preserved for satellites, their spin Ss

is an indicator of their orientation. The angle,θP (in projection),
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Figure 11. The projected distribution of satellites around the core’scentre
of mass. We used the position of 40 000 satellites around their respective
core to produce a synthetic halo+satellites (a ‘mother’) system. The pro-
jection is performed along the x-axis. The y and z coordinates are given in
units of the mother’s radius. The z-axis is colinear to the direction of the
core’s spin.Top:The isocontours of the number density of satellites around
the core’s centre of mass present a flattened shape. The number of satel-
lites is lower in darker bins than in lighter bins. The flattened isocontours
indicate that satellites lie preferentially in the plane orthogonal to direction
of the spin.Bottom:The excess number of satellites surrounding the core.
We compared the distribution of satellites measured in our simulations to
an isotropic distribution of satellites. Light zones standfor an excess of
satellites in these regions (compared to an isotropic distribution) while dark
zones stand for a lack of satellites. The satellites are morenumerous in
the equatorial region than expected in an isotropic distribution of satellites
around the core. Also, there are fewer satellites along the spin’s axis than
expected for an isotropic distribution of satellites.

between the satellites’ spin and their position vector (in the core’s
rest frame) is computed as follow:

θP = cos−1(
Sy,z

s · ry,z
sc

|Sy,z
s ||ry,z

sc | ), (29)

with

rsc = rs − rc, (30)

wherers andrc stand respectively for the position vector of the
satellite and the core’s centre of mass. Two extreme situations
can be imagined. The ‘radial’ configuration corresponds to acase
where the satellite’s main axis is aligned with the radius joining the
core’s centre of mass to the satellite centreof mass (spin perpendic-

proj. angles distrib.
gaussian fit
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ξ
(Θ
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0 π/4 π/2 3π/4 π

3-σ errors
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Figure 12. Excess probability,1+ ξP , of the projected angles between the
direction of the spin of substructures and their position vector in the core’s
rest frame . The projection is made along the x-axis where thez-axis is con-
current with the core’s spin direction. The solid line represents the average
distribution of projected angles of 50 subsamples of 50 000 substructures
(out of 100 000 available substructures). The error bars represents the3σ
-dispersion relative to these 50 subsamples. An isotropic distribution of ori-
entation would correspond to a value of 1 for1 + ξP. The projection plus
the reference to the position vector instead of the velocity’s direction low-
ers the anisotropy effect. The red curve stands for the best Gaussian fit of
the excess probability (see Eq. 12 for parameterization). The best fit pa-
rameters are:a1 = 0.0999 ± 0.0030, a2 = 1.5488 ± 0.0031, a3 =
0.8259 ± 0.0131, a4 = 0.9737 ± 0.0007. It seems that on average the
projected orientation of a substructure is orthogonal to its projected posi-
tion vector.

ular to the radius, orθP ∼ π/2). The ‘circular’ configuration is the
case where the satellite main axis is orthogonal to the radius (spin
parallel to the radius,θP ∼ 0[π]). These reference configuration
will be discussed in what follows.

The resulting distribution,1 + ξP(θP), is shown in Fig. 12.
As before, an isotropic distribution of orientations wouldlead to
ξP(θP) = 0. The distribution is computed with 100 000 satellites,
without the cores, while the error bars result from Monte-Carlo
simulations on 50 subsamples of 50 000 satellites each. As com-
pared to the distribution expected for random orientations, the or-
thogonal configuration is present in excess ofξP(π/2) ∼ 0.02.
If the spin of satellites is orthogonal to their principal axis, the
direction vector in the core’s rest frame is more aligned with the
satellites principal axes than one would expect for an isotropic
distribution of satellites’ orientations. This configuration is ‘ra-
dial’. The peak of the distribution is slightly above the error bars:
∆ξP(θP ∼ π/2) ∼ 0.02. The distribution can be fitted by the
Gaussian function given in Eq. 12 with the following parame-
ters: a1 = 0.0999 ± 0.0030, a2 = 1.5488 ± 0.0031, a3 =
0.8259 ± 0.0131, a4 = 0.9737 ± 0.0007. The alignment seems
to be difficult to detect in projection. With 50 000 satellites, we
barely detect the enhancement of the orthogonal configuration at
the 3-σ level, thus we do not expect a detection of this effect at the
1-σ level for less than 6000 satellites. Nevertheless, the distribution
of the satellites’ orientation in projection seems to be ‘radial’ on
dynamical grounds, without reference to a lensing potential.

Our previous measurement was ‘global’ since it does not take
into account the possible change of orientation with the relative
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Figure 13. Radial and azimuthal grid of the excess probability,1 + ξP,
of the projected angles between the direction of the spin of substructures
and their direction relative to the central position of the core (as shown on
average in Fig 12). The projection is made along the x-axis where the z-
axis is concurrent with the direction of the core’s spin. Each row represents
a distance relative to central core in the mother’s radius units (from bottom
to top): R ∈ [0, 0.4[, R ∈ [0.4, 0.8[, R ∈ [0.8, 1.2[, R ∈ [1.2, 1.6[
andR ∈ [1.6, 2[. Each column represents an angular distance (in degrees)
relative to the direction of the core’s spin (z-axis) :φs ∈]0, 36], φs ∈
[36, 72[, φs ∈ [72, 108[, φs ∈ [108, 144[ and φs ∈ [144, 180[. The
isotropic orientation distribution corresponds to a valueof 1. Each sector
presents a preferential direction that depends on its position relative to the
spin direction of the central core. The distributions are computed using 50
samples of 50 000 satellites each. In each sector, the pointsrepresents the
distribution averaged over the 50 samples. The error bars represent the3σ-
Monte Carlo dispersion of the distribution over these 50 samples.

position of the satellites in the core’s rest frame. In Fig. 13, we
explore the evolution of1 + ξP with the radial distance relative
to the core’s centre of mass and with the angular distance relative
to the z-axis, i.e. relative to the direction of the core’s spin. The
previous synthetic halo was divided in sectors and for each sector,
1+ξP can be computed. The sectors are thus defined by their radius
(in the mother’s radius units):R 6 0.4, 0.4 < R 6 0.8, 0.8 <
R 6 1.2, 1.2 < R 6 1.6 and1.6 < R 6 2 and by their polar
angle relative to the direction of the core’s spin (in degrees):φs 6

36, 36 < φs 6 72, 72 < φs 6 108, 108 < φs 6 144 and
144 < φs 6 180. Each of the previous Monte-Carlo subsamples
can also be divided into sectors in order to compute the dispersion
σ for the distributions within the subsamples. The error barsstill
represent the3σ dispersions.

The Fig. 14 is a qualitative representation of the results pre-
sented in Fig. 13. Each sector withR 6 1 in Fig. 13 is represented
by an ellipse at its actual position. The orientation of the ellipse is
given by the angle of the maximum of the corresponding1+ξP(θp)
function. We chose to represent the spin’s direction perpendicular
to the ellipse’s major axis. We also chose to scale the ellipse axis
ratio with the signal-to-noise ratio of1 + ξP(θp). Indeed large er-
rors leads to weak constrains on the spin orientation and thegalaxy

R=0.2
R=0.6

R=1

Figure 14. Geometric configuration of mean satellites around their core
galaxy; each panel of Fig. 13 is represented by an ellipse at its log radius and
angle around the core galaxy. The axis ratio of the ellipses is proportional
to the peak-to-peak amplitude of the corresponding correlation (accounting
for the relative SNR), while its orientation is given by the orientation of the
maximum of1 + ξP.

would be seen as circular on average. Conversely a strongly con-
strained orientation leads to a typical axis ratio of 0.5.

Two effects seem to emerge from this investigation. For some
sectors, the orthogonal configuration is in excess comparedto an
isotropic distribution of satellites’ orientation relative to the radial
vector. This seems to be true especially for radii smaller than the
mother’s radius but the effect is still present at larger distances, es-
pecially nearφs ∼ π/2. Switching from low values to high values
of φs changes the slope of the1+ξP(θ) distribution. This may be a
marker of a ‘circular configuration’ of the orientation of satellites.

