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Abstract We study the typical profiles of a one dimensional random field Kac model, for values of the
temperature and magnitude of the field in the region of the two absolute minima for the free energy of
the corresponding random field Curie Weiss model. We show that, for a set of realizations of the random
field of overwhelming probability, the localization of the two phases corresponding to the previous minima
is completely determined. Namely, we are able to construct random intervals tagged with a sign, where
typically, with respect to the infinite volume Gibbs measure, the profile is rigid and takes, according to the
sign, one of the two values corresponding to the previous minima. Moreover, we characterize the transition
from one phase to the other. The analysis extends the one done by Cassandro, Orlandi and Picco in [13].
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1 Introduction

We consider a one-dimensional spin system interacting via a ferromagnetic two-body Kac potential and
external random field given by independent Bernoulli variables. Problems where a stochastic contribution
is added to the energy of the system arise naturally in condensed matter physics where the presence of the
impurities causes the microscopic structure to vary from point to point. Some of the vast literature on these
topics may been seen consulting [1-6], [10], [18-21], [23], [32].

Kac’s potentials is a short way to denote two-body ferromagnetic interactions with range %, where v is a
dimensionless parameter such that when v — 0, i.e. very long range, the strength of the interaction becomes
very weak, but in such a way that the total interaction between one spin and all the others is finite. They
were introduced in [22], and then generalized in [24], to provide a rigorous proof of the validity of the van
der Waals theory of a liquid—vapor phase transition. Performing first the thermodynamic limit of the spin
system interacting via Kac’s potential, and then the limit of infinite range, v — 0, they rigorously derived
the Maxwell rule. This implies that the free energy of the system is the convex envelope of the corresponding
free energy for the Curie-Weiss model. This leads to two spatially homogeneous phases, corresponding to
the two points of minima of the free energy of the Curie-Weiss model. Often we will call + phase the one
associated to the positive minimizer, and — phase the one associated to the negative minimizer. For « fixed
and different from zero, there are several papers trying to understand qualitatively and quantitatively the
features of systems with long, but finite range interaction. (See for instance [16], [25], [9], [19].) In the one
dimensional case, the analysis [15] for Ising spin and [7] for more general spin, gives a satisfactory description
of the typical profiles.

Similar type of analysis holds for Ising spin systems interacting via a Kac potential and external random
field. In this paper, extending the analysis done in [13], we study, for v small but different from zero, in
one dimension, the typical profiles of the system for all the values of the temperature and magnitude of the
field in the region of two absolute minima for the free energy of the corresponding random field Curie Weiss
model, whose behavior is closely connected with the local behavior of the random field Kac model. Through
a block-spin transformation, the microscopic system is mapped into a system on L (IR) x L*°(IR), for which
the length of interaction becomes of order one (the macroscopic system). It has been proven in [13] that if the
system is considered on an interval of length %(1og %)p, p > 2, then for intervals whose length in macroscopic

m, the typical block spin profile is rigid, taking one of the two values corresponding to
L

scale is of order
the minima of the free energy for the random field Curie Weiss model, or makes at most one transition from
one of the minima to the other. This holds for almost all realizations of the field. It was also proven that
the typical profiles are not rigid over any interval of length at least Lq(y) = %(bg %)(bg log %)2‘“’ , for any
p > 0. In [13] the results are shown for values of the temperature and magnitude of the field in a subset of
the region of two absolute minima for the free energy of the corresponding random field Curie Weiss model.

In the present work we show that, on a set of realizations of the random field of probability that goes to
1 when v | 0 , we can construct random intervals of length of order % to which we associate a sign in such a
way that the magnetization profile is rigid on these intervals and, according to the sign, they belong to the
+ or to the — phase. A description of the transition from one phase to the other is also discussed.

The main problem in the proof of the previous results is the “non locality” of the system, due to the
presence of the random field. Within a run of positively magnetized blocks of length 1 in macro scale, the
ferromagnetic interaction will favor the persistence of blocks positively magnetized. The effect of the random
magnetic fields is related to the sum over these blocks of the random magnetic fields. It is relatively easy
to see that the fluctuations of the sum of the random field over intervals of order in macro scale % are the
relevant ones. But this is not enough. To determine the beginning, the end of the random interval, and
the sign attributed to it, it is essential to verify other local requirements for the random field. We need a
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detailed analysis of the sum of the random field in all subintervals of the large interval of order % In fact it
could happen that even though at large the random field undergoes to a positive (for example) fluctuation,
locally there are negative fluctuations which make not convenient (in terms of the total free energy) for the
system to have a magnetization profile close to the + phase in that interval.

Another problem in our analysis is due to the fact that the previously mentioned block-spin transformation
gives rise to a random multibody potential. Using a deviation inequality [26], it turns out that for our
analysis it is enough to compute the Lipschitz norm of this multibody potential. This is done by using
cluster expansion tools to represent this multibody potential as an absolute convergent series.

The plan of the paper is the following. In Section 2 we give the description of the model and present the
main results. In Section 3 we prove probability estimates on functions of the random field which will allow us
to construct the random intervals together with the corresponding sign. In Section 4 we show that, typically,
the magnetization profiles are rigid over the macroscopic scale %, for any € > 0, provided ~ is small enough.
This is an important intermediate result. In Section 5 we finally prove the theorems stated in Section 2. In
Section 6 we prove some technical results needed in Section 5. In Section 7, we present a rather short, self
contained and complete proof of the convergence of the cluster expansion for our model. This is a standard
tool in Statistical Mechanics, but the application to this model is new.
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2 Description of the model and main results

Let (2, A, IP) be a probability space on which we have defined h = {h;};cz, a family of independent,
identically distributed Bernoulli random variables with IP[h; = +1] = IP[h; = —1] = 1/2. They represent
random signs of external magnetic fields acting on a spin system on ZZ, and whose magnitude is denoted by
6§ > 0. The configuration space is S = {—1,+1}%. If 0 € S and i € Z, 0; represents the value of the spin at
site i. The pair interaction among spins is given by a Kac potential of the form J, (i—j) = vJ(v(i—j)), v > 0,
on which one requires, for r € IR: (i) J(r) > 0 (ferromagnetism); (ii) J(r) = J(—r) (symmetry); (iii)
J(r) < ce=¢I"l for ¢,¢ positive constants (exponential decay); (iv) [ J(r)dr = 1 (normalization). For
simplicity we fix J(r) = T, j<1/2], though the behavior is the same under the above conditions.

For A C Z we set Sy = {—1,+1}%; its elements are usually denoted by o,; also, if o € S, op denotes its
restriction to A. Given A C ZZ finite and a realization of the magnetic fields, the free boundary condition
hamiltonian in the volume A is given by

Hyonel = —5 X (i~ oo —03 hilelos (2.1)

(1,7)EAXA i€EA

which is then a random variable on (2, A, IP). In the following we drop the w from the notation.
The corresponding Gibbs measure on the finite volume A, at inverse temperature 5 > 0 and free boundary
condition is then a random variable with values on the space of probability measures on Sy. We denote it
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by 118,0,y,A and it is defined by

1
18,0,7.A(00) = Zooon exp{—BH,(oA)} oA € Sa, (2.2)
0,7,

where Zg g4 is the normalization factor usually called partition function.

