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Cellular Automata (CA) are a class of discrete dynamical systems that
have been widely used to model complex systems in which the dynam-
ics is specified at local cell-scale. Classically, CA are run on a regular
lattice and with perfect synchronicity. However, these two assump-
tions have little chance to truthfully represent what happens at the
microscopic scale for physical, biological or social systems. One may
thus wonder whether CA do keep their behavior when submitted to
small perturbations of synchronicity.

This work focuses on the study of one-dimensional (1D) asynchronous
CA with two states and nearest-neighbors. We define what we mean
by “the behavior of CA is robust to asynchronism” using a statistical
approach with macroscopic parameters. and we present an experimen-
tal protocol aimed at finding which are the robust 1D elementary CA.
To conclude, we examine how the results exposed can be used as a
guideline for the research of suitable models according to robustness
criteria.

1. Introduction

The aim of this article is to study the robustness to asynchronism
for cellular automata. In other words, we propose to examine some
qualitative and quantitative aspects of the change of behavior that are
induced when the cells are no longer updating their state systematically
at each time step.

The first study of the effect of asynchronism was carried out in 1984
by Ingerson and Buvel in [19] :

“ (...) Cellular automata exhibit such remarkable self-organization
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that it is certainly tempting to consider the possibility that they
may be a valid model for real-world systems, such as the growth
of biological organisms, crystals, snowflakes, etc. However, one
commonly made assumption about these systems is that the
cell iterate synchronously. We wanted to estimate how much of
the interesting behavior of cellular automata comes from syn-
chronous modeling and how much is intrinsic to the iteration
process.”

The authors carried out experiments on the space of “elementary cel-
lular automata” rules (see 2.2) and showed that varying the iteration
process produced significant change in the evolution of some cellu-
lar automata whereas some other cellular automata were not affected
by the modifications. The study was however purely qualitative and
no algorithmic method was proposed to systematically estimate these
changes.

In 1993, Huberman and Glance criticized the use of CA as a mod-
eling tool that could be suitable for describing real-world phenomena
[11]. The model they studied is a spatially-extended version of the
prisoner’s dilemma “with no memories among players and no strategi-
cal elaboration” introduced by Nowak and May in [14]. They argued
that the model was not realistic because it used the assumption that
the actors all updated their strategy synchronously. Their experiments
showed that when the perfect synchrony assumption was dropped, sig-
nificant changes of behavior were observed. At the same time, similar
ideas were developed by Stark in the field of biology[18].

In 1994, Bersini and Detours studied an asynchronous version of the
Game of Life [2]. They observed that the introduction of asynchrony
led to modifying the dynamics from a behavior with long transients to
a behavior with fixed points. The authors explained this property by
identifying some asynchronous CA with Hopfield neural network and
by proposing a description of the asynchronous behavior in terms of
Lyapunov energy functions. This raised the question to know whether
the stabilization effects was to be observed for any model or was specific
to the models chosen by the authors. This article partially answers
this question by exhibiting counter-examples for which the increase of
asynchronism leads to less stability (see Section 3.5.3).

The first quantitative study of the influence of the way transitions
were made in CA were carried out by Schönfisch and de Roos [17]. The
authors use explicit functions for updating the cells and show that the
evolution of a cellular automaton might strongly depend on the corre-
lation between the spatial arrangement of cells and the order of their
update. For example, if the cells are arranged in a line, one could con-
sider the possibility of updating the cells one-by-one from left to right.
The correlation between the updating method order and the spatial
position of the cells is analytically estimated and it appears that for

Complex Systems, 11 (1997) 1–1+



3

some type of updating methods, the evolution of the cellular automa-
ton becomes strongly dependent on the lattice size. The important
result is that among the different update methods studied, the only
method which did not introduce any spurious correlations consisted in
choosing the cells of the lattice randomly with an equal probability for
each cell. In the study we here present, we only consider this partic-
ular type of asynchronism and rather concentrate on the study of the
phenomenological changes observed.

The purpose of this work is to propose a first algorithmic approach
to answer to the question “To which extent is the behavior of cellular
automaton dependent on the synchrony of the transitions?”. In other
words, we want to know if the application of a small change in the way
the transitions are performed leads to brutal changes of the “behav-
ior”. Note that this differs from studying the effect of perturbing the
configuration themselves, for example introducing noise in the system.
In Section 2, we give formal definitions of the CA concepts and we
describe the algorithm we use to quantify CA robustness. In Section
3, we analyze the results by sorting the models according to the ro-
bustness quantification given by our protocol. In the last section, we
discuss the results and analyze how the study of robustness could be
related to the activity of modeling complex systems with CA.

2. Definitions and experimental protocol

In this section, we formally define the notion of asynchronous cellular
automaton. We then describe the experimental protocol used to quan-
tify the robustness of a model using the notion of “sampling surface”
and the notion of “robustness indicator”. Finally, we analyze some
intrinsic limits of our protocol.

2.1 Asynchronous Cellular Automata

An Asynchronous Cellular Automaton (ACA) is a 5-tuple (L, Q, G, f,∆)
defined as follows :

A cell is a variable that takes its values in Q, the set of possible states.

The set of all cells is called the lattice, it is denoted by L and we have
L ⊆ Z

d, where d is the dimension of the lattice.

The neighborhood of a cell N(c) is a function which associates to a cell
c an ordered set of cells. The cardinality of N(c) is constant and is
equal to N .

f : QN → Q is the local transition rule which defines how a cell updates
its state according to the states of the cells located in its neighborhood.