The existence of a ‘radial’ component in the orientation of the
satellites was expected, both from the unprojected measurements
made in the previous sections and from the global distribution ex-
tracted from the projected data. The fact that the ‘radial’ signature
is stronger around the equatorial plane (72 < φs < 108 in Fig.
13) may be an another evidence for a filamentary flow of satellites,
even in projection. It seems that the existence of a ‘circular’ compo-
nent was mostly hidden in the previous measurements by the dom-
inant signature of the ‘radial’ flow. Nevertheless, the dominance of
’circular’ orientations near the poles fits with the pictureof a halo
surrounded by satellites with their spin pointing orthogonally to the
filament directions.

The ‘circular’ flow may alternatively be related to the flow of
structures around clusters located at the connection between fila-
ments. There are observations of such configurations (Kitzbichler
& Saurer 2003), where galaxies have their spin pointing alongtheir
direction of accretion and these observations could be consistent
with our ‘circular’ component.

6 APPLICATIONS

Let us give here a quick overview of the implications of the pre-
vious measurements for the inner dynamics of the halo down to

c© 0000 RAS, MNRAS000, 000–000



Dark matter anisotropic cosmic infall onL⋆ haloes 13

galactic scales. In particular let us see how the self-consistent dy-
namical response of the halo propagates anisotropic infallinwards,
and then briefly and qualitatively discuss implications of anisotropy
to galactic warps, disk thickening and lensing.

6.1 Linear response of galaxies

In the spirit of e.g. Kalnajs (1971) or Tremaine & Weinberg (1984)
we show in appendix A and elsewhere (Aubert & Pichon (2004))
how to propagate dynamically the perturbation from the virial ra-
dius into the core of the galaxy using a self consistent combination
of the linearized Boltzmann and Poisson equations under theas-
sumption that the mass of the perturbation is small comparedto the
mass of the host galaxy. Formally, we have:

r(x, t) = R[F,Ω,x, t− τ ] (̟(Ω, τ )) , (31)

whereR is a linear operator which depends on the equilibrium state
of the galactic halo (+disk) characterized by its distribution func-
tion F , andr(x, t) represents the self consistent response of the
inner halo at time t due to a perturbation̟(Ω, τ ) occuring at time
τ . Here̟ represents formally the perturbed potential on the virial
sphere and the flux density of advected momentum, mass and ki-
netic energy atR200. A ‘simple’ expression forR is given in Ap-
pendix A for the self consistent polarisation of the halo. The linear
operator,R, follows from Eq. (A6), (A13) and (A16). These equa-
tions generalize the work of Kalnajs in that it accounts for acon-
sistent infall of advected quantities at the outer edge of the halo. It
is shown in particular in appendix A that self-consistency requires
the knowledge of all ten (scalar, vector and symmetric tensor) fields
̟ρ(Ω, τ ),̟ρv(Ω, τ ),̟ρσiσj

(Ω, τ ).
When dealing with disk broadening,r could be the velocity

orthogonal to the plane of the disk, or, for the warp, its amplitude,
as a function of the position in the disk,x (or the orientation of
each ring if the warp is described as concentric rings). Moregen-
erally, it could correspond to the perturbed distribution function of
the disk+halo. The whole statistics ofr is relevant. The average
response〈r(x, t)〉 can be written as:

〈r(x, t)〉 = R〈̟(Ω, τ )〉 =
∑

ℓm

RY m
ℓ (Ω)〈am

ℓ 〉 (32)

Since the accretion is anisotropic,〈am
ℓ 〉 do not converge toward

zero (see section 3.4) inducing a non-zero average response. Most
importantly the two point correlation of the response sinceit will
tell us qualitatively what the correlation length and the root mean
square amplitude of the response will be. For the purpose of this
section, and to keep things simple, we will ignore temporal issues
(discussed in Appendix A) altogether, both for the mean fieldand
the cross-correlations. The two-point correlation ofr(x) then de-
pends linearly on the two-point correlation of̟:

〈r(x) · r⊤(y)〉 = R〈̟(Ω) ·̟⊤(Ω′)〉R⊤ , (33)

where⊤ stands for the transposition. Clearly, if the infall,̟(Ω),
is anisotropic the response will be anisotropic. As was discussed in
section 3.4 when the infall is not isotropic, we have

〈|ãm
ℓ |2〉 6= 〈|α̃m

ℓ |2〉 =
1

2ℓ+ 1

m=ℓ∑

m=−ℓ

〈|α̃m
ℓ |2〉 , (34)

Let us therefore introduce:

∆R̃m
ℓ ≡ 〈|ãm

ℓ |2〉 − 〈|α̃m
ℓ |2〉, (35)
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Figure 15. The residual anisotropic harmonic power spectra,∆R̃m
ℓ

, intro-
duced in Eq. (35) as a function ofm for ℓ = 1, 2, 3, 4. These residuals will
serve as input to the computation of the dynamical response of the halo.

which would be identically zero if the field were stationary on the
sphere. Here∆R̃m

ℓ represents the anisotropic excess for each har-
monic correlation. In particular, the excess polarisationof the re-
sponse induced by the anisotropy reads

∆〈r(x) · r⊤(y)〉 =
∑

ℓm

RY m
ℓ (Ω)∆R̃m

ℓ Y
m

ℓ (Ω′)R⊤ . (36)

Fig. 15 displays∆R̃m
ℓ , for ℓ = 1, 2, 3, 4. The different∆R̃m

ℓ

clearly converge toward different non-zero values. Consequently
the response should reflect the anisotropic nature of the external
perturbations.

It is beyond the scope of this paper to pursue the quantitative
exploration of the response of the inner halo to a given anisotropic
infall, since this would require an explicit expression of the re-
sponse operator,R, for each dynamical problem investigated.

6.2 Implication for warps, thick disks and lensing

In this paper, the main emphasis is on measured anisotropies. It
turns out that it never exceeds 15% in accretion. For a whole class
of dynamical problems where anisotropy is not the dominant driv-
ing force it can be ignored at that level. Here we now discuss qual-
itatively the implication of the previous measurements to galactic
warps, the thick disk and weak lensing where anisotropy is essen-
tial.

6.2.1 Galactic warps

The action of the torque applied on the disk of a galaxy is different
for different angular and radial position of the perturbation. Conse-
quently the warp’s orientation and its amplitude are functions of the
spatial configuration of the external potential. For example, López-
Corredoira et al. (2002) found that the warp’s amplitude dueto an
intergalactic flow is dependent on the direction of the incoming
‘beam’ of matter. Having modelled the intergalactic flow applied
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to the Milky Way, they found that the warp amplitude rises steeply
as the beam leaves the region coplanar to the disk and this warp am-
plitude reaches a maximum for an inclination of 30 degrees relative
to the disk’s plane. As the beam direction becomes perpendicular
to the galactic plane, the warp amplitude decreases slowly.In this
context, the existence of a typical spatial configuration for the in-
coming intergalactic matter or satellites infall may induce a kind of
’typical’ warp in the disk of galaxies.

The existence of a preferential plane for the accretion of angu-
lar momentum also implies that the recent evolution of the halo’s
spin has been rather smooth. Bullock et al. (2001) have shownthat
the angular momentum tends to remain aligned within haloes.Fur-
thermore, the accretion of matter by haloes is preferentially per-
formed on plunging radial orbits, thus the inner parts of haloes are
aware of the properties of the recently accreted angular momen-
tum. Therefore, a disk embedded in the halo would also ‘feel’this
anisotropic accretion. Ostriker & Binney (1989) have shownthat
the misalignment of the accreted angular momentum and the disk’s
spin forces the latter to slew the symmetry axis of its inner parts.
The warp line of nodes is also found to be aligned with the axis
of the torque applied to the disk. As stressed by Binney (1992),
non straight line of nodes can be associated with changes in the
direction of the accreted angular momentum. Using a sample of
12 galaxies, Briggs (1990) established rules of thumb for galactic
warps, one of them being that the line of nodes is straight in the in-
ner region of disk while it is wound in the outer parts. If the angular
momentum is accreted along a stationary preferential direction, as
we suggest, the warp line of nodes should remain mostly straight.
However, if the accretion plane differs slightly from the disk plane,
more than one direction of accretion become possible (by sym-
metry around the vector defining the disk plane) and, as a conse-
quence, different directions are possible for the torque induced by
accreted matter. We may then consider a varying torque alongac-
cretion history with an accreted angular momentum ‘precessing’
around the halo’s spin but close to its direction. In this scenario, the
difference in the behaviour of the warp line of nodes betweenthe
inner and outer regions of the galaxies may be explained.