To take into account the interaction between the spins in A and those outside A we set

W, (on,0ne) = Z Z Jy(i = j)oio;. (2.3)

i€EAN jEAC

If 6 € S, the Gibbs measure on the finite volume A and boundary condition ac is the random probability
measure on Sy, denoted by MZA.; ~. and defined by

TAINCIVE exp {—B(Hy(oa) + Wy(oa,0a°))}, (2.4)

2
where again the partition function Zgh oa 0 A S the normalization factor.

Given a realization of h and v > 07 there is a unique weak-limit of 39, A along a family of volumes
Arp =[-L,LINnZ, L € IN; such limit is called the infinite volume Gibbs measure pg¢,. The limit does
not depend on the boundary conditions, which may be taken h-dependent, but it is a random element, i.e.,
different realizations of h give a priori different infinite volume Gibbs measures.

As in [15] and [13], our analysis of the large scale profiles under ug g in the limit of v | 0 involves a
block spin transformation, which transforms our microscopic system on Z into a macroscopic system on

IR. Since the interaction length is v~1

, one starts by a suitable scale transformation such that on the new
scale, which we call the macroscopic scale, the interaction length becomes one. Therefore, a macroscopic
volume, always taken as an interval I C IR, corresponds to the microscopic volume A(I) = y~'I N Z. The
results will always be expressed in the macroscopic scale. The block spin transformation involves a “coarse

graining”. Before making this precise let us set some notations and basic definitions, mostly from [13].

Given a rational positive number §, Ds denotes the partition of IR into (macroscopic) intervals As (x) =
((x — 1), 28] where z € Z. If I C IR denotes a macroscopic interval we let Cs(I) = {x € Z; As(x) C I}.
In the following we will consider, if not explicitly written, intervals always in macroscopic scale and Ds—
measurable, i.e., [ = U{As(z);z € C5(I)}.

The coarse graining will involve a scale 0 < ¢*(y) < 1 satisfying certain conditions of smallness and
will be the smallest scale. The elements of Ds- will be denoted by A(z), with 2 € Z. The blocks A(x)
correspond to intervals of length §* in the macroscopic scale and induce a partition of ZZ into blocks (in
microscopic scale) of order 6*y~1, hereby denoted by A(z) = {i € Z;iy € A(x)} = {a(z) +1,...,a(x+1)};
for notational simplicity, if no confusion arises, we omit to write the explicit dependence on ~,d§*. We
assume for convenience, that v = 27" for some integer n, with §* such that §*y~!
a(z) = x6*y~!, with x € ZZ. We assume that §*y~1 1 oo.

Given a realization hlw] = (h;[w])icz, we set AT(z) = {i € A(z);hilw] = +1} and A=(z) = {i €
A(z); hilw] = —1}. Let A(z) = sgn(|AT(z)| — (27)~ 16*), Where sgn is the sign function, with the convention
that sgn(0) = 0. For convenience we assume §*y~! to be even, in which case:

is an integer, so that

IP[\z) = 0] = 2—5*71( oy ) (2.5)
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Of course A(x) is a symmetric random variable. When A(z) = +1 we set

l

o) =inf{l>a(@) : Y TopwEyi) =67 /2) (2.6)
j=a(z)+1
and consider the following decomposition of A(z): B*®) = {z € AA@) (x)i <z } and B~ = )( ) =

A(z) \ BM®)(x). When A\(z) = 0 we set Bt (z) = At (z) and B~ (z) = A= (x). We set D(z) = A*®)(z) \
B @) (z). In this way, the set B*(x) depend on the realizations of w, but the cardinality |B*(z)| = 6*y~1/2
is the same for all realizations. We define

md (£, z,0) 2/7 Z ;. (2.7)

zEBi(z)
We have
TN o= 507 (4 ,0) £ (—,0)) (2.8)
ZEA(I)

and 1 9

Y _ 5* 5* Y _

e Z hio; = E(m (+,2z,0) —m° (—,z,0)) + A(x)é—* | Z ;. (2.9)

i€A(x) 1€D(x)

Given a volume A C ZZ in the original microscopic spin system, it corresponds to the macroscopic volume
I =~A ={vi;i € A}, assumed to be Ds-—measurable to avoid rounding problems. The block spin transfor-
mation, as considered in [13], is the random map which associates to the spin configuration o, the vector

(m® (z,0))zec,. (1), Where m® (z,0) = (m® (+,2,0),m® (—,z,0)), with values in the set
4y 8y 4y 2
«(I) = 1, -1+ =, -1+ —==,...,1— 1, . 2.1
My= T {11+ F-1e -2 (2.10)

z€Csx (1)

As in [13], we use the same notation ug g A to denote both, the Gibbs measure on Sy, and the probability
measure it induces on M- (I), through the block spin transformation, i.e., a coarse grained version of
the original measure. Analogously, the infinite volume limit (as A 1 ZZ) of the laws of the block spin
(m® (z,0))zec,. (ry under the Gibbs measure will also be denoted by pge.~. If lim,od*(y) = 0, this
limiting measure will be supported by

T ={m = (m1,mg) € L*®(IR) X L= (IR); ||m1]lco V ||m2]lcc < 1}. (2.11)

To denote a generic element in Mg« (I) we write

m§ = (m” (@))ace,. 1y = (] (), m (@))ace, 1) (2.12)

Since I is Ds-— measurable, we can identify m$ with the element of 7" which equals m? (z) on each
A(z) = ((z — 1)6*,26*] for = € Cs-(I), and vanishes outside I. We denote by T, the linear bijection on 7
defined by

(T'm)(x) = (—=ma(z),—m1i(z)) Vz € IR. (2.13)

While analysing some specific block spin configurations, as in section 4, one encounters a relevant func-
tional that can be expressed as F + G, where F is deterministic and G is stochastic.
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For the definition of F we recall the relation of the local behavior of the Random Field Kac model with
the corresponding Random Field Curie-Weiss model. The last one is obtained when the volume |A| = !
and its canonical free energy f3(m1,mg) is given by

2
Fa.0(mi,my) = _(ma+ma)” Q(ml ~ )

8 2 ~ (Z(m1) + Z(ms)). (2.14)

%

for (my,mz) € [—1,+1])? and Z(m) = (1+—2m) log (142) + (1_—2’") log (152).
Let us state some properties of f3 g(m1,ms). This will point out the proper range of 3, 6 to be considered.