Complex Systems, 11 (1997) 1–1+
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∆ : N→ P(L) is the updating method [17], which defines for each time
t, the set of cells to which the transition rule is applied. In a modeling
approach, ∆ might be seen as defining the set of non-defective cells
at time t, with the convention that a defective cell will keep its state
constant whereas a non-defective cell will update its state according
to the local rule.

The updating method ∆ is said to be synchronous if ∀t, ∆(t) = L,
otherwise it is asynchronous. In this context, it appears that “classi-
cal” Cellular Automata form a particular sub-class of ACA, for which
the update rule is synchronous. We restrict here our study of updat-
ing methods to the sub-class of step-driven methods [17], in which the
expression of time does not appear explicitly in the definition of ∆.
Among all the possible step-driven methods, we choose to use asyn-

chronous stochastic dynamics, denoted by ∆α, defined by considering
for each time t every cell of L and assigning a probability α that this
cell is in ∆(t). The parameter α ∈]0, 1] is called the synchrony rate.
This updating method has the advantage of satisfying a “fair sampling
condition” which specifies that each cell should be updated an infinite
number of times without any bias 1 :

∀c ∈ L, lim
T→∞

card {t ≤ T, c ∈ ∆(t)}
T

=
1

card L .

An assignment of a state to each cell of L is called a configuration.
It is denoted by x = (x(c))c∈L, with x ∈ QL. ∆ being fixed, the global

transition function is a function F∆ : QL × N → QL which associates
to each configuration x = (x(c))c∈L and to each time t, a configuration
y = (y(c))c∈L such that :

y(c) = f [N(c)] if c ∈ ∆(t)

y(c) = x(c) otherwise.

A global transition function is a particular kind of discrete dy-
namical system acting on configurations. We thus can associate to
each configuration x its orbit, the series of configurations (γα(x, t))t∈N

obtained by the iteration of F∆α on x using the recursive definition
γα(x, t+1) = F∆(γα(x, t), t). However, unlike dynamical systems which
do not depend on an update function, when the updating method is
not synchronous (i.e, when α < 1), the orbit of γα(x, 1) is not necessar-
ily the shifted orbit of x = γα(x, 0). We will say that a configuration
xf is a fixed point if ∀∆, ∀t, F∆(x, t) = x. Finite parts of the orbits

1In [1], the definition of the “fair sampling condition” only imposes that each
cell should be updated an infinite number of times. In our context, we have chosen
to add the property that each cell should also be chosen with an equal probability
to any other cell.

Complex Systems, 11 (1997) 1–1+



5

can be represented in space-time diagrams, where configurations are
represented horizontally and where time is represented vertically (see
Figure 1).

Figure 1. Example of space-time diagram of ECA 128 (see 2.2 for coding).

Configurations are displayed horizontally and time goes from bottom to top.

In the sequel, we will be interested in some configurations in which
the transition of information is blocked. We say that a word w ∈ Q∗ is
a wall if it verifies : ∀(u, v) ∈ Q ×Q, F|w[uwv] = w, where F|w denotes
the restriction of F on the cells that compose w. A wall is a “strong”
type of blocking word (i.e., a word that splits a configuration into two
parts by preventing any information to cross it [8]). We will call a
q-domain a set of adjacent cells that are all in state q.

2.2 One dimensional Elementary Cellular Automata

In this paper, we restrict our study to the one-dimensional case, taking
d = 1. We call elementary cellular automata the class of 1D-ACA
defined by Q = {0, 1} and ∀c ∈ Z, N(c) = {c − 1, c, c + 1}. As the
study is experimental, we only consider lattices of finite size, using
periodic boundary conditions : 1D lattices are rings and indices of L
are taken in Z/nZ, with n size of the ring.

Following [20] we associate to each ECA f its code :

W (f) = f(0, 0, 0) ·20 +f(0, 0, 1) ·21+ · · ·+f(1, 1, 0) ·26 +f(1, 1, 1) ·27 .

An ECA f having the code R = W (f) is denoted by ECA R and

Complex Systems, 11 (1997) 1–1+
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we will equally use the more general word ’model’ to qualify a rule.
The symmetry operations obtained by the left/right exchanging and
0/1 complementation allow to associate to each rule R, a reflected
rule Rp, a conjugate rule Rc, and a reflexive-conjugate rule Rcp.
The association of R to (R, Rc, Rp, Rcp) allows the partition of
the ECA space into 88 equivalence classes and we will call minimal

representative the rule that has the smallest index in a class. In the
sequel, we will work in this quotiented space and we will only consider
minimal representative rules.

2.3 Experimental protocol for robustness estimation

The purpose of this section is to introduce formal notations that allow
to specify the protocol we use to obtain the experimental data. We then
introduce the concept of ’sampling surface’ to qualitatively estimate a
model’s robustness to asynchronism and we propose to quantify this
robustness using two parameters. Finally, we analyze the limits of our
protocol.

2.3.1 Definition of the protocol

The macroscopic measures we use to estimate the change of behavior of
an ECA are based on the statistical analysis of the density variations.
The density of a configuration is a real number defined by ρ : QL →
[0, 1] such that ρ(x) = #1(x)

|x| where #1(x) denotes the number of 1’s

in x and |x| is the size of the configuration x. In a previous work [10],
we showed that the density and more precisely the evolution of the
density can be considered as a pertinent parameter for describing in a
first approximation the global behavior of an ECA. For example, it can
be used as a means of discriminating the chaotic-looking ECA from the
regular-looking ones.