6.2.2 Galactic disk thickening

Thin galactic disks put serious constraints on merging scenarii,
since their presence implies a fine-tuning between the cooling
mechanisms (e.g.coplanar infall of gas), and the heating processes
(merging of small virialised objects, deflection of spiralson molec-
ular clouds). It has been shown that small mergers can produce a
thick disk (e.g. Quinn et al. (1993), Walker et al. (1996) ). However,
the presence of old stars within the thin disk cannot be explained
in the framework of the merging scenario unless a fraction ofthe
accretion took place within the equatorial plane of the galaxy. Fur-
thermore, the geometric characteristic of the infall is essential in the
formation process of a thick disk. In Velazquez & White (1999),
numerical simulations of interactions between galactic disks and
infalling satellites show that the heating and thickening is more ef-
ficient for coplanar satellites. They also stressed the differences be-
tween the effect of prograde or retrograde orbits of infalling satel-
lites (relative to the rotation of the disk): prograde orbits induce disk
heating while retrograde orbits induce disk tilting. Our results indi-
cate that the infall is preferentially prograde and coplanar relative to
the halo’s spin: if we consider an alignment between the halo’s spin
and the galaxy’s angular momentum, the thickening process may be
more efficient than the one expected in an isotropic configuration of
infalling matter. Furthermore, our estimate of the fraction of copla-

nar accretion at the virial scale may be considered as a lowerbound
near the disk since the presence of a disk will focus the infall closer
to the galactic plane. In fact, Huang & Carlberg (1997) foundthat
the disk tends to tilt toward the orbital plane of infalling prograde
low-density satellites. This effect would also contributeto enhance
the excess of coplanar accretion down to galactic scales.

However the nature of infalling virialised objects was shown
to affect their ability to heat or destroy the disk. Huang & Carlberg
(1997) found that the presence of low density satellites should in-
duce preferentially a tilting of the disk instead of a thickening: one
needs to enhance the relative mass of the satellite (∼ 30% of the
disk mass) to produce an observable thickening in the inner parts
of the galaxy. Unfortunately such a massive satellite has a destruc-
tive impact on the outer parts of the disk. The relationship between
the excess of accretion and the satellite mass should be constrained
but our limited mass resolution prevents us from performingsuch a
quantitative analysis. We should therefore aim at achieving higher
angular resolution of the virial sphere and higher mass resolution
in order to describe well compact virialised objects.

6.2.3 Gravitational lensing

The first detection of cosmic shear was reported by four differ-
ent groups in 2000 (Bacon et al. (2000), Kaiser et al. (2000),Van
Waerbeke et al. (2000), Wittman et al. (2000)). One of the basic
assumptions made by cosmic shear studies is that the intrinsic el-
lipticities of galaxies are expected to be uncorrelated, and that the
observed correlations are the results of gravitational lensing in-
duced by the large scale structures between those galaxies and the
observer. Hence, the detection of weak lensing signal assumes a
gravitationally induced departure from a random distribution of the
galactic shapes. Consequently, if there exists intrinsic alignments
or preferential patterns in galactic orientations, this would poten-
tially affect the interpretation from weak lensing measurements.
Several papers have already considered the ‘contamination’ of the
weak lensing signal by intrinsic galactic alignment. Usinganalytic
arguments, Catelan et al. (2001) have shown that such alignments
should exist. The issue of the amplitude of the intrinsic correlations
compared to the correlation induced by the cosmic shear has also
been explored by Croft & Metzler (2000) and Heavens et al. (2000).
The ‘intrinsic’ correlations may overcome the shear-induced signal
in surveys with a narrow redshift range. We have shown that the
orientation of satellites around haloes is not randomly distributed,
which is a clear indication of intrinsic correlations for our con-
sidered scales (∼ 500 kpc). Takingzm = 1 as a typical median
redshift for large lensing surveys, the corresponding angular scale
is 1 arcminute in our simulations’ cosmogony. Furthermore,the
prospect of studying the redshift evolution of gravitational cluster-
ing via shear measurements will require investigating narrower red-
shift bins and as such, small scale dynamically induced polarisation
might become an issue. As recommended by Catelan et al. (2001),
our measurement may also be used as a ‘numerical’ calibration of
the relation between ellipticity and tidal fields. Interestingly, they
suggested to compensate for the finite number of galaxies around
clusters by ‘stacking’ several clusters, which is precisely the pro-
cedure we followed to extract signal from our simulations. Finally,
Weak lensing predicts no ‘curl’ component in the shear field (e.g.
Pen et al. (2000)) and such ‘curl’ configurations would serveto
extract the intrinsic signal. Even though satellites exhibit both ‘cir-
cular’ and ‘radial’ configurations in our simulations, we donot ob-
serve a clear signature of a ’curl’ component of orientations at our
level of detection.
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Figure 16. A schematic representation of all estimate of anisotropic accretion considered in this paper.1): we measured the distribution of the angle between
the orbital momentum on the virial sphere and the halo’s spin. The average orbital momentum measured on the virial sphereis mostly aligned with the spin of
the halo embedded in the virial sphere (discussed in section3.2).2): we compared the accretion in the plane orthogonal to the direction of the halo’s spin with
the average accretion on the sphere. On the virial sphere, wedetected an excess of ring-like or harmonic accretion in theequatorial plane (discussed in section
3.3 and 3.4).3): in projection, we used a ‘synthetic’ halo to look at the distribution of satellites detected with ADAPTAHOP and at the orientation of their spin
around the direction of the spin. In projection, satelliteslie preferentially in the projected equatorial plane (discussed in section 5.1).4): We measured the angle
between the halo’s spin and the orbital momentum of each satellite. The orbital momentum of satellites is preferentially aligned with the spin of their hosting
core (discussed in section 4.1).5): We compared the orientation of each satellite velocity vector (in the core’s rest frame) with the orientation of their own
spin. The velocity vector of satellites (in the core’s rest frame) is orthogonal to the direction of their spin (discussed in section 4.2).6): In the equatorial plane,
the projected orientation of satellites is more ’radial’, while near the direction of the spin a ’circular’ configuration of orientation seems to emerge (discussed
in section 5.2).

Table 1. Summary of the fitting parameters for the angular correlations

angle a1 a2 a3 a4

θρL 2.351±0.006 -0.178±0.002 1.343±0.002 0.669±0.000

θρvrL 3.370±0.099 -0.884±0.037 1.285±0.016 0.728±0.001

θcs 0.399±0.003 0.059±0.008 0.881±0.005 0.938±0.000

θvs 0.295±0.004 1.544±0.001 0.804±0.005 0.914±0.001

θp 0.099± 0.003 1.548± 0.003 0.825± 0.013 0.973± 0.000

HereθρL is the angle between the halo’s spin and the angular momentum
measured on the virial sphere;θρvrL is the angle between the halo’s spin
and the accreted angular momentum measured on the virial sphere;θcs is
the angle between the core’s spin and the satellite orbital momentum;θvs

is the angle between the satellite velocity in the core ’s rest frame and the
satellite’s spin;θp is the projected angle between the satellite’s spin and
its direction relative to the core s’ position. The fitting model we used is
1 + ξ(θ) = a1/(

√
2πa3) exp

[
−(θ − a2)2/(2a2

3)
]

+ a4.

Table 2. Summary of other quantities related to anisotropic accretion

〈δm〉(z) 0.0161(± 0.0103) z +0.147 (± 0.005)

S3(δm) 0.44

ǫ(Rm) 0.1

ã20 -0.65± 0.04

ã40 0.12± 0.02

ã60 -0.054± 0.015

ã80 0.0145± 0.0014

〈δm〉(z) is the redshift evolution of the average excess of accretionin the
plane orthogonal to the direction of the spin.S3(δm) is the skewness of the
distribution of excess of accretion.ǫ(Rm) is the axis ratioa/b − 1 with
a > b of the projected satellite distribution.ã20 , ã40 , ã60 andã80 are the
normalized harmonic coefficients of the ‘equatorial’ modes.