Differentiating (2.14) we see that (m1,ms) € [—1,1]? is a critical point of fg(-,-) if and only if

my = tanh(G(m1 + ma)/2 + 30)

(2.15)
meo = tanh(B8(m1 + me)/2 — (6).
The sum of the two equations in (2.15) is closed with respect to m = (m1 + ma)/2
.1 - 1 - -
m= 5tanhﬂ(m+9)+ §tanh6(m—9) = gg(m, 0). (2.16)
It can be proved that
_ 1 _ g1y,
1<p<3/2,0<0<61(0)=—=artanh(l —57")/% or
p (2.17)
3/2< < +00, 0<6<01.(0)
are necessary and sufficient for the existence of exactly three solutions, m = —mg, 0,mg, (with mg > 0) to
equation (2.16), verifying
093 , .
e 0) < 1. 2.18
22 (1725, 0) (218)

To simplify notations we do not write explicitly the dependence on 6 of mg. The result on the solutions of
(2.16) implies that, setting

mga1 = tanh S(mg + 6); mga.2 = tanh S(mg — 0), (2.19)

mg = (mg1,mg,2) and Tmg = (—mg,2, —mg,1) are solutions of (2.15) corresponding to the two global
minima of fga(-), fg,6(mp) = fz,60(T'mg). We denote mg the + phase and T'mg the — phase.

Remark. Concerning equation (2.16) the following can also be proven: m = 0 is the unique solution, if
0<p <1 Forl<f<3/2 0> 0;.(0), again the unique solution is m = 0 and limgyg, .(3)Mp6 = 0.
For 8 > 3/2, there exists 03 .(8) > 01.(8) such that for 6; .(8) < 6 < 03.(8) there exist five solutions,
m = 777121@9,77%17519,0,77111@9,77121@9, with 0 < ﬁllﬁgﬁ < ﬁlgygﬁg; when 6 T 9375(5), T7L17519 T T?Lgyg >
0,230 | s, where m3 g = gg(ms g,0) but g%(rhgﬁ, 0s..(8)) = 1; at last when 6 > 63 .(3), ™ = 0 is the
only solution. Property (2.18) will be constantly used in this work. In particular we will not treat the case
0 =05,

Throughout the work we assume (2.17) to be satisfied, so that fge(m1, ma) has exactly three critical
points, two points of minima around which fg¢(-) is quadratic and a local maximum. Moreover there exists

a strictly positive constant x(/3,0) so that for each m € [—1, +1]?

fa.0(m) — fs.0(mg) > k(B,0) min{|[m — mgl|7, |[m — Tmg||7}, (2.20)
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where || - ||; the ¢! norm in IR* and mg = (mg1,mgs.2), see (2.19).
Remark: Note that for 1 < 8 < 3/2, as 6 1 61, we have x(3,60) | 0, but under (2.17) we have always
k(B,0) > 0. Since we want to work in the whole region of 3,0 where (2.17) is satisfied a little care of k(/3, 0)
will be taken.

We introduce the so called “excess free energy functional” F(m), m € 7:

mlva)

(2.21)
2
/ [ 36— te) = o) e’ + [ (falima(r),mal) = Faatma s, maz) dr
with fg9(m1,me) given by (2.14) and m(r) = (m1(r) + ma(r))/2. The functional F is well defined and
non-negative, although it may take the value +o00. Clearly, the absolute minimum of F is attained at the
functions constantly equal to the minimizers of fgg. F represents the continuum approximation of the
deterministic contribution to the free energy of the system (cf. (4.24)) subtracted by fsg(mg), the free
energy of the homogeneous phases. Notice that F is invariant under the T-transformation, defined in (2.13).
It has been proven in [14] that under the condition m4(0) + m2(0) = 0, there exists a unique minimizer
m = (mq,ms2), of F over the set

Moo = {(m1,m2) € T; hmlnfml( ) < 0 < liminf m;(r),7i = 1,2}. (2.22)

— 00 r——400

Without the condition m;(0) + ma(0) = 0, there is a continuum of minimizers, all other minimizers are
translates of m. The minimizer m(-) is infinitely differentiable. Furthermore, there exists positive constant
¢ depending only on § and 6 such that

Jm(r) —mglly < ce ", i r>0;

(2.23)
lm(r) — Tmglly < ce™V"!,if 7 <0,
where o = «(3,0) > 0 is given by (recall (2.18)):
~a(a.0) _ 998
em M0 = 2 (g6, 0). (2.24)

Since F is invariant by the T-transformation, see (2.13), interchanging r — oo and r — —oo in (2.22) there
exists one other family of minimizers obtained translating Tm. We denote

F* = F(m) = F(Tm) > 0. (2.25)

The functional F that enters in the above decomposition into a deterministic and a stochastic part, F +~G,
is merely a finite volume version of (2.21); however (2.23) and F* will play a crucial role here.

The stochastic part of the functional G is defined on Mg« (I) (embedded in 7 as previously mentioned)
as

= Z gw mds* (w) ( )) (226)

2€Cs+ (I)

where for each € Cs«(I), G, 1,6+ (57 (A(2)) is the cumulant generating function:

2B0X(z) > . o
Gy (o) (M) = —Blog I o (€7 Liscn ™, (2.27)
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of the “canonical” measure on {—1,+1}4(®)  defined through

lE‘S* 5% (SD) = Za’ @(U)H{ms* (z,0)=m?" (x)}
z,m®" (x) >0 Lims* (2,0)=m®* ()}

, (2.28)

. 2
the sum being over o € {—1, +1}A(z). Let mg be one of the points in {71, -1+ ‘;—Z, R é—z, 1} which
is closest to mg. Given an interval I we let m%f ; be the function which coincides with m?; on I and vanishes
outside I. In the analysis of the random fluctuations of our system the relevant random quantities will be

G(my ) = G(Tmy ) = Y X(x). (2.29)

z€Csx (I)

One important property of the random variables X (z) is their symmetry. The explicit expression of X (x)
that one gets using (2.29), (2.27), and (2.28) is almost useless. One can think about making an expansion in
(30 as we basically did in [13], Proposition 3.1 where 86 was assumed to be as small as needed. Since here we
assume (2.17), one has to find another small quantity. Looking at the term ZieD(z) o; in (2.27) and setting

p(z) = p(z,w) = |D(x)|/|B**) (z)| = 2+|D(x)| /57, (2.30)
it is easy to see that for I C IR, if ((2;—1)1/2 log % < 3%, we have
1 1 (8* %
IP| sup p(z) > (2y/6")% < e~ :(5)? (2.31)
ECs (I)

Remark: Note at this point that the choice of 6* as yloglog(1/v) we made in [13], for volume I of order
~~1 does not satisfied the previous restriction.
Now on the set {SUPzecg* 1 p(x) < (2*”5*)%}, p(x) is a small parameter (recall §*y~! 1 00). It will be

proved in Proposition 4.8, see remark 4.9, that on the set {p(z) < (2v/6*)'/4}, the quantity X (x) can be

written as:

1+ mg’:Q tanh(246)