The density is used here to identify the models that are non-robust
to the introduction of asynchronism. In order to have an “observation
function” µ that will quantify changes in behavior, we use an experi-
mental protocol that depends on five parameters :

The size of the grid n.

The density of the initial condition dini. The initial condition x(dini)
is constructed using a Bernoulli process : for every cell of x, this cell
has a probability dini to have state 1 and a probability 1− dini to have
state 0. The distribution of the density of x is binomial, which implies
that d(x) is close to dini for large |x| with high probability but note
that it is not often strictly equal to dini.

The synchrony rate of the update method α.

The transient time Ttransient after which the orbits are analyzed.

Complex Systems, 11 (1997) 1–1+
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The sampling time Tsampling during which the orbits are analyzed.

In order to obtain µ experimentally, we take the initial condition
x(dini) and let the ACA defined with synchrony rate α evolve during
Ttransient steps. We then store the value of the density during Tsampling

steps and average this value to obtain µexp(dini, α) :

µexp(dini, α) =
1

Tsampling

t=Ttransient+Tsampling∑

t=Ttransient+1

d(γα(x(dini), t)) .

Algorithm 1 Construction of a sampling surface

for dval = dmin to dmax step dstp do
xini(dval)← random initial condition of density (dval)

end for
for α = αmin to αmax step αstp do

for dini = dmin to dmax step dstp do
x← xini(dini) // initial condition
for t1 = 1 to Ttransient do

x← Fα(x, t1)
end for
for t2 = 1 to Tsampling do

x← Fα(x, t2)
sample[ t2 ] ← ρ(x)

end for
davr(α, dini)← Average[ sample ]

end for
end for

Exhaustive experimentation on all initial conditions and all values
of synchrony rate are impossible in practice. This means that we have
to do a sampling by randomly choosing some initial conditions and
some synchrony rates. For the initial densities, we choose to perform
a uniform density sampling :
We construct our set of initial densities D with values varying from
dmin to dmax with step dstp. We denote this kind of interval by D =
[dmin, dmax](dstp). Similarly, we construct our set of synchrony rates by
taking A = [αmin, αmax](αstp), with αmax = 1.0 (the synchronous case
is sampled).

The sampling operation thus results in the application of Algo-

rithm 1 and its output is a set of points µexp(dini, α) with dini ∈ D
and α ∈ A. It can be represented in a 3D space in the form of a
two-dimensional sampling surface.

In order to obtain a first level of classification, we extract quanti-
tative information from our sampling surfaces by computing out two
parameters from the experimental data :

Complex Systems, 11 (1997) 1–1+
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Sampling Surface for ECA146  [50,5000,1000,280676] 
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(a)

Figure 2. An example of sampling surface : ECA 18. The value of the

indicators for this surface are ra = 0.03 (no change around α ∼ 1) and

rb = 0.19 (important change in the asynchronous domain).

The first parameter is used to measure how small introduction of syn-
chrony affects the global behavior of the CA. The small-asynchrony-

introduction indicator ra is given by :

ra = {
1

|D|

∑

d∈D

[µexp(d, αas)− µexp(d, 1.0)]2}1/2 .

This parameter is the quadratic average of the variations of µexp be-
tween total synchronism αas = 1.0−αstp and the highest asynchronous
value. It somehow estimates the averaged absolute value of the “jump”
of value that can occur for α ∼ 1.

The second parameter is used to measure how the change of syn-
chrony from αas to αmin globally affects the behavior of the CA. The
asynchrony-dependence indicator rb is then defined by :

rb = supα∈A′{
1

|D|

∑

d∈D

[µexp(d, α + αstp)− µexp(d, α)]2}1/2 .

with A′ = [αmin, αmax − 2.αstp](αstp). This parameter is the maximum
quadratic average on dini, for all asynchronous densities, of the varia-
tions of µexp. It estimates, in the asynchronous regime, how far from
invariance in respect to the translation of axis α the surface is.

2.3.2 Limits of the protocol

Like in any simulation approach, the width of validity for the results we
obtain is limited by some of the choices we had to make in the design

Complex Systems, 11 (1997) 1–1+
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of the protocol. Let us try to identify some of these limits.
First, it is clear that our results are limited to the particular region

defined by the constants chosen in the experimental protocol. In order
to calculate the “observation function”, we have to set the value of the
parameters Ttransient and Tsampling. These values are chosen as big as
possible with the implicit assumption that µexp does no longer change
when Ttransient and Tsampling are increased.

Similarly, the choice of the grid size n might influence the outcome
of the results. For example, the particular ECA 90 has a transition
function that can be expressed in the synthetic form : ∀(a, b, c) ∈
Q3, f(a, b, c) = a ⊕ c with ⊕ denoting the addition modulo 2. The
additivity of the local rule allows a superposition principle to be obeyed
by the global rule :

∀(x, x′) ∈ QL × QL, Fsynch(x ⊕ x′) = Fsynch(x) ⊕ Fsynch(x
′) .