7 CONCLUSION & PROSPECTS

7.1 Conclusion

Using a set of 500ΛCDM simulations, we investigated the proper-
ties of the spatial configuration of the cosmic infall of darkmatter
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around galactic≈ L⋆ haloes. The aim of the present work was to
find out if the existence of preferential directions existing on large
scales (such as filaments) is reflected in the behaviour of matter
accreted by haloes, and the answer is a clear quantitative yes.

Two important assumptions were made in the present pa-
per.We did not consider different class of haloes’ masses (except for
Fig. D2), but instead applied normalisations to includes all haloes in
our measurements (considering e.g. the statistical average of con-
strasts). We also did not take in account outflows and focusedon
accreted quantities.

First we looked at the angular distribution of matter at the in-
terface between the intergalactic medium and the inner regions of
the haloes. We measured the accreted mass and the accreted an-
gular momentum at the virial radius, describing these quantities as
spherical fields.

• The total (resp. advected) angular momentum measured at the
virial radius is strongly aligned with the inner spin of the halo with
a proportion of aligned configuration30% (resp.50%) more fre-
quent than the one expected in an isotropic distribution of accreted
angular momentum (1 + ξLS(0) ∼ 1.5). This result reflects the
importance of accreted angular momentum in the building of the
haloes’ inner spin.
• The accretion of mass measured at the virial radius in the ring-

like region perpendicular to the direction of the halo’s spin is ∼
15% larger than the one expected in the case of an isotropic infall
of matter.
We also detected the excess of accretion at the same level in the
equatorial plane using a spherical harmonic expansion of the mass
density flux.
• In the spin’s frame, the average of the harmonicaℓ0 coeffi-

cients does not converge toward zero, indicating that thereis a sys-
tematic accretion structured in rings parallel to the equatorial plane.

Using the substructure detection code ADAPTAHOP, we con-
firmed that the existence of a preferential plane for the infalling
mass is reflected in the distribution of satellites around haloes.
• Investigating the degree of alignment between the orbital mo-

mentum of satellites and the central spin of the halo, it is shown that
the aligned configuration is present in excess of∼ 12%. Satellites
tend to revolve in the plane orthogonal to the direction of the halo’s
spin. The two methods (using spherical fields and satellites’ detec-
tion) yield consistent results and suggest that the image ofa spher-
ical infall on haloes should be reconsidered at the quoted level.
We studied the distribution of the angle between the direction of
accretion of satellites and their own spin.
• An orthogonal configuration is5% more frequent than what

would one expect for an isotropic distribution of spin and direc-
tions of accretion. Satellites tend to be accreted in the direction
orthogonal to their own spin.

These findings are interpreted as the results of the filamentary
flows of structures, where satellites and haloes are accreted along
the main direction of filaments with their spins orthogonal to this
preferential direction. The flow along filaments also explains why
the matter is accreted preferentially in the equatorial plane at the
virial radius. The halo points its spin perpendicular to theflow and
sees a larger flux in the regions normal to the flow direction, i.e.
near the equator. Thus, it appears that the existence of preferen-
tial directions on large scales is still relevant on galactic scales and
should have consequences for the inner dynamics of the halo.

We addressed the issue of observing these alignments in projec-
tion.

• The distribution of satellites projected onto the sky is flattened,
with an axis ratio of1.1 at the virial radius.
• It seems that the orientation of satellites around their haloes

is not random, even if the two dimensional representation dilutes
the effects of alignments. The ‘radial’ orientation, wherethe satel-
lites main axis is aligned with the line joining the satellite to the
halo centre, is∼ 5% more frequent than the one expected in a
completely random distribution of orientation. The ‘circular’ con-
figuration, where the satellites main axis is perpendicularto the line
joining the satellite to the halo centre, is also present in excess com-
pared to an random distribution near the pole of the host galaxy.

All corresponding fits are summarized in Table 1 and 2, while Fig.
16 gives a schematic view of the measurements we carried out.

We investigated how the self-consistent dynamical response
of the halo would propagate anisotropic infall down to galac-
tic scales. In particular we gave the corresponding polarisation
operator in the context of an opened system. We have shown
in appendix A that accounting for dark matter infall required
the knowledge of the first three moments of the flux densities,
̟ρ(Ω, τ ),̟ρv(Ω, τ ),̟ρσiσj

(Ω, τ ).
It is suggested that the existence of a preferential plane ofac-

cretion of matter, and thus of angular momentum, should havean
influence on warp generation and disk thickening. If the anisotropic
properties of infalling matter measured in the outer parts of haloes
are conserved in the inner region of galaxies, there may exist a ’typ-
ical’ warp amplitude and this anisotropic accretion of matter may
explain the properties of warp line of nodes. In the same spirit, the
efficiency of the thickening of the disk may be enhanced or reduced
by equatorial accretion. Finally, our finding of intrinsic alignments
on small scales as well as specific orientations of structures should
be relevant for cosmic shear studies on wide and shallow surveys.

7.2 Prospects

The main purpose of our investigation was to provide quantitative
measurements of the level of anisotropy involved in the infall on
scales6 500 kpc. The next step should clearly involve working
out quantitatively their implications for warp, disk heating etc... as
was discussed in section 6.

Our measurements were carried out atR200, which on galac-
tic scales is a long way from the inner region of the galaxy. One
should clearly propagate the infall (and its anisotropy) towards the
centre of the galaxy, and more radial infalling components will
play a more important role and should be weighted accordingly.
It should also be stressed that we did not take into account the extra
polarisation induced by the presence of an embedded disk, which
will undoubtedly reinforce the polarisation and the anisotropy of
the infall. We also concentrated on mass accretion, as the lowest
order moment of the underlying “fluid” dynamics. Clearly higher
moments involving the anisotropically accreted momentum,the ki-
netic energy etc. are dynamically relevant for the evolution of the
central object as is discussed in section 6 and in the appendix. The
time evolution of the statistics of these flux densities is also es-
sential for the inner dynamic of the halo and should be addressed
systematically as well. It will be worthwhile to explore different
cosmologies and their implications on small scale dynamics, and
on the characteristics of infalling clumps, though we hope that the
qualitative results sketched here should persist.

It should be emphasized that some aspects of the present work
are exploratory only, in that the resolution achieved (Mhalo >
5 · 1012M⊙) is somewhat high forL⋆ galaxies. In fact, it would
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be interesting to see if the properties of infall changes forlower
mass (Mhalo < 5 · 1010M⊙) together with the intrinsic proper-
ties of galaxies. In addition a systematic study of biases induced by
the estimators of angular correlations should be conducted, e.g. the
mass weighted errors we introduced in section 3.2.

Observationaly, the synthetic halo described in section 5.1
could be compared to stacked satellite distributions relying on
galactic surveys such as the SDSS. Once the anisotropy has been
propagated to the inner regions of the galactic halo following the
method sketched in section 6, we should be in a position to com-
pile a synthetic edge-on galactic disk and compare the flaring of
the disk with the corresponding predictions. The residual preferred
orientation of galactic disks around more massive objects discussed
in section 5.2 should be observed on the scales6 500kpc.

Using larger simulations will allow us to combine high resolu-
tion with the statistics required to detect the anisotropicaccretion of
mass and angular momentum. A wide range of halo masses will be-
come accessible and the halo mass dependency of our findings will
be constrained without suffering from the lack of statistics. Better
angle determinations will naturally follow from a better resolution
and will improve the accuracy of our quantitative results. Resimu-
lations (zoom simulations) should give access to a larger range of
satellite masses, while we were here mostly sensitive to thebiggest
substructures. Large infalling objects are likely to feel differently
the effects of tidal forces or dynamical friction than smaller satel-
lites. Resimulated haloes allow us to investigate the dependency on
the spatial distribution of satellites with their masses correspond-
ing to a given cosmological environment. However using onlya
few resimulations may not be sufficient to overcome cosmic vari-
ance and, given the difficulty to produce a large number of high
resolution haloes, such a project remains challenging.