X(z) = —A(@)|D()]| [bg =% tanh(230) + Ei(z, 80,p(x)) | — Ax)ZE2(x, 50, p(x)) (2.32)
with
- BO(1 + 30) Y \1/4
1Z1(z, 80, p(x))| < 64(1 m—— 7tanh(269))(25_*) /4, (2.33)
and
[Ea(a, 56, p(a)] < (255)"/* [36 + 2¢(30) (2.34)

where ¢(30) is given in (4.57).
Thus, calling
1+ mg 2 tanh(236)

V(B,6) =log 3 R anh(256) (2.35)
on the event {p(z) < (2v/6*)3}, when 5 | 0 the leading term in (2.32) is simply
—A@)[D@)|V(8,0) ==V (8,0) Y hi, (2.36)

i€A(x)
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and, from (2.32), we have

IE[X (2) W0y < (24 /5% )1/43] = 0,

2 5 (2.37)
IE[X*(2) L)< (2y/64)1/4}) = 70(57977/5*>
where, if v/§* < do(3,0) for suitable 0 < do(8, ), c(8,0,v/6*) satisfies:
2 2
V3(3,0) [1— (v/69)/°] < e(8,0,7/6%) < V3(8,0) [1+ (+/57)/°] . (2.38).

Our final aim is to control the behavior of the random field over intervals of (macroscopic) length of order
larger or equal to % To achieve this, it is convenient to consider blocks of (macroscopic) length e/, with
the basic assumption that e/ > §*. To avoid rounding problems we assume €/v6* € IN and we define, for
o€ Z

X(e) (Oé) =7 Z X(m)]l{p(x)g(?y/(;*)lm} (239)
z;é*zeﬁe/w(a)

where, according to the previous notation fle/,y(a) = ((a— 1)5, as] C IR and for sake of simplicity the v, §*
dependence is not explicit. To simplify further, and if no confusion arises, we shall write simply x(«). Note
that x(a) is a symmetric random variable and assuming that I > A, /() for all o under consideration

) (2.40)
IE(x" (o)) = ec(B,0,7/6%),

as it follows from (2.37) since there are ¢(y6*)~! terms in the sum in (2.39).

As in [13], the description of the profiles is based on the behavior of local averages of m® (x,0) over k
successive blocks in the block spin representation, where k > 2 is a positive integer. Let § = k§* such that
1/6 € IN and let Cs5(¢) = Cs((¢ — 1,¢]) defined as before. Given ¢ € (0,mz ] and £ € Z, we define the

random variable

5 1if VuECg(é) %*Zlecg*(((u—l)é,ué]) Hmf;* () —mgll1 < ¢ 541
() = -Lif Vuees (o) % ZzGC(;*((ufl)&ué]) [m® (x) — Tmgll1 < (2.41)
0 otherwise.

We say that a magnetization profile m?” (+), in an interval I C IR, is close to the equilibrium phase 7, 7 =1
or 7 = —1, with tolerance (, when
() =1,VleInZ} (2.42)

In the following we will use always the letter £ to indicate an element of ZZ. This will allow to write (2.42)
as {n®C<(0) =1,V € I}.

Given a realization of h, we would like to know if “typically” with respect to the Gibbs measure we have,
as an example, 7%¢(0) = 1 or n>¢(0) = —1. The alternative depends on this realization of k. Here typically
means with an overwhelming Gibbs measure but having in mind a exponential convergence. First of all, one
has to accept to throw away some realizations of A that are not “typical” with respect to the IP—probability.
However, depending on the probabilistic sense of “typical” one can easily convince himself that the results
will be completely different. Here we just want that the IP-probability of the realizations of h that we throw
away goes to zero when v — 0. Some IP-almost sure results can be found in [13]. It happens that to give
an answer to such a simple question we must know if 7%¢(0) belongs to a run of 7%¢ = 1 or to a run of
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n>¢ = —1. Tt is rather clear that we have to understand the localization of the beginning and the end of
consecutive runs with alternating sign. However to define the beginning and the end of a run, we have to
take into account that some messy configurations with n*¢ = 0, £1 could occurs in between two such runs.
So in the first theorem we erase deterministically pieces around what we expect to be the endpoints of the
run that countains the origin. In the second theorem we consider consecutive runs with erased endpoints. In
the last theorem we prove that in the erased regions between two runs there is just a single run of n%¢ = 0
which is rather short.
The main result of this paper is the following:

Theorem 2.1 . Given (3,0) that satisfies (2.17), a > 0, x(3,0) > 0 satisfying (2.20), there exist 0 <
Yo = 7(5,0) < 1,0 < dy = do(,0,a) < 1, and 0 < (o = (o(B,0) < 1, such that for all 0 < &* < 1,

0 < v < v, v/6" <dy, if (4 is such that (o > (4 > 8v/0*, g is a positive increasing function such that

g(x) > 1, limgree g(x) = +00 and 9@) < q, limgp0o 271938 (2) =0,

x

1
> —, 2.43
“ e BT (24
and
(6*)* 3/2 0" 1
~ 7 I | 2.44
y 7 (7 )< Br(B,0)e3213” (2.44)
then there exists )., s~ with
) 5\ T1eTD
P[Q,5-] > 1 — 1692 — 160 (9(7)) (2.45)

4
such that for all realizations of the fields w € €, 5-, for € = (m) , we can construct explicitly a random

measurable pair (I(w), 7(w)) where

T(w) = sgn( Z x(a)) e {-1,+1}

a€C./y (I(w))

I(w) is a suitable random macroscopic interval that contains the origin such that for all x >0

log3)

IP(w € Q5o 9| I(w)] > ) < e For@aF I T08), (2.46)
-~ (_F*)2
IP(w e Qys:yI(w)| < x) <2e 1822050 (2.47)
where C1(B,0,F*) is given in (3.44), F* in (2.25) and V(5,0) in (2.35). The interval I(w) is measurable
with respect to the o-algebra o(x (), a € CE/.Y([—%, %])) where @ = exp %, and we have
_B_1
115,64 [w € I(w) N Z, 1% (0) = T(w)} >1—¢ 7I0/. (2.48)

here 6 = 5 (g(6*/v))~Y2. Moreover the interval I(w) is mazimal, in the following sense: V.J € IR,
)1/(2+a)

7

L 1 — —=
1) €7, 1T\ T(@)| 2 22, with p = (5527

o V0 E TN Z, 4 (0) = 7] < T TET. (2.49)
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Remark. (Choice of the parameters) The main parameters appearing in the problem, besides 3,6
and v, (we take (3,0, in all the paper, to satisfy (2.17) and v > 0 small enough to control the range and the
strength of the Kac interaction), are the smallest coarse grained scale §* and the tolerance (4 around the
“equilibrium” mg or T'mg. We choose a specific § for simplification. There exists an important constraint
on how small can 6* be taken. The convergence of the cluster expansion requires % < ﬁ,
7.1. The constraint on §* appearing in Theorem 2.1, (2.44), is stronger since to estimate the random field we

cf. Theorem

need to compute the Lipschitz norm of the multibody term coming from the cluster expansion and stronger
requirements are needed.