The evolution of configuration containing a single cell that is in state
1 leads to the formation of Pascal’s Triangle modulo 2. Using the
superposition principle, it is easy to see that for grid sizes that are
powers of two, n = 2k, k ∈ N, any initial configuration evolves to the
null configuration 0̄ in number of step less or equal to n/2. However, for
sizes that are not powers of two this nilpotency property does not hold
any more and we instead observe cycles whose length are only bounded
by 2n (see [13] for a more precise analysis). This simple observation
shows that we should be very careful not to generalize a result obtained
on a particular ring size to any ring size. We however conjecture that
the experimental data are not dependent on the ring size for most of
the ECA rules. The experimental examination of this assumption will
be done in the next section for a small number of values of n.

Let us also stress that the protocol associates to a given initial den-
sity the same initial configuration which is re-used for different syn-
chrony rates. Moreover, we take only one sample for each couple of
control parameters (dini, α). Another possibility would consist in tak-
ing several samples for each point and then compute the average of the
measured values µexp. However, this averaging effect could be mislead-
ing in the estimation of the model’s robustness : for some particular
rules (e.g. shift) it would be possible to have a behavior that varies
strongly according to the initial condition chosen but have a stable
average. In this work, we choose to say that such a CA is not robust
because we are interested in a concept of robustness that characterizes
the evolution of a single configuration and not subsets of configurations.
This will be further discussed in Section 4.

All these limitations clearly imply that the indicators (ra, rb) and
even the sampling surfaces are far from holding all the information
about a model’s behavior. They should instead be considered as a
way of making a projection of the huge space of all possible orbits into

Complex Systems, 11 (1997) 1–1+
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the simpler R
2 space. They can also be viewed as a first approxima-

tion tool to identify the “non-robust” CA. Indeed, if a perturbation
produces a change in the density distribution then we are allowed to
affirm that we are in presence of a change in behavior. The converse
is not true since one could easily imagine a situation in which the den-
sity distributions would stay stable whereas some other macroscopic
parameters would vary. So there are at least two other limitations of
the protocol proposed : the first one is that the use of the density
induces a compression of information that could introduce biases for
behavior estimation, especially when a rule is number conserving (i.e.,
when its evolution conserves the density). The second one is that we
rely on two indicators that are chosen as quantifiers of the regularity
of the sampling surfaces using again an approximation. The analysis
of experimental results is then a three-level analysis : the first and sec-
ond one are qualitative, they consist in the visual examination of the
space-time diagrams and the sampling surface. The third one is quan-
titative and uses the indicators (ra, rb). These restrictions confirm once
more that this work is just a first step in the study of asynchronous
robustness. It aims to give a global view of the landscape in order to
show the pertinence of the problem and to identify to some challenging
ways to explore.

3. Exhaustive study of the ECA space

In this section, we start by examining the repartition of all ECA into
the indicators space, and divide this space into zones. For each zone,
we show the sampling surfaces and we examine how the dynamical
systems actually evolve by looking at some orbits.

3.1 Repartition of the ECA

The results were obtained with the experimental value for transient
time Ttransient = 5000, sampling time Tsampling = 1000, ring size n = 50,
initial density sampling interval D = [0.2, 0.8](0.1), synchrony rate
sampling interval A = [0.2, 1.0](0.1). All the experimental data were
obtained with a software dedicated to the study of CA robustness [9].

Figure 3 shows the repartition2 of the ECA in the 2D space (ra, rb)
for three different values of ring size n. In the three diagrams, the
dispersion of the ECA is far from uniform and rather forms groups.
If the relative position of the points may vary from one value of n
to another, the diagrams appear to have similar distributions. These
observation leads us to consider in a first step that the diagram can

2Recall that only minimal representative ECA have a corresponding point in
this space.

Complex Systems, 11 (1997) 1–1+
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Figure 3. Evolution of the repartition in the space (ra, rb) according to different

ring sizes : n = 50 (up), n = 100 (middle), n = 200 (bottom); transient and

sampling times were : Ttransient = 5000, Tsampling = 1000.
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partioned into 4 zones :

In Zone A, we group the ECA that form a dense group in the region
defined by ra < 0.1 and rb < 0.1.

In Zone B, we group the ECA that stretch along the ra-axis : ra > 0.1,
big rb < 0.1.

In Zone C, we group the ECA that stretch along the rb-axis : ra < 0.1,
big rb > 0.1.

In Zone D, we group the other ECA : ra > 0.1, rb > 0.1.

Let us now study each zone separately in order to see if the discrim-
ination introduced by the ra and rb parameters does allow to separate
the ECA into meaningful classes. For each zone, we examine the shape
of the sampling surfaces obtained and try to analyze how this shape is
related to the configurations found in the model’s orbits.

3.2 Zone A (small ra and small rb)

This zone contains the ECA with high robustness to asynchronism.
The models in this zone are situated close to the point (ra, rb) = (0, 0),
this means that given a specific initial condition, the orbits obtained
with different synchrony rate produced the same values for the obser-
vation function µexp. There can be two straightforward ways to explain
this property :

(H1) The configurations of the asymptotic part (i.e., after the transient
time is elapsed) of the orbits are different but the averaging effects
used in the experimental protocol produce identical measures for the
observation function (see 2.3).

(H2) The configurations of the asymptotic part of the orbit are similar
despite having different trajectories during the transient time.