The inclusion of gas physics in these simulations and their
impact on the results is the natural following step. For example,
gas filaments are known to be narrower than dark matter filaments,
thus we expect to see a higher level of anisotropy in the distribu-
tion of accreted gas by the haloes. Furthermore, the transmission
of angular momentum from one parcel of gas to another (or to the
underlying dark matter) may be highly effective and would lead
to higher homogeneity of the properties of the accreted angular
momentum direction, enhancing the effect of spin alignments. The
loss of angular momentum from the gaz to the halo will lead to a
modification of our pure dark matter findings. Yet, the inclusion of
gas physics in simulations would force us to address issues such as
the over-cooling, the requirement to take star formation and related
feedback processes into account. It remains that in the longer term,
the inclusion of gas physics cannot be avoided and will give new
insights into the anisotropic accretion of matter by haloes.
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APPENDIX A: LINEAR RESPONSE OF A SPHERICAL HALO TO INFALLING DARK MATTER FLUXES

In the following section, we extend to open spherical stellar systems the formalism developed by Tremaine & Weinberg (1984) and e.g.
Murali (1999) by adding a source term to the collisionless Boltzmann equation.1 For an open system, the dark matter dynamics within the
R200 sphere is governed by the collisionless Boltzmann equationcoupled with the Poisson equation:

dF

dt
≡ ∂F

∂t
+ {F,H} = se(r,v, t), and ∇2Ψ = 4πG

∫
d3vF (v). (A1)

where{ } is the standard Poisson bracket,F (r,v, t) is the system’s distribution function submitted toΨ(r, t), the total gravitational potential
(self-gravity + external perturbation). The r.h.s. of (A1)is non-zero because of infalling fluxes from the environmentwhich require adding a
source term,se(r,v, t), to the Vlazov equation. We may now discriminate between a stationary part corresponding to the unperturbed state
from a weak time-dependent perturbation induced by the environnement. Thus the DF can be written asF = F0 + f . Provided the mass
of the incoming flux of dark matter is small compared to the mass of the halo, we may assume thatf is small compared toF0. Similarly,
the HamiltonianH of the system can be expanded asH0 + ∆H , with ∆H = ψe + ψ whereψe andψ stand respectively for the external
perturbative potential and for the small response in potential of the open system.

A1 The Boltzmann equation in action-angle

Given the periodicity of the system, the most adequate representation of a spherical halo corresponds to action-angle variables (Goldstein
(1950)). The linearized Boltzmann equation in such a representation is:

∂fk(I, t)

∂t
+ ık · ωfk(I, t) = ık · dF0

dI
∆Hk(I, t) + se

k(I, t). (A2)

The new variables are the actionsI and the anglesw together with the angular ratesω ≡ dw/dt. In equation A2 we have Fourier expanded
the linearized equation A1 over the periodic angles:

X(r,v, t) =
∑

k

Xk(I, t) exp (ık · w), with Xk(I, t) =
1

(2π)3

∫
d3

w exp(−ık · w)X(r,v, t), (A3)

whereX is any function of(r,v, t) with k being the Fourier triple index corresponding to the three degrees of freedom on the sphere. The
equilibrium stateF0 does not depend on time nor angles since it is assumed to be stationary. Then the solution to (A2) can be written as:

fk(I, t) =

∫ t

−∞

dτ exp(ık · ω(τ − t))
[
ık · dF0

dI
[ψk(I, τ ) + ψe

k(I, τ )] + se
k(I, τ )

]
, (A4)

where we have written∆Hk(I, τ ) = ψk(I, τ ) + ψe
k(I, τ ). We can integrate (A4) over velocities and sum overk to recover the density

perturbation:

ρ(r, t) =
∑

k

∫ t

−∞

dτ

∫
d3

v

(
exp(ık · ω(τ − t) + ık · w)

[
ık · dF0

dI
[ψk(I, τ ) + ψe

k(I, τ )] + se
k(I, τ )

])
. (A5)

Let us expand the potential and the density over a bi-orthogonal complete basis function{ψ[n], ρ[n]}such that

ψ(r, t) =
∑

n

an(t)ψ[n](r) ; ρ(r, t) =
∑

n

an(t)ρ[n](r) ; ∇2ψ[n] = 4πGρ[n] ;

∫
d3

rψ[n]∗(r)ρ[p](r) = δn
p . (A6)

The external potential can be expanded along the same basis as:

ψe(r, t) =
∑

n

bn(t)ψ[n](r). (A7)

Note that in Eq. (A6) the expansion runs over a triple indexn ≡ (n, ℓ,m) corresponding to the radial, azimuthal and alt-azimuthal degrees
of freedom, while in Eq. (A6) the three coefficients are not independent since the radial variation of the external potential is fixed by its
boundary value on the sphereR200. Making use of the biorthogonality, multiplying (A5) byψ[p]∗(r) for some givenp and integrating over
r yields:

ap(t) =
∑

k

∫ t

−∞

dτ

∫ ∫
d3

vd3
r exp(ık · ω(τ − t) + ık · w)ψ[p]∗(r)

[∑

n

ık · dF0

dI
[an(τ ) + bn(τ )]ψ

[n]
k (I) + se

k(I, τ )

]
(A8)

1 This is formally equivalent to summing the response of the halo to a point-like particle for all entering particles.
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A2 Self-consistency of the response

We may now swap from position-velocity to angle-action variables sinced3vd3r = d3wd3I. In (A8) onlyψ[p](r) depends onw so we may
carry thew integration overψ[p]∗, yieldingψ[p]∗

k (I) which leads to

ap(t) =
∑

k

∫ t

−∞

dτ

∫
d3

I exp(ık · ω(τ − t))

[∑

n

ık · dF0

dI
[an(τ ) + bn(τ )]ψ

[p]∗
k

(I)ψ
[n]
k

(I) + se
k(I, τ )ψ

[p]∗
k

(I)

]
(A9)

Note that the last term of Eq. (A9) corresponds to the modulated potential along the unperturbed trajectories weighted by the number of
entering particles with(v,Ω) at timeτ . This is expected since it just reflects the fact that could have linearly summed over all incoming indi-
vidual particles (since the interaction between particlesin a collisionless fluid is purely gravitationnal). In this sense, this terms corresponds
to a ray tracing problem in a variable index medium. Note alsothat Eq. (A9) does not account for dynamical friction since we integrate over
the unperturbed trajectories. At this point, we expand the source term over a complete basis; this basis should also describe (known) velocity
space variations. We assume that such a basisφ[n](r,v) exists. We write:

se(r,v, t) =
∑

n

cn(t)φ[n](r,v) so se
k(I, τ ) =

∑

n

cn(τ )σ
[n]e
k (I) where σ

[n]e
k (I) ≡ 1

(2π)3

∫
d3

w exp(−ık · w)φ[n](r,v). (A10)

Calling a(τ ) = [a1(τ ), · · · , an(τ )], b(τ ) = [b1(τ ), · · · , bn(τ )], c(τ ) = [c1(τ ), · · · , cn(τ )], andΘ(τ ) the Heaviside function, we define
two tensors:

Kpn(τ ) = (1 − Θ(τ )) ·
∑

k

∫
d3

I exp(ık · ωτ )ık · dF0

dI
ψ

[p]∗
k (I)ψ

[n]
k (I), (A11)

which depends only on the halo equilibrium state viaF0 and

Hpn(τ ) = (1 − Θ(τ )) ·
∑

k

∫
d3

I exp(ık · ωτ )σ[n]e
k (I)ψ

[p]∗
k (I), (A12)

which depends only on the expansion basis, equation (A9) becomes:

a(t) =

∫ ∞

−∞

dτ {K(τ − t) · [a(τ ) + b(τ )] + H(τ − t) · c(τ )} . (A13)

We now perform a Fourier transform with respect to time, hence convolutions become multiplications and we get:

â(p) = (I− K̂(p))−1 ·
[
K̂(p) · b̂(p) + Ĥ(p) · ĉ(p)