We decide to write the results in term of a rather general function g, verifying the requirements written
in Theorem 2.1. A prototype can be g(xz) =1V logx or any iterated of it. The main reason to do this is to
have the simplest expression for the Gibbs measure estimate (2.48). As a consequence, the IP probability
estimate in (2.45) is also expressed in term of this function g as well as all the constraints on the parameters.
The condition limgtee 271¢g38(x) = 0 comes from an explicit choice of an auxiliary parameter (5 that will be
introduced in Section 5 and the constraint (5.5) that has to be satisfied. Notice that taking g(z) = 1Vlogz
and 6* = 4219 for some 0 < d* < 1/2 implies that (2.44) is satisfied.

Finally the choice of the numerical constants (such as 2'3) is never critical and largely irrelevant. We have
made no efforts to make the choices close to optimal.

Remark. The endpoints of the random interval I(w) are not stopping times, as it can be seen in Section 3.
However, the interval I(w) is measurable with respect to the o-algebra o(x(a), o € CE/V([—%, %])), where
Q is given in Theorem 2.1. Therefore, in order to decide if typically n%%(0) = +1 or —1, it suffices to know
the realization of the random magnetic fields in a volume which, choosing for example, g(z) = 1V logz, is

1
log log log + . .
of the order % (log %) °¢°8° 5 in macroscopic scale.

Our next result is a simple extension of the previous theorem.
Theorem 2.2 . Under the same hypothesis of Theorem 2.1, for all k € IN, there exists Q. 5+, with

o* \ ~aeT®
P, 50 1] > 1 — 32ky? — 320k (g(:;)) (2.50)

such that for w € Q0 5« i, we can construct explicitly a random (2k + 2)-tuples

(Lk(w), o ,Ik(w),sgn( 3 X(a))) (2.51)

a€Cc/y (Io(w))

where I;(w), —k < j < k are suitable disjoint random intervals, Ip(w) contains the origin and they satisfy
forallz >0

IP l sup V| (w)| > x] <42k + 1)@7801<ﬁz,9f*)(1*13§i) (2.52)
—k<j<k
. _ (}-*)2
P | it ) <] < @b+ 2D, (2.53)

where C1(B3,0,F*) is given in (3.44), F* in (2.25) and V(5,0) in (2.35). The sequence (I_i(w), ..., Ix(w))
is measurable with respect to the o-algebra U(X(a), a € Ceyy([-FQ, kQ])), and

k
finf (I (@) sup(Te @)\ Lw)| < @k+1)

j=—k

=21

. (2.54)
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Moreover for all —k < j <k,

) _B_1
.6 |17 (€) = (—1)7sgn( Z x()), Vj € {—k,+k},Vl € I;(w)| > 1—2ke 790"/7) . (2.55)
aece/'y(lo(w))

In the previous theorem nothing is said about what happens in the region between two consecutive
intervals with different signs, a region that has a macroscopic length smaller than p/v by (2.54), see before
(2.49) for p. To describe it we need to introduce the notion of a single change of phases in a given interval.
Definition 2.3 . Given an interval [(1,02] and a positive integer Ry < |ly — {1|, we say that a single
change of phases occurs within [(1,0s] on a length Rs if there exists {y € [(1,4s] so that n%¢(€) = n>¢(¢1) €
{—1,+1},V€ € [b1,40 — Ra], n>¢(¢) = n>S(ly) = —n(l1),¥L € [l + Ra,{s], and {{ € [ly — Ra,ly + Ra) :
n>¢(¢) = 0} is a set of consecutive integers. We denote by Wi ([¢1, 2], Ra,C) the set of all configurations of
n>< that satisfies this properties.

In other words, there is an unique run of n%¢ = 0, with no more than Ry elements, inside the interval
[¢1,¢5].

Our next result is

Theorem 2.4 . Under the same hypothesis as in Theorem 2.2 and on the same probability space .y 5= 1,

for

205+ F)160° [ o* \7?
R = T (o) (256)
we have .
,U/ﬁ,@,'y|: ﬂ Wl([sup(lj(w)),inf(lj+1)],Rg,(4)} Z 1-— 2]{367; 9(8* /~) | (257)

—k<j<k-1

Note that the regions where the changes of phases occur have at most length Ry (in macroscopic units)
and we are able to localize it only within an interval of length p/y >> Rs. This means that up to a small
probability subset, we are able to give an explicit way of constructing an interval of length p/y where we
have a change of phases that occurs on a scale Ry, but we are not able to determine where it occurs within
this interval.

3 Probabilistic estimates

In this section we construct a random interval J(w), to which the interval I(w) appearing in Theorem 2.1 is
simply related. The construction involves a discrete random walk obtained from the variables x(a), a € ZZ,
defined by (2.39) and satisfying (2.37). If A is a finite interval in ZZ we set Y(A) = > ;. x(@). For

convenience we write
Y({1,...,a}), ifa>1;
Vo = 0 ifa=0 (3.1)
—Y{a+1,...,0}), ifa<-—1.

so that if A ={a1 +1,..., a2} = (a1, as], with a3 < s integers, we have Y(A) = Vo, — Vo, -

As v | 0, we assume € | 0 but €/v0* T +o0. In this regime, YV[./¢ converges in law to a bilateral Brownian
motion (no drift, diffusion coefficient V(83, 9)).
Given a real positive number f, 0 < f < F*/4 where F* is defined in (2.25), we denote

D(f,+) =D(f, +,w) = {A: Y(A) > 2F + f, Ai/réfAy(A/) > —2F" + f}, (3.2)
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the set of random (finite) intervals A C ZZ with an (uphill) increment of size at least 2F* + f, and such that
no interval within A presents a (downhill) increment smaller than —2F* 4+ f. Such an interval A C ZZ is

said to give rise to a positive elongation, and we set sgn A = +1.

Similarly,
D(f,=) = DU —w) = {4 V(&) < 25" — £, sup V&) <25~ 1}, (3.3
and such an interval is said to give rise to a negative elongation. If A € D(f,—), we set sgn A = —1. We call
D(f,w) =D(f, +,w) UD(f, -, w) (3.4)

Remark: D(f,+)ND(f,—) = 0 since f > 0, so that the above definition of sgnA is well posed. However,
we may have intervals Ay € D(f,+) and Ay € D(f, —) such that Ay N Ay # (.