3.2.1 Horizontal surfaces

Rules such as ECA 90 and 150 have been among the most exten-
sively studied rules of the ECA space. They are said to be ’additive’
as they obey a superposition principle (see 2.3.2). For these two rules,
we found a horizontal sampling surface with µexp ∼ 0.5 for all (dini, α).
This means that the qualitative behavior of the model is invariant
when both changing the initial density and the synchrony rate. In-
deed, experimental evidence in the synchronous case shows that for
any random initial density, the dynamical systems rapidly evolves to-
wards an “equilibrium state” for which the density oscillates around
ρ = 0.5 [20]. In both synchronous and asynchronous case, this “equilib-
rium state” is not a fixed point but is rather a random phase in which
the fluctuations of each cell appear to be random (see Figure 4). This

Complex Systems, 11 (1997) 1–1+
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Sampling Surface for QECA90  [ 50,5000,1000,280676] 
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Figure 4. (a) An example of horizontal surface : ECA 90 (b) Evolution of

ECA 90 : (left) α = 1.0 (right) α = 0.5. In this space-time diagram and in

the following the intial condition is obtained with a Bernoulli process with

dini = 0.5, the grid size is n = 50, the time is from t = 0 to t = 49.

implies that the model’s robustness is explained by H1, more precisely,
we expect the distribution of the density after the “transient time” to
be a Gaussian with a mean centered around ρ = 0.5 and a variance
that is proportional to 1/

√
n , where n is the lattice size. If this as-

sumption is correct, then we have (ra, rb) → (0, 0) as Ttransient → ∞
and Tsampling → ∞, which is what we observed experimentally when
increasing Ttransient and Tsampling.
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3.2.2 dini-dependent, α-invariant surfaces

Sampling Surface for QECA232 
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Figure 5. (a) An example of dini-dependent, α-invariant sampling surface :

ECA 232. (b) Evolution of ECA 232 : (left) α = 1.0 (right) α = 0.5. A

tight examination of the configuration shows that the width of the second

white band is larger in the left diagram.

ECA 232 is an ECA version of the “Majority Vote Rule” : the next
state of a cell is the state that it is most present in its neighborhood.
We found that this model is a good example of a Zone A ECA with
a sampling surface that shows dependence on the initial density dini

and invariance with translation in the α axis : see Figure 5. The
dependence on dini is explained by the existence of walls (00 and 11)
for this rule. These walls appear in the initial configuration or they are
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created when the dynamical system evolves and we observed a quick
convergence of the orbits to a fixed point as seen in Figure 5. This
convergence implies that the model’s robustness is explained by H2 as
the asymptotic part of the orbits is always a fixed point.

ECA 4, 12, 44, 76 are some others zone A models which showed
quick convergence to a fixed point. We can note that for all these mod-
els, the local transition rule admits walls3. The question of knowing
how the shape of sampling surface is related to the existence of walls
is a potential theoretical problem that arises from these observations
and that should be addressed in the future.

3.2.3 Perfectly α-invariant sampling surfaces

Interestingly enough, the analysis of experimental data shows that
some ECA are situated exactly on the point (ra, rb) = (0, 0). Their
sampling surface is thus perfectly invariant with translation in the α
axis. This means that given a specific initial condition, the choice of
the synchrony rate did not influence the value taken by the observation
function µexp. The visual examination of the orbits of these particu-
lar ECA shows for a given initial condition, all orbits (for different α)
converge to the same fixed point :

∀xi ∈ E, ∃xf ∈ QL, ∀α ∈]0, 1], ∃t, γα(xi, t) = xf .

We define the class of “perfectly robust” (PR) CA as the class of
models for which the “asymptotic behavior” of a CA is independent of
the updating method ∆, with ∆ verifying the fair sampling condition
(see 2.1). Some PR rules can be exhibited in a straightforward way.
For ECA 0 (null rule), as every cell update turns the cells into state 0,
under the fair sampling condition, we are sure to reach the fixed point
0̄. For ECA 204 (identity), any initial condition is a fixed point and the
update does not play any role. If we look at ECA 128 (see Figure 1),
all cells turn to state 0 unless they are in state 1 and surrounded by
two 0. It is easy to see that the two only fixed points are 0̄ and 1̄ and
that any configuration different from 1̄ evolves to the fixed point 0̄.

Experimentally, we find that : PR= { 0, 8, 32, 40, 128, 136, 140,
160, 168, 200, 204 (Identity) }.

To find a sufficient and necessary condition to be in PR is another
problem that arises from the analysis of the experimental results.

3.3 Zone B (big ra, small rb)

This zone contains the ECA for which a small introduction of asynchro-
nism produces a brutal change of behavior (big ra), while this behavior
no longer changes when asynchronism is increased (small rb).

30 and 010 are walls of rule 4, 0 and 01 are walls of rule 12, 00 and 0001are
walls of rule 44, 0,01, 10 are walls of rule 76.
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3.3.1 Surfaces with a discontinuity at α = 1 and flatness for the rest of the surface

Sampling Surface for QECA2 
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Figure 6. (a) An example of GAP model sampling surface (z-axis rescaled) :

ECA 2. (b) Evolution of ECA 2 : (left) α = 1.0 (right) α = 0.5.