]
, (A14)

wherep stands for the frequency conjugate to time. The computationof the variance-covariance matrix is straightforward:

〈â · â∗
⊤〉 = 〈(I− K̂)−1 ·

[
K̂ · b̂ + Ĥ · ĉ

]
·
[
K̂ · b̂ + Ĥ · ĉ

]⊤∗ · (I− K̂)−1∗⊤〉 , (A15)

whereI the identity matrix. Note that〈â · â∗⊤〉 involves autocorrelation like〈b̂ · b̂∗⊤〉 and〈ĉ · ĉ∗⊤〉 but also cross correlation terms such

as〈b̂ · ĉ∗
⊤〉. In other words, recalling thatb andc stand respectively for the expansion coeficients of the external potential, Eq. (A7), and

the parametrized velocity distribution, Eq. (A10), their cross-correlation willin finemodify the correlation of the response of the inner halo.
Two-points statistics are sufficient to caracterize stationnary perturbations and therefore the induced response. Nevertheless, higher statistics
of the response can be easily expressed in terms of higher order correlations of the pertubation if needed. For example, it can be shown
that the three-point correlation function of the response’s coefficients can be written as function of the two- and three-points correlation of
the perturbations’ coefficients. There are yet quite a few caveats involved; for instance, it is not completely clear today that we have a good
understanding of what the unperturbed distribution function of a halo+disk should be.

A3 The source term

A possible choice2 for the source term consistent with the first two velocity moments of the entering matter, involves constructingse(r,v, t)
in the following manner:

se(r,v, t) =
∑

m

Ym(Ω)
δD(r −R200) ˆ̟ ρ,m(t)(2π)−3/2

det| ˆ̟ ρσiσj ,m(t)/ ˆ̟ ρ,m(t)| exp

[
−1

2

(
v − ˆ̟ ρv,m(t)

ˆ̟ ρ,m(t)

)⊤ (
ˆ̟ ρσiσj ,m(t)

ˆ̟ ρ,m(t)

)−1(
v − ˆ̟ ρv,m(t)

ˆ̟ ρ,m(t)

)]

≡
∑

m

Ym(Ω)δD(r −R200)Cm(v, t) , (A16)

wherem stands for the two harmonic number,(ℓ,m) andYm(Ω) ≡ Y m
ℓ (Ω). Here the Dirac functionδD(r−R200) is introduced since we

measure the source terms at the virial radius. The global form is Gaussian and is constructed usingˆ̟ ρ,m, ˆ̟ ρv,m, ˆ̟ ρσiσj ,m, the harmonic

2 An alternative choice is made in Aubert & Pichon (2004) to account for the bimodality of the velocity distribution.
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components of respectively the mass flux density field, velocity flux density vector field and the specific kinetic energy flux density tensor
field measured on theR200 sphere. When taking the successive moment of this flux distribution over velocity, we get:
∫

d3
vse(r,v) = ̟ρ(r) ,

∫
d3

vvse(r,v) = ̟ρv(r) , (A17)

while
∫

d3
v(vi − ̟ρv,i

̟ρ
) (vj − ̟ρv,j

̟ρ
)se(r,v) = ̟ρσiσj

(r) +

(∑

m

Ym(Ω)δ(r −R200)
ˆ̟ ρv,m(t)2

ˆ̟ ρ,m(t)
− ̟ρv(r)2

̟ρ(r)

)
≈ ̟ρσiσj

(r), (A18)

so that the Ansatz, Eq. (A16), satisfy the first two moments, and approximatively the third moment of the fluid equations. Let us now expand
Cm(v, t) over a linear complete basis, say b-splines covering the radial velocity component and spherical harmonics for the angle distribution
of the velocity vector:

Cm(v, t) =
∑

α

Cm,α(t)bα(v). (A19)

The particular choice of Eq. (A16) has led to the parametrisation:

cn(t) = Cm,α(t) and φ[n](r,v) = bα(v)Ym(Ω)δD(r −R200) , (A20)

while Eq. (A10) becomes

σ
[n]e
k

(I) =
1

(2π)3

∫
d3

w exp (−ık · w)Ym[Ω(I,w)]bα(v[I,w])δD(r(I,w) −R200) . (A21)

Note that we can make use of theδD function occurring in Eq. (A21) sincewr ≡ w̃r(r, I). Therefore Eq. (A21) reads:

σ
[n]e
k (I) =

∫
d2w

(2π)3

∫
dwr exp (−ık · w)Ym[Ω(I,w)]bα(v[I,w])

1

|∂w̃r/∂r|−1
δD(wr − w̃r[R200, I]) ,

=

∫
d2w

(2π)3
exp (−ık · w)Ym[Ω(I,w, w̃r[R200, I])]bα(v[I,w, w̃r(R200, I)])

ωr(I)

|ṙ(R200, I)|
exp (−ıkr · w̃r[R200, I]) (A22)

In Eq. (A22) we sum over all intersections of the orbitI with theR200 sphere, at the radial phase corresponding to that intersection (with a
weight corresponding toωr/|ṙ|).

Given Eq. (A6), Eq. (A16), together with Eq. (A22), Eq. (A13)can be recast formally as

ρ(r, t) = R{F0, t, τ,Ω}
[
ψe(Ω, τ ),̟ρ(Ω, τ ),̟ρv(Ω, τ ),̟ρσiσj

(Ω, τ )
]

(A23)

which corresponds to the form given in the main text in Equation 31. It should be emphasized once again that the splitting of the gravitationnal
field into two components, one outside ofR200, and one inside, via point particles obeying the distributionse(r,v, t) is completely arbitrary
from the point of view of the dynamics. In fact, one should account thatψe(Ω, t) should be switched on long before any particles enterR200

since no particle is created at the boundary. This last constraint is clearly satisfied by our simulations.
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APPENDIX B: ADAPTAHOP: A SUBSTRUCTURE
FINDER BASED ON SADDLE POINT HANDLING

Dark matter haloes can contain a hierarchy of subhaloes, which
can be viewed as a tree of structures and sub-structures. Given a
mass resolution (a finite number of particles such as in ourN -body
simulations), there is a limit to this hierarchy, which can be for-
malised as an ensemble of leaves in a tree. The goal here is to draw
this tree by applying the simplest principles of Morse theory (e.g.
Jost (2002)). Morse theory basically involves relating thetopology
of an excursion, e.g., the regions of space with density above a
given threshold,ρ > ρt, to the set of critical points it contains,
{x,∇ρ(x) = 0}, and to the field lines connecting these points
together, i.e. the curves obtained by following the gradient of the
density field. In that approach, the smallest substructures, which
are the leaves of the tree, can be identified as peak patches, i.e. en-
sembles of field lines converging to the same local maximum. The
connectivity between substructures is ruled by the saddle points,
which are local maxima in the surfaces defining the contours of the
peak patches: from the knowledge of these saddle points and the
local maxima they connect, it is possible to extract the fulltree of
structures (haloes) and sub-structures (subhaloes) in four steps:

(i) In order to eliminate, at least partly, the effects of Poisson
noise and to have an estimate of the local density as close as pos-
sible to a Morse function,3 while conserving as much as possible
details of the distribution, we perform adaptive smoothingof this
distribution with standard SPH technique (Smooth ParticleHydro-
dynamics, e.g. Monaghan (1992)). This smoothing assumes that
each particle is a smooth spherical cloud of given radiusR, e.g. a
splineS(r). For each particle, the list of itsNSPH closest neighbors
is found, typicallyNSPH of a few tens (here we takeNSPH = 64).
The distance from the furthest neighbor fixesR, while the SPH
density at the particle of interest is estimated by a summation over
its neighbors with weightS(r). To find rapidly the closest neigh-
bors of each particle, we use a standard Oct-tree algorithm,which
decomposes hierarchically space in subcells untill they contain zero
or one particle.

(ii) The leaves of the tree of structures and substructures are
identified while associating each particle to the peak patchit be-
longs to. This is performed by a simple walk from particle to parti-
cle, while following the gradient until convergence: at each step of
the walk, the SPH density of the particle is compared to itsNHOP

closest neighbors (which were stored during the SPH smoothing
step), the particle for the next step of the walk being the onewith
the largest SPH density. We takeNHOP = 16, as advocated by
Eisenstein & Hut (1998).