Given @ > 0 and writing A° = Q\ A, we let

PO(fa Q) = {HA € D(f,W), A g [*Q/QQ/E]}C, (35)

be the set of realizations of the random field that neither give rise to a positive nor to a negative elongation
in the interval [—Q/¢, Q/€]. As we will see later, cf. Theorem 3.1, IP[Py(f,d)] is small provided @ is large,
uniformly on 0 < f < F*/4. (The uniformity is trivial since from the definitions D(f,+) C D(f,:l:) if
0<f<f)

Deciding if a given interval gives rise to a positive or negative elongation is a local procedure, in the sense
that it depends only on the values of x(«), with « in the considered interval. But, since our goal is to find
the beginning and the end of successive runs of 7%¢ = +1, and runs of 7n°¢ = —1, we should determine
contiguous elongations with alternating signs. For this we first need (not necessarily contiguous) elongations
with alternating signs. We set, for k € IN:

By(f,k,Q) = {wEQ:ElOSal <by<ag<by<...<ap<bp <Q/e (a;,b] € D(f),

(3.6)
i=1,.,k; sgn(a;,b;] = —sgn(ait1,bit1], i=1,.., k — 1},

B_(f,k,Q) = {wEQ:HOZbl >ay >by>as > ... 2 b > ar > —QJe, (ai,b;] € D(f),

(3.7)
1= 1, ,k, sgn(ai,bi] = fsgn(aHl,le], 1= 1, ey k— 1},

and P1(f, k,Q) = (B+(f,k,Q)NB_(f,k,Q))° 2 Po(f,Q). In Theorem 3.1 we shall prove that IP[P;(f,
k,kQ)] is small, uniformly in 0 < f < F*/4, and k > 1, provided @ is taken large enough.
For reasons that will be clear later we set:

Py(f,Q) = {31 < s <az < as € [-Q/e,Q/€: Vo, = Vas| V [Var = Vau| < 3f,
||ya1 7ya2| 72f*| S 3f7
Yo € [Var ANVas —3f,Var V Vas +3f],Va € [a1, a4}

and

Py (f.Q) =Ps(f, Q) U{ Ix(@)] > f}. (3-8)

max
a€[-Q/e,Q/¢]

To construct the previously described J(w), with 0 € J(w) C [-Q/v,Q/7], it will suffice to have w €
(’Pl(f, 3,Q)UPY(f, Q))c. Having fixed @ sufficiently large so that IP(P1(f,3,Q)) is suitably small for any
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0 < f < F*/4, we shall take f small enough and € suitably small so that IP(P4(f,Q)) is also suitably small,
as stated in Theorem 3.1.

Let w € (P1(f,3,Q) UPY(f,Q))°. Starting at o = 0, and going to the right we tag the “first” interval
in Z which provides an elongation. We then use an explicit way to construct contiguous intervals that
provide elongations with alternating signs. J(w) will be defined with the help of such elongations. Having
a discrete random walk, different types of ambiguities appear in this construction and we need to estimate

the probability of their occurrence. We discuss a possible construction.
Let us define for each a,b € [-Q/¢,Q/e|N Z:

b_(a) = inf{d’ > a: (a,b'] € D(f,w)}
bi(a) = sup{b’ > a: (a,b'] € D(f,w)} (3.9)
a+(b) =sup{a’ < b:(a’,b] € D(f,w)}
a_(b) =inf{a’ < b: (d’,b] € D(f,w)},

with the infima and suprema taken on [—Q/¢, @Q/e] N Z; thus, if the corresponding set is non-empty we have
a minimum or maximum; otherwise we make the usual convention: inf ) = +oc and sup ) = —oo.

We see at once:

e if b_(a) < 400 then a_(b_(a)) <a < as(b-(a));

o if ay(b) > —oo then b_(a4 (b)) < b < bi(ar(h)).

Let us set ap = inf{a > 0:b_(a) < +o0}. Since w € B+(f,3,Q) C B1(f,1,Q), we have 0 < ag <
b_(ap) = bo < Q/e, and (ag, by is an elongation. Also, (a—(by), bo] 2 (ao, bo] is an elongation with the same
sign. To fix ideas we assume +1 = sgn(ag, bp]. This will serve as starting point for the construction. We
now set, for b < by:

a+(b) = supf{a < b: (a,b] € D(f,—)},

~ ~ (3.10)
b_1 =sup{b < bp:a4(b) > —oc0}, and a_1 =ay(b_1).

Since w € B_(f,3,Q) € B_(f,2,Q) we have —Q/e < a_; < b_1, and from the construction, we easily check
a—1 < 0. Observe that in (3.10) we need to consider b < by (instead of b < ag) due to the possibility of
non-empty overlap among elongations with different signs. We make the following:

Claim 1. If w € (P1(f,3,Q) UPY(f,Q))° we have b_1 > a_(bo).

Proof of Claim. We prove it by contradiction. For that, we suppose that b_; < a_(by), and consider two
cases:
(1) Vo < Va_(v,) for some o € [-Q /e, a_(bo));
(IT) Yo > Va_ (b for all a € [-Q/¢,a_(bo)).
In case (I), letting g = max{a < a_(bo):Va < Va_(vo)}, We take: ag any point of (global) minimum of
Y. in [a—(bg),bol; a4 = min{a € [ag,bo]: Vo — Vas > 2F* + f}, which exists since sgn(a_(bg), bo] = +1;
ag = max{a € (o, a—(b0)]: Vas — Yo < —2F* + f}, which exists in this case, otherwise (ayg, bg] would be a
positive elongation, contradicting the definition of a_(by).

We see that starting from ao and moving backwards in time, the process ) must take a value below
Yo, — 2F* + 3f before it reaches a value above Y, + 2f (otherwise b_1 > a_(bg))); taking ay as the “first”
(backwards) such time, we are in the situation described in Pj(f, @), contradicting our assumption on w.

In case (II), let ay be any point of minimum of Y(-) in [a—(bg),bg]. Due to the assumption that w €
B_(f,3,Q), there exists a positive elongation contained in [—Q/¢,a_(by)]. Together with the assumption in
(IT) this allows to define oy = max{a < a—(bg): Vo = Vo, + 2F* + f}, and —Q/e < a1 < a_(bg). Taking
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ag = sup{a < ag: Vo — Va, > 2F* — f} which exists otherwise [a1, @] would be a negative elongation
contradicting b_1 < a—(bg). Moreover ag > 1. We see that starting from ag and moving “backwards”
in time, ). has to make a downwards increment of at least 2F* — 3f “before” ay [otherwise b_1 > a_(bp)].
and we get as as the “first” such time, we are in the situation described in P4(f,Q), contradicting our

assumption on w.
Having assumed that w € (P1(f,3,Q) U PY(f,Q))¢ in this construction, the previous claim tells us that
b_1 > a_(by). For sgn(ag, bg] = +1 we define

af = min{a € [a—(by),b-1]: Vo = a,<bf§22gb,1y(d)}’ (3.11)

In this situation (a_1, o] and (af, bo] are contiguous elongations, with alternating signs (—1 and +1 resp.).
The same holds for (a—(af), o] 2 (a—1, o] and (af, b+ (af)] 2 (af, bo)-

Remark. Though not needed, one can check that yag =ming_, <a<b, Va-

With w € (P1(f,3,Q)UPH(f,Q))¢ we may proceed one step to the right, where the next “breaking point”

will be a maximum in a suitable interval. We first set, for a > ag:

b_(a) = inf{b > a: (a,b] € D(f,—)} (312)

ap =inf{a > aj:b_(a) < 400}, and by =b_(a) -

and since w € B4 (f,3,Q) C B+(f,2,Q) we have 0 < a1 < by < Q/e. Moreover, as before we have:

Claim 2. For w € (P1(f,3,Q) UPH(f,Q))° we must have a1 < by (af).