In this zone, we can distinguish some ECA for which we have exactly
rb = 0. Visual examination of the sampling surface shows that these
CA exhibit a discontinuity of the surface, indicating a “phase transi-
tion” phenomenon, for the points α = 1. When looking at the orbits of
these ECA (see Figure 6), we notice that for α = 1, the orbits evolve
into a shift-like behavior, where each configuration gets translated by
one cell at each time step. For α < 1, the orbits evolve in similar
way, except that some “branches” (1-domains) progressively die out.
This means that the orbit finally reaches a spatially homogeneous fixed
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point consisting in all 0 (the configuration 0̄ ).
We define GAP as the class of models for which there is a gap in

the sampling surface between the values for α = 1 and α < 1 whereas
the sampling surface is perfectly horizontal for α < 1. Experimentally,
we find that GAP= {2, 10, 24, 34, 42, 56, 74, 130, 154, 162}.

We notice that all ECA in class GAP are “fully asymmetric” (i.e.,
there are four members in each equivalence class). Moreover, all these
rules except 154 are classified as “subshifts” by Cattaneo and al.[3]4.
The asymmetry to the left/right exchange symmetry indicates that
the rule has an isotropy which allows a directed propagation of some
subwords to happen thus allowing the “subshift” phenomenon in the
synchronous mode. On the other hand, the asymmetry to the 0/1
complementation shows that the rules may have a “favorite” state to
which to tend to, thus explaining why the attractor 0̄ is reached with
all the sampled initial conditions in the asynchronous regime.

3.3.2 Surfaces showing a “phase transition” at α = 1 and quasi-flatness elsewhere

For rules 73 and 142, the examination of their sampling surface (Fig-
ure 7) showed that an important change of the value of the observation
function µexp occurs for α = 1. On the other hand, in the asynchronous
part (α < 1), the surface appears flat though affected by a little irreg-
ularity.

The shape of the surfaces can be explained by the examination of
the orbits of the models. As far as the dynamics is concerned, 73 is a
border line CA : visual examination of its orbits (see Figure 7) can not
clearly help to decide whether it is in Wolfram’s class II (periodic ECA)
or in class III (“chaotic” or non-regular ECA) [21]. It is a “Hybrid”
(class H) rule according to the classification exposed in [10]. Indeed,
when evolved with perfect synchrony the model has a dynamics that is
chaotic-like in some parts of the configuration delimited by walls 0110.
When a little asynchrony is introduced, there is a non-zero probability
that a wall 0110 appears in 0-domains where it was not already present.
This means that, as time progresses, more walls appear and the orbit
eventually reaches a “quasi-stable state” in which the walls 0110 are
separated by three kind of subwords :

0 : these subwords are stable

00 : these subwords are stable

000 and 010 : theses two subwords alternate one after another when
the update rule is applied in the middle of the word.

4ECA 154 is symmetric to rule 180 which has been extensively studied in [4]
where it was classified as a “generalized subshift” rule. In the classification proposed
in [10], the particular behavior of this rule was also noticed as 154 was classified
in the “hybrid” (H) class.
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Sampling Surface for QECA73 
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Figure 7. (a) An example of surface with a discontinuity at α = 1.0 and noise

for α < 1.0 : ECA 73 (z-axis inverted for allowing the display of discontinuity

at α = 1). (b) Evolution of ECA 73 : (left) α = 1.0 (right) α = 0.8.

This quick analysis allow us to understand the shape of the sampling
surface : the first gap showed by the observation function is due to the
appearance of walls when little asynchronism is added, the fluctuations
in the surface are due to the random updatings of the 000 and 010

regions. ECA 73 and 142 are the only two elements found in Zone B
and that do not belong to class GAP.
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Sampling Surface for QECA50  [ 50,5000,1000,280676] 
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Figure 8. (a) Sampling surface for an SPT model : 50 (z-axis rescaled). (b)

Evolution of ECA 50 : (left) α = 1.0 (center) α = 0.75 (right) α = 0.25.

3.4 Zone C (small ra, big rb)

In this zone, we find the ECA for which an important change of be-
havior occurs for values of synchrony rate α < 1.

3.4.1 Surfaces showing a “phase transition” at αc < 1

In Zone C, we find some ECA with a sampling surface which clearly
exhibits a discontinuity for a particular value of αc. We have regrouped
this type of models in the class SPT (Single Phase Transition).

The analysis of the orbits (see Figure 8) of SPT members showed
that for synchrony rates α > αc, the evolution of the space-time di-
agram can be described in terms of branching structures formed of
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1-domains that evolve on a background of 0. On the other hand, for
synchrony rates α < αc, the branching structure quickly dies out and
the orbit reaches the fixed point 0̄. This kind of phenomenon has al-
ready been noticed in the study of coupled map lattices and an analogy
was made with fluid mechanics : the turbulent phase is represented by
the branching structure and the laminar phase is represented by the
background of 0 (absorbing state). The laminar phase is stable and
can only be destabilized by the diffusion of the turbulent phase. For
continuous-state systems, it has been conjectured that the phenomenon
of branching structures could be described in terms of directed perco-
lation [15]. We are at the moment unable to provide a suitable de-
scription for the discrete models, even though the work of Chaté and
Manneville showed that some insight could be gained by understanding
CA behavior in terms of discretized coupled map lattices [5], [6].

Experimentally, we find that : SPT= { 6, 18, 26, 50, 58, 106, 146,
178 }.

Note that 22 and 30 have a similar “phase-transition” behavior : in
this case, the branching pattern is constituted of defaults of regularity
of the regular background 01. This implies that the density of the orbits
fluctuates near ρ = 0.5 and that the sampling surfaces are flat and do
not allow to detect the qualitative change. ECA 178 has a parameter
rb that is much bigger than other SPT members (see Figure 3). This
can be explained by the fact that it is the only member which has
two attractors in the stable “phase” (0̄ and 1̄), thus producing higher
potential changes between the stable phase and the unstable phase.