(iii) For each leave of the tree, the connections with the other
leaves are created by searching the saddle points on the intersect-
ing surfacesSij between peak patchesi andj. Each surfaceSij is
made of particles belonging to one of the peak patches and having
at least one of their closest neighbors amongNHOP in the other
peak patch, and vice versa. If the setSij contains only particles
belonging toi or only particles belonging toj, the connection be-
tweeni andj is considered as non significant (because non sym-
metric) and eliminated,Sij = . Saddle points are local maxima in
Sij . To establish the connectivity as a function of a density thresh-
old, only the highest saddle point matters, when there are several.

3 i.e. a smooth function such that the ensemble of critical point is discrete
and the matrix of second derivatives in their neighborhood is non degener-
ate.

The search for this saddle point involves finding the maximumof
the SPH density among particles belonging toSij . We proceed as
follows to estimate accurately the SPH density inSij . For each par-
ticleA in Sij , say belonging to peak patchi and with densityρA,
we consider the list of its closest neigbors amongNHOP belong-
ing to peak patchj, with densityρk, k = 1, · · · , Nj 6 NHOP.
The density associated to this particle inSij is then given by
ρ = min(ρA, ρk). By applying this procedure, we locate accu-
ratelySij and avoid slight overestimation of the SPH density at the
saddle point.

(iv) It is possible to build the tree of structures and sub-
structures, when the list of neighboring leaves to which a given
leave is connected is given, as well as the corresponding saddle
points. This is performed recursively by increasing progressively
a threshold parameter,ρt, from an initial value,ρTH, correspond-
ing to the typical overdensity used to select galaxy haloes,here
called structures. A typical choice forρTH is ρTH = 81, which
corresponds approximately to friend-of-friend haloes selected with
a linking paremeterb = 0.2 (e.g., Eisenstein & Hut (1998)). Sup-
pose we are at stepn of the process and let us compute stepn+ 1.
At this point, we are sitting on a branch of the tree –a structure
or a sub-structure– and we aim to draw the details of this branch.
This (sub-) structure contains a number of peak patches connected
by saddle points of densitiesρs. For the considered value ofρt, the
connections inside that (sub-) structure are examined and destroyed
whenρs < ρt. The (sub-) structure is then broken into as many
components as necessary. During the process, the particlesabove
ρt belonging to each sub-component are tagged, which allows us
to determine at any time various properties of a given (sub-)struc-
ture, namely the number of particles it contains, its mass, its aver-
age and maximum SPH density, for possible application to various
morphological criterions of selection. One such criterionis Poisson
noise. In order to asses if a given sub-structure containingN par-
ticles should be considered as statistically significant compared to
Poisson noise, its average density must be sufficiently significant
compared toρt:

〈ρ〉sub−structure > ρt

[
1 +

fPoisson√
N

]
, (B1)

wherefPoisson is a “fPoissonσ” detection parameter, typically a few
unities. A good choice isfPoisson = 4. If the sub-structure is below
this threshold, it disappears, i.e. it is not considered in next step of
the recursion. At the end of the selection, two situations are possi-
ble: (i) two sub-structures or more are detected and new nodes are
created in the tree (ii) the (sub)-structure was not broken into mul-
tiple components and nothing happens at this step. The process is
then repeated on the new sub-structures by increasing locally the
thresholdρt:

ρt → ρt ×
[
1 +

fPoisson√
N

]
, (B2)

until there is only one peak patch in the (sub-)structure. Note that
the Poisson noise selection, eq. (B1) is not applied to the haloes,
whenρt = ρTH.

At the end of the process, one obtains a tree of structures and
sub-structures, where each node of the tree corresponding to a (sub-
)structure, with its position, its number of particles, is mean square
radius, its average and maximum SPH density, and the densityρs of
the highest saddle point which connects it to another substructure.
In addition, a flag is given to each particle. This flag is a pointer to
the node the closest possible to a leave (if not a leave), which allows
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one to find recursively the list of particles belonging to any(sub-
)structure and thus perform some more ellaborate post-treatement,
such as some relying on dynamical prescriptions (boundness). The
difficulty in that case is to estimate accuratly the gravitational po-
tential. Its computation can be rather costly, since “pealing” the
(sub-)haloes requires iterating several forward and backward walks
in the tree of structures and sub-structures with corresponding cal-
culations of the gravitational potential. Our prescription is there-
fore at the present time purely morphological and does not involve
the estimate of the gravitational potential. The current implemen-
tation is rather fast, most of the CPU time being taken by the SPH
smoothing, e.g. 1-3 hours on 16 millions particles on current fast
scalar processors.

Our algorithm is called ADAPTAHOP since we aim at im-
proving HOP (Eisenstein & Hut (1998)): the first two step above
are exactly the same as in HOP, but the last two are different.In-
deed, in HOP, the idea is to combine informations on the saddle
point densities,ρs, on the local maxima,ρmax, inside a connected
set of peak patches to decide whether it has to be broken into mul-
tiple disjoint haloes. The aim of HOP is indeed to improve stan-
dard friend-of-friend methods in order to obtain more compact and
spherical haloes. The goal of ADAPTAHOP is quite different since
it focuses on sub-structure detection.

In spirit, ADAPTAHOP is in fact very similar to the substruc-
ture finder of Springel (1999): SUBFIND (see also Springel etal.
(2001)). Of course, there is a major difference, since SUBFIND
has in addition a sophisticated dynamical prescription involving
exact calculation of the gravitationnal potential. Springel uses also
a slightly more elegant method to construct the tree of structures
and substructures prior to dynamical post-treatment. After step one
above, the idea is to rank the particles by decreasing density and
treat them in this order. Investigating the distribution ofparticules
is such a way is equivalent to examining isocontours of decreasing
density. It uses (as in ADAPTAHOP) the closests neighbors ofa
particle to decide if the particle examined during the process (i) cre-
ates a new (sub-)structure since it is isolated (ii) belongsto an ex-
isting substructure or (iii) connects two substructures, which makes
the construction of the tree of structures and substructures much
simpler than in ADAPTAHOP and more accurate, since there no
need for using the threshold parameterρt. In SUBFIND, no treat-
ment is made to account for the local Poisson noise: it is not nec-
essary because of the dynamical post-processing, which destroys
unbounded structures.

It is important to note that since ADAPTAHOP has no dynam-
ical post-treatment, it gives slightly different results compared to
SUBFIND in its present form. In particular, for a given sufficiently
massive dark matter halo , SUBFIND (Springel et al. (2001)) de-
scribes it in terms of a large, smooth central component, anda
bunch of much less massive sub-haloes. In ADAPTAHOP, the re-
sult is quite similar, except that the central component is much less
spatially extended (it is extended up to the isocontour level corre-
sponding to the saddle point connecting it to a sub-halo), and it is
therefore less massive.

Fig. B1 illustrates how well ADAPTAHOP performs in one of
the simulations we realized for this work, for the most massive halo
detected in this realization.