Claim 2 is proven in the same way as the previous one, and we omit details. It allows to define, for such

1= i S ,b M a = & 3.13

of = min{o € [an b (0p)iYo = _max Vo) (313)

so that (af,af], and (af,b;] are contiguous elongations with alternating signs (+1 and —1 resp.). Also
sgn(aj, by (a1)] = sgn(aj, b1], and, similarly to previous observation, we see that V,: = ming,<a<b, Va-

If af < 0 we set J(w) = (60‘7“, %) If instead, o > 0, in order to determine J(w) we need to extend the
construction one more step to the left. In this case, we may consider for any b < ag:

a4 (b) = sup{a < b: (a,b] € D(f,+)}, (3.14)
b_o =sup{b < ag:a4(b) > —c0}, and a_g = a4 (b_2). -
Since of > 0, sgn(a—(af),af] = —1, and w € B_(f,3,Q) C B_(f,2,Q) we have —Q < b_y < af and
—@Q < a_y. Moreover, from the construction a_s < a_(ag) < a_;. As before, we can prove the following:
Claim 3. For w € (P1(f,3,Q) UPY(f,Q))° we must have b_s > a_(of).
The proof of Claim 3 is omitted, since it follows the same argument of Claim 1, under the previous
assumptions. Having b_g > a_(af) we may split the intervals through

oy =inf{a e fa_(ap),boli Vo =  max_ Va) (3.15)

a_(ag)<a<b s

so that (a—2,a*,] and (a*, ] are elongations with alternating signs. As in the previous steps, we see
that b_s < a—(ag) is not possible if w ¢ P5(f, Q). Moreover, from the construction it follows that o*; <0,

otherwise it would contradict the definition of ag and sgn(ag,bg] = +1. Thus, for af > 0 we set J(w) =

(Ea{l , CO‘T“) Though not used in the sequel, we may again check that, Yo+ = min, ,<a<b_; Va-
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Under the assumptions on w € (P(f,3,Q) U PY(f,Q))¢ we have constructed contiguous elongations
(a—z2,a* 4], (a1, 03], (af, aF], and (o, by], with alternating signs.

Starting from (a—(a*,),a* ;] and (af,by(af)], the construction may be continued to the left and right
respectively, if w ¢ P1(f, k, Q) UPLY(f,Q) for larger k. For Theorem 2.2 it suffices to have w € (P (f, 3(2k +

1), Q) UP;(f,Q))".

Remark. We have chosen of, af, etc... as the first minimizer or maximizer, respectively, since the random
walk may have multiple maximizers on the intervals considered there. In fact the random walk can oscillate,
being always below or equal to the maximum. Since in the limit € | 0, the random walk converges in law
to a Brownian motion where the local maxima are always distinct, see [29] p. 108, we can expect that for a
random walk such a result holds approximately. A way to do it is to accept an error on the location of the
beginning or the end of the runs of 7%¢(¢). For this we need to prove that if a; and as are the locations of
two local maxima of Y(-) and the distance between ay and ay is larger than p/e, then IP[|Va, — Va,| < 9]
goes to zero in the limit ¢ | 0, for a suitable choice of the parameters p = p(e), & = d(p,€e) = d(e) both
vanishing as € — 0.

We define, for p and ) positive,

PQ(fa+aQaa—1abOapa 6) = {UJ € (,Pl(fa?)aQ) UPg(faQ))c; Ja e [a—labo]a

i , (3.16)
16— gl > pfe, Ve — Yug| < 6}
PQ(f7+7Qaa05b17p7 g) = {w € (Pl(fv'?’aQ) Upé/(f7Q>)c’ dae [G‘O;bl]a (3 17)
& —af| > p/e,|Va — Vay| < 6} ’ -
and }
PQ(fa +aQ;a—2ab—1apa 6) = {w € (Pl(faSaQ) U ,Pél(fa Q))C; azk) > Oa Hd € [a—Qab—l]a (3 18)

<4}

@ —a’y| > p/€|Va = Var,
We will show that the previous three sets have IP-probability as small as we want provided we choose the
parameters €, p, é in a suitable way.
We recall that we have defined the random interval J(w) as follows:

(ﬂ i) if af < 0;

vy

J(w) = ot / (3.19)
(;ﬂ) . ifag > 0.
Y Y

There is some arbitrariness when af = 0, but accepting to make an error p/e on the location of the

maximizers or minimizers, we will show that the set

Pa(f,Q:p) = {w € (P(£.3,Q)UPS(£,Q)) a5 oray € [-22,28] (3.20)
has a very small probability.

Remark. Always assuming w € (P(f,3,Q) U PY(f,Q))¢, but instead sgn(ap,bg] = —1, we perform the
obvious modifications of the construction.

Recalling that all over this work, 8 > 1 and 6 > 0 satisfy (2.17), the control on the various exceptional
sets is summarized in the following:

Theorem 3.1 . There exist positive constants Qo = Qo(5,0), fo = fo(5,8), po = po(B,0) and v =
Y0(8,0) such that for all 0 < v <7, 0< p < pg, and 0 < f < fo, for all € such that

2
(8,0)log(1944) (

'y <e< 3 p*T2eA £2) (3.21)
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for an arbitrary given a > 0, we have the following: For all integers k > 1,Q > Qo(5,0),

P [Po(£.Q)] <3¢ 5 + L 2/ +9V(5,0)\/elog & N

" og
log2 27— f 2f + 2V (B,0)1/clog &

where V(3,0) is given by (2.35) and C1 = C1([3,0) is given in (5.44) with b =2F*;

2f + 9V (5,0),/elog &2 .
]P[’P1(f,k,Q)]§(k+5)e—%+ k2 (s )Wl 2F* — f

* 0g
log2 25— f 2f +2V(3,0),/elog &

9f + (2+V(B,0))y/elog &2
PRI Q) <800 + 17222 (g pyu/Cra 4 (o 4 11298 HTEH VI O)yelos -

V(3,0) V(3,0) (9)3/(4+2a)

__
+ £67 4eV2(3,0) .
€

2+a

Moreover, for 6(p) = p*t® we have

. ~ 4
P [Ufsz Usl e{+1} PQ(fa S1, Qa ag, bi+1a P, 6(p)):| S (4k + 2)3G1 (ﬁa 9; 6(p)7 6) 1Og a
1

where

G1(B.0,4(p), €)

2160, (pm VI V(E0)(clog %)1/4>
)

V(3,0 p3/4

with C1 as in (3.22), and if 0 < k < 1/2

1
O o

- cBo C(p.0)
IP[P3(faQ»P)]§6/)2 +ﬂ P P (8 w2 2log 5 )

K

where C(0,0) is a suitable constant that depends on V(5,0) and T'() is the Euler Gamma function.