3.4.2 dini-invariant,α-dependent surfaces

We found that only 126 was in Zone C but not in SPT. 126 is a class
III CA ([21]) for which the evolution of the synchrony rate does affect
the evolution of the density “smoothly” (see Figure 9).

3.5 Zone D (big ra, big rb )

3.5.1 Unstable surfaces

In this zone, we find the ECA for which the measure of µexp is highly
unstable. When ra and rb are high, this can indicate a bad statistical
convergence of the parameters leading to the formation of a non-regular
surface (see Figure 10). In these rules, when starting from any initial
configuration different from 0̄ or 1̄, we see that large zones of 0’s or 1’s
appear and the borders of these zones drift in random way until they
meet and annihilate. This is the case for ECA 138, 170(shift) and
184.

We notice that ECA 170 and 184 are two (non-trivial) number-
conserving ECA in the synchronous case and this suggests that analyt-
ical results could be obtained for such simple systems. ECA 138 is a
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Sampling Surface for QECA126 
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Figure 9. (a) An example of dini-invariant,α-dependent sampling surface :

ECA 126 (α-axis inverted). (b) Evolution of ECA 126 : (left) α = 1.0

(center) α = 0.9 (right) α = 0.5.

rule which behavior is similar to 170 with one single difference on the
output of the transition function : For (a, b, c) 6= (1, 0, 1) f(a, b, c) = a
and f(1, 0, 1) = 0, this implies that the attractor 1̄ is unreachable as a
consecutive zone of 0 can not disappear.

3.5.2 A Sampling Surface with riddles : ECA 46

The examination of the sampling surface for 46 revealed a surprising
phenomenon : “riddles” almost parallel to the dini-axis appear on the
sampling surface (see Figure 11). We conjecture that ECA 46 is a
model for which there exists a subset of configurations I ⊂ QL which
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Sampling Surface for QECA170 
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Figure 10. (a) An example of ill-defined surface : ECA 170 (shift). (b)

Evolution of ECA 170 : (left) α = 1.0 (right) α = 0.8.

provide “merging orbits” :

∀(x1, x2) ∈ F × F, ∀α ∈]0, 1], ∃t, γα(x1, t) = γα(x2, t) = xt ,

with the particularity that xt is not a fixed point. This can be observed
in Figure 12 in which α is kept constant and where dini varies.

The very existence of such models is surprising since it implies that
different initial conditions eventually merge into the same orbit without
even stabilizing on a fixed point. Obviously for ECA 46, I is not
strictly equal to QL as 0̄ is not part of I (it is a fixed point). However,
informal experiments starting from various initial conditions lead to
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Sampling Surface for QECA46 
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Figure 11. (a) An example of sampling surface with “riddles” : 46 (α-axis

inverted). (b) Evolution of ECA 46 : (left) α = 1.0 (center) α = 0.75

(right) α = 0.25.

conjecture that I = QL − {0̄} meaning that for a fixed dynamics, all
non-zero configuration eventually merge into a single orbit. Such result
should be explored in a future work both by experimental and formal
approach.

3.5.3 dini-invariant,“U”-shaped surfaces

ECA 6, 38 and 134 have an unexpected behavior : just like GAP the
introduction of a little bit of asynchronism makes the system evolve to
a homogeneous fixed point. However, unlike SPT ECA, the observation
of a long-lived branching structure occurs for values of α smaller than
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Figure 12. Evolution of ECA 46 for α = 0.40 and dini = 0.30 (left) 0.50

(center) 0.80 (right)

αc.
ECA 6 sampling surfaces illustrates how GAP-type discontinuity

at α = 1 and an SPT-type discontinuity at α ∼ 0.3 (see Figure 13)
can both cohabitate. The conjunction of both characteristics explains
why this model is situated in zone D (high ra, high rb). It is worth
noticing that the unstable phase (µexp > 0) is obtained for values of
synchrony rates that are lower than the critical value αc and the stable
phase (fixed point 0̄, µexp = 0) is located for α > αc. It implies that
the system can become less stable when asynchronism is increased.
This observation seems to contradict the thesis proposed in [2] which
conjectured that the increase of asynchrony has a stabilizing effect on
the dynamics of the models. It shows that a deeper analysis is needed
to understand when the increase of asynchrony (i.e., the decrease of α)
may stabilize a model by allowing it to reach a fixed point or a stable
phase.

4. Discussion

In this paper we described a general-purpose scheme to quantify the
robustness of a CA to asynchronism. We chose to observe this ro-
bustness according to a protocol which used the density macroscopic
parameter and a sampling strategy based on choosing randomly initial
conditions and synchrony rates. We have applied this protocol to the
88 equivalence classes of the ECA space to show that a wide variety of
phenomena could be observed. In order to go further than the simple
visual observation of the orbits we used the sampling surfaces as a syn-
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Sampling Surface for QECA6 
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Figure 13. (a) An example of a U-shaped sampling surface : ECA 6. (b)

Evolution of ECA 6 : (left) α = 1.0 (center) α = 0.75 (right) α = 0.25.

thetic means of representing a model’s robustness and we proposed two
indicators to induce a partial order on the models by quantifying this
robustness in R

2. This methodology allowed us to induce a distinction
between the different rules of the ECA space and to define robustness
classes according to the types of changes that were observed when we
added asynchronism in the update rule. We can now discuss our initial
questions in two directions : about robustness and about modeling.