APPENDIX C: STATISTICS ON THE SPHERE

When dealing with spherical fields, there are different waysto char-
acterize their angular structure. In the present paper, we essentially

Figure B1. Illustration of the output of ADAPTAHOP for one of the simu-
lations of this work. A sphere of radius 5 Mpc centered on the most massive
halo is represented. In the upper pannel, the dark matter density is shown
using a logarithmic scale. Darker regions correspond to higher density con-
trasts. The lower pannel displays the detected subhaloes (i.e. the most el-
ementary structures corresponding to the peak patches or the leaves of the
tree). The size of the circle scales withM1/3, whereM is the mass of the
subhalo. Most of the subhaloes seen on the figure belong to themost mas-
sive halo. Clearly, ADAPTAHOP is rather successfull at detecting all the
significant substructures.

deal with centered statistics, i.e. we describe the angularstructura-
tion of scalar or vector fields relative to a specific direction, defined
by the halo or satellite’s spinS. Let us first formally introduce fil-
tering on the sphere, statistical and angular averages, andpresent
one-point statistics (probability distribution functions) while post-
poning two-point statistics (correlation functions, or excess proba-
bility of joint events) to Aubert & Pichon (2004).
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C1 One point statistics

For any field,x, on the sphere, let us introduce the smoothed field,
(x)α (filtered on scaleα) , as

(x)α(Ω) ≡ 1∫
Θα(Ω′)dΩ′

∫
Θα(Ω′ − Ω)x(Ω′)dΩ′ (C1)

≡
∫
wα(Ω −Ω

′)x(Ω′)dΩ′, (C2)

whereΘαstands for the top hat function,

Θα(Ω) = 1 if |ϑ| 6 α, (C3)

andwα is defined by C7 the standard top hat filter on the sphere.
Consider now the centered top-hat-filtered (on scaleα) field,

[x]α, defined by

[x]α ≡ (x)α(
π

2
), (C4)

≡ 1∫
Θα(Ω′)dΩ′

∫
Θα(ϑ′ − π/2)x(Ω′)dΩ′, (C5)

≡
∫
Wα(Ω′)x(Ω′)dΩ′. (C6)

Note that Eq. (C6) definesWα. Our filtering is now centred, in that
the average is carried on a window which is centred at the equatorial
plane (since we are in this paper interested in the polarisation of
accretion processes with respect to that plane). Let us alsointroduce
the average ofx on the sphere, as

x̄ ≡ (x)π/2 =
1∫
dΩ

∫
x(Ω)dΩ, (C7)

We may also for a givenx define its contrast as

δx ≡ x

x̄
− 1. (C8)

Note that, in contrast to standard cosmology, we expect thatx̄ 6=
〈x〉, (i.e. no ergodicity) since the angular average over one virial
sphere is not representative of the whole cosmological set,and
since〈x〉 depends onϑ whereas̄x doesn’t. As a consequence,

〈δx〉 = 〈x
x̄
〉 − 1 6= 〈x〉

〈x̄〉 − 1 .

Consider now the top-hat-filtered-centred flux density contrast,
[δ̟]α, defined by

[δ̟]α ≡ (δ̟)α(π/2) =
1

¯̟

∫
Wα(Ω)̟ dΩ− 1 . (C9)

Since by construction,[δ̟]α, is a filtered version ofδ̟, it inherits
some of it statistical properties. In particular, the PDF ofδ̟(π/2)
and[δ̟]α should be quite similar providedα is small enough.

In the main text, we consider the anisotropic parameter,δm ≡
[δρvr ]π/8, which therefore corresponds formally to the centered
top-hat-smoothed (on scales ofπ/8) mass flux density contrast.
Following the same spirit, we could also consider quantities such
as[δρvrv2 ]π/8, which would measure the anisotropy in the accreted
kinetic energy: the excess of accreted kinetic energy should allow
us to track the excess of incoming virialised objects in the equa-
torial plane without performing their explicit identification. One
should also consider[δρvrL]π/8, the anisotropy in the accreted mo-
mentum, since this quantity is directly related to the torque applied
onto the system by the infall. More generally still we could inves-
tigate (δ̟)α(ϑ), the flux density contrast top-hat-smoothed on a
ring of sizeα centred onϑ.

Note that we can think of the harmonic coefficients,am
ℓ in-

troduced in section 3.4 as a specific type of filtering, where the
window function,Wα, is replaced by an axisymmetric spherical
harmonic,Y 0

ℓ (Ω):

[δ̟]ℓ =
1

¯̟

∫
Y 0⋆

ℓ (Ω)̟(Ω) dΩ =
a0

ℓ

¯̟
. (C10)

We can also writē̟ in terms of spherical harmonics:

¯̟ ≡ 1

4π

∫
̟dΩ =

1√
4π

∫
Y 0⋆

0 (Ω)̟dΩ =
a0
0√
4π
. (C11)

Therefore we obtain :

[δ̟]ℓ =
a0

ℓ

sign(a0
0)
√
C0

, (C12)

whereC0 = |a0
0|2/4π is theℓ = 0 component of the angular power

spectrumCℓ.
Since a step function can be expanded along spherical har-

monics as

Θα(ϑ− π

2
) =

∑

ℓ

bℓY
0

ℓ (ϑ, 0) ; (C13)

therefore,[δ̟]α defined by Eq. C9 obeys

[δ̟]α =
∑

ℓ

bℓ [δ̟]ℓ − 1. (C14)

Takingx = ρvr for example, we have :

δ[ρvr](ϑ, ϕ) =
∑

ℓ,m

dm
ℓ Y

m
ℓ (ϑ,ϕ) =

ρvr(ϑ, ϕ)

ρvr
− 1, (C15)

where

ρvr =
1

4π

∫
dϑdϕρvr(ϑ,ϕ) sinϑ =

a0
0√
4π
. (C16)

Since
∫

dϑdϕYm
ℓ (ϑ,ϕ) sinϑ =

√
4πδl0δm0

(e.g. Varshalovich et al. (1988)), we find :

dm
ℓ = ãm

ℓ −
√

4πδl0δm0. (C17)

We finally obtain :

δ[ρvr](ϑ, ϕ) =
∑

ℓ,m

ãm
ℓ Y

m
ℓ (ϑ,ϕ) − 1. (C18)

APPENDIX D: CONVERGENCE ISSUES

D1 Substructures & the haloe’s spin

For each tree of substructure-satellites, we computed the total spin
inside the mother structure,SM , and the momentum of each sub-
structure inside the mother structure,Ls. Then we compared the in-
ner satellites’ and the contribution of the core to the mother’s spin.
The comparison is only made on the components of the substruc-
tures momentum parallel to~SM . The results are shown in Fig. D1.
We plotted thetotal contribution of satellites to the mother’s spin
versus the core’s contribution. From the barycenter of the distribu-
tion shown in Fig. D1, it appears that substructures containabout
80 % of the total host’s spin with a satellites contribution of 50%
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Figure D1. Comparison of the substructure’s and the core’s contribution to
the amplitude of the mother’s spin and to the mother’s mass.Top: Compar-
ison of the core’s contribution to the mother’s spin compared to the con-
tribution of all the satellites for each mother detected in our simulations.
Bottom: same comparison but for the core’s and satellites’ mass relative to
the mother’s total mass. In both figures, the symbol indicates the barycenter
of the cloud of points while the thick line’s slope is unity. While the total
mass is dominated by the core’s contribution, the mother’s spin is domi-
nated by satellites showing that their specific orbital momentum is more
important than that of the core.

and about 30% for the core. The bottom panel shows the total con-
tribution of substructures to the mother’s mass versus the contribu-
tion of the core. As expected given the definition of the core,we
found that the relative proportion are almost reversed compared to
the previous plot. A core contains about half of the total mass while
satellites represent about 40% of the total mass. Clearly the specific
angular momentum is larger in satellites than in the core. The dis-
tance of satellites relative to the mother’s centre and their velocities
induce a ‘lever arm’ effect. Even if satellite remnants are light in
terms of mass they are important if not dominant for the spin of the
galactic system. This effect also suggests that the mother’s spin is
aligned with the orbital momentum of infalling satellites because
they determine the direction of the halo’s spin.

D2 the mass dependence of 〈δm〉
We measured the average excess of accretion〈δm〉 ( see sec-
tion 3.3) for three different class of masses at redshift z=0: 5 ·
1012M⊙ < m < 1.25 · 1013M⊙, 1.25 · 1013M⊙ < m <
2.5 · 1013M⊙ andm > 2.5 · 1013M⊙. Each class contains ap-
proximatively 16 500 haloes. The results are shown in Fig. D2. It
is found that〈δm〉 increases with mass but does not change signif-
icantly even if the three classes cover different mass magnitudes.

3 σ error
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Figure D2. Comparison of〈δm〉 for different classes of halo mass at z=0.
The error bars stand for the 3σ error. The thin lines separate the three classes
of mass:5 · 1012M⊙ < m < 1.25 · 1013M⊙, 1.25 · 1013M⊙ < m <
2.5 · 1013M⊙ andm > 2.5 · 1013M⊙. Each class contains 16500 haloes.

Consequently, no class of mass dominates when all the haloesare
being used in the computation of〈δm〉.
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