4.1 About robustness

An important feature of our classification is that the classes defined
according to robustness criteria cannot be deduced from Wolfram’s

Complex Systems, 11 (1997) 1–1+



26

empirical classification [21]. For example, if we take the “chaotic”
rules, we find that ECA 122 is in Zone A while 18 and 146 are in
Zone C (SPT). If we take the “periodic” rules, we find that ECA 232
is in Zone A, 34 is in Zone B (GAP), 50 is in Zone C (SPT), rule 6 is
in Zone D (U-shaped). This opens new perspectives for constructing
a theory which could predict the shape of the sampling surfaces by
analyzing the form of the local transition rule. We proposed the use
of walls as a first step in this analysis with the ECA 232 and 73.
This classification based on robustness might equally be related with
the classification proposed by Kůrka[12]. Indeed, it has been shown
that the existence of blocking words allows one to determine the class
of an automaton and it appears that walls are just a stronger version
of blocking words. It has been recently demonstrated that at least
three of the four classes of this classification are undecidable [8] but
the question remains open to decide whether a classification based on
walls might be decidable and easily computable.

It is important to notice that we never used the fact that the an-
alyzed objects were two-state, radius one, one-dimensional CA in the
definition of the experimental protocol. This leaves the possibility to
explore the behavior of models defined with a higher number of states
and in higher dimensions. For two dimensional CA, the study of ro-
bustness could be as well examined with respect to changes in the
lattice topology. Indeed, one may also want to know whether a small
perturbation on the regularity of the lattice may produce significant
changes in the behavior of a 2D cellular automaton.

Another possibility of improving the study concerns a finer evalu-
ation of the quality of the statistics. In our protocol, the number of
initial conditions chosen for the sampling is relatively small (≤ 100)
and do not allow us to detect interesting particular subsets of config-
urations which may produce different results. This suggests that once
a model is declared robust (Zone A), it should be studied for a large
number of initial conditions to quantify precisely the fraction of ini-
tial conditions for which robustness is observed. This could be done
with analytic methods or with an exhaustive experimental study of
small (n ≤ 30) ring sizes and would provide further refinements of the
classification.

4.2 About complex systems modeling

The experimental method developed here is a first approach that can
be used as a guideline to select suitable rules for complex systems
modeling with cellular automata. The results presented in this work
showed that according to the wide range of phenomena observed when
asynchrony is introduced, the use of CA as a modeling tool could take
advantage of the classification into robustness zones :
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The analysis of Zone A allowed us to find the rules which could be suit-
able for modeling : they show stability to the perturbation to asyn-
chronism according to some observation function. A strong version
of robustness was found in the PR models which obeyed a stronger
robustness criterium : for all the initial condition tested, the same
asymptotic behavior was reached whatever the value of the synchrony
rate. The use of such models may provide a way of building CA-based
devices with a behavior strongly tolerant to asynchronism.

The behavior of Zone B models, and particularly the GAP class, sug-
gests that their synchronous should be discarded for a real-world ap-
plication, except if the purpose of the model is precisely to detect the
existence of asynchronism. However, in the asynchronous regime, they
appear very stable as the same asymptotics are reached whatever the
initial conditions.

Identically, some Zone C rules showed that a brutal change in their
behavior could occur for a particular critical value αc of asynchronism.
This kind of effect can be undesirable if the modeled phenomenon is
not supposed to be synchrony-dependent. On the other hand, one may
want such feature to be exhibited by a model. For example, in biol-
ogy, it is known that the aggregation of the Dictyostelium Discoidum is
triggered when a critical value of starvation is reached. To our knowl-
edge, none of the various models (e.g., [16] )proposed yet have been
successful in predicting the existence of such a critical value. The ex-
planation could be that the release of a chemical component (cAMP)
changes the “synchronicity” between cells and that the communication
between cells is directed by percolation-like effects that explains why
the triggering of the aggregation is sudden. In social sciences, a model
used for understanding urban settlement also showed great disparities
between the synchronous and asynchronous behavior, the “synchrony
rate” here being controlled by the “mobility” (ability to go and live
elsewhere) of the agents [7].

The existence of models in Zone D indicate that despite the spatial
and temporal averaging we used in the definition of the observation
function that quantifies a CA behavior, the outcome of the experiments
remained irregular. Such models show that the behavior of an ACA
may be simple when evolved synchronously and much more complex
with an asynchronous update rule (e.g, the shift).

The phenomenology we observed and the existence of robust CA
rules suggests that we can no longer claim that a CA model is not
valid because transitions occur too regularly to capture real-world phe-
nomena : even though the “real-world cells” might affected by some
permanent irregularities (synchronism and/or topology faults) or by
noise, a CA model might be robust enough to produce the same out-
put when evolved with perturbations. This further suggests that there
exists no universal answer to the question of knowing which part of the
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interesting behavior of a (classical) CA is due to the synchronism. Each
modeling problem should instead be studied with a specific approach
and the macroscopic parameters and observation functions used in this
work, far from being universal, should be chosen according to what fea-
ture of the CA is desired to be robust. For example, one may interested
in using a CA with many states to model propagating signals in an ex-
citable medium. In this case, one should find the suitable parameters
to assess the ability to propagate signals and use these parameters in
the robustness assessment.
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