The proof will be given at the end of this section.

(8,0,5(p), €)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Remark: The quantities a; and b; are random variables, but none is a stopping time. As € | 0, and then

p 1 0 (3.25) reduces to the well known fact that with probability one, the Brownian path does not have two

equal local maximum (or minimum) over any finite interval (see [29] pg 108).
To simplify the writing of the above estimates, we made the following choice:

p:64(2—1+a), f:ei, /{:1/4
Then, calling
P(kvea Q) :Pl(f = eivka Q) U Pél(f = €%,Q) U 7)3(f = 6%7a727b717p = 64(21@)

1 S SR 1
U (Ui'c:—k U51€{:|:1} PQ(f =€1,31, Qaaiabi-l-lap = 64(2*“)a6(P) = 64)) )

after simple estimates one gets
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Corollary 3.2 . There exist positive constants Qo = Qo(5,0), Yo = 70(5,60) and e€o(5,0) such that for all
0 < v < o, for all € that satisfies §*y < € < €g, for all Q > Qo, k > 1 we have

Q o . N S
IP[P(k,€,Q)] < (k+5)e” T + keToeta + Q%52 + Qe 2</v25.0) (3.30)

where a > 0 is a given arbitrary positive number.

Recalling (3.19), the following Proposition will be used for proving (2.46) and (2.47). It will be proved at
the end of this section.

Proposition 3.3 . For all 0 < z < (F*)?/(V?(j3,0)181og2) we have

(}-*)2

Ply|J| < z] < 2e 15:V2(6.9) (3.31)

while for all x > 0 we have

1og3)

IP[y|J| > 2] < de” 5eiar (1o (3.32)

where C1(8, 0, F*) is defined in (3.44).
Remark: Note that for x > (F*)?/(V?(3,0)181og 2) the right hand side of (3.31) is larger than 1. Therefore
(3.31) is trivially satisfied also in this case.

Basic estimates.

Several probabilistic estimates are needed for Theorem 3.1 and are summarized in the following Lemmata
and Proposition. The variables x(a), o € Z defined by (2.39), with X (z) given by (2.32), constitute the
basic objects in the following analysis. We recall that we always assume that 8 > 1 and 6 > 0 satisfy (2.17).
Recalling (2.38) we set

V2= v2(5,9)(1 - ((Sl,f)1/5)2 and V2= V2(6,9)(1 + (5%)1/5)2. (3.33)

Remark: Throughout this section we shall assume that 0 < v/8* < do(B3,0) A 27° so that V(3,0)/2 <
Vo < \/e(B,0,7/6%) < Vi <3V(B,0)/2 where V(3,0) is given in (2.35).

We need some further simple estimates concerning the variables y(«) that are not difficult to prove just
recalling that x(a) is a sum over €(v5*)~! independent symmetric random variables X (z). (3.36) is proved
using (3.35).

Lemma 3.4 . There exists a do((3,0) > 0, such that if v/6* < do(B,0) then

)\2
E {emﬂ <eZTVi,  WAeR (3.34)

with V¥ defined in (3.33). If 0 < X < [eVE]™!, we have

A 2 1
IE 2|X(0¢)| < — . .
[e <o (3.35)
Forall k>3 andp=1,2,4:
P| < (4eV2log k)P/2(1 + L )5V1, :
1 | max ()] < (evRionp2+ ) (3.36)
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In order to have an elongation, as previously described, it is necessary to find suitable uphill or downhill
increments of height 2F* + f.

A constructive way to locate elongations, though it might miss some of them, is related to the following
stopping times:

Given b >0 (b=F* + % later), we set 79 = 0, and define, for k > 1:

t

T = inf{t > 71| Z x(a)| > b},

a=Tr_1+1
kot (3.37)
T (k1)
T_ = sup{t < T—(k—-1)" | Z x(@)| > b}
a=t+1

Clearly, the random variables A71g11 := Tp41 — Tk, k € Z, are independent and identically distributed.
(Recall that A7y = 71 from the definitions.) We define,

Tk T—k+1
Sk = sgn( Z X(j)); S_p= sgn( Z X(j)) for k>1 (3.38)
J=Tr—1+1 J=T_r+1

We need probabilistic estimates for the variables A7, and 7, which are obtained by standard methods.
An upper bound on the tail of their distribution can be given as follows:

Lemma 3.5 . There exists a positive constant do(3,0) such that for all integer v, v/6* < do(3,0) and
0 <e<eo(B,0,b) where

c0(5,0,b) == 3—18 <1P[Y > V(L;b, 9)}>2, (3.39)
we have
P [n > a < exp (—UIP [Y > V(L;b, 9)]) , (3.40)

where Y is standard Gaussian and V(3,0) as in (2.35).
Remark: For future use, note that ey(3, 6, b) is a decreasing function of b.
Proof: Since the x(«) are i.i.d. random variables, for any positive integer v, we have:

(k+1)/e
v v
P [ﬁ > j <P | max | Y )| <2b| = (PY(1/e)] < 20]) (3.41)
""" a=k/e+1

We can use (3.34) to get an estimate of the fourth moment of x(«) and apply Berry—Essen Theorem ([17]
p. 304) to control the right hand side in (3.41). Consequently, there exists a constant Cpr = Cpg(5,0)
which, according to Berry-Essen inequality may be taken as

Cpr =038 sup E(x(V)*)/IE(|x(1)[*)*? < 3* (3.42)
0<y/6*<do(B3,0),e>6*y

assuming at the last step that +v/8* < do(3,0) < (1/2)°. Therefore

2%
c(3,0,v/6%)

PY(1/e) < 20| <1 2P[y > | +3e<1- Py >
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where Y is a standard Gaussian, using 0 < € < €y(3, 6,b) and (3.39) for the last inequality in (3.43). Using
1—z<e ™ weget (3.40) W

The following lemma gives bounds for the mean of 71 and follows easily from the Wald Identity, see [27],
pg 83, and (3.36).
Lemma 3.6 . If
2
IP[Y > 4b/V(3,0)]’

Cy =C1(8,0,b) = (3.44)
where Y is standard gaussian and 0 < € < €o(3,0,b) cf. (3.39), there exists do(f3,6) such that for v/0* <
do(3,0) we have

b? *\1/5\2 b? *\1/5\2 V(B,0) G i
m(l—Wm ) /5) < IE[n] < m(1+(7/6 ) /5) <1+QT elog?> ) (3.45)

Remark: For future use, note that C1(3,6,b) is increasing with b.

We need exponential estimates for the probability that a Cesaro average over k terms of the previous
A7;’s is outside an interval that contains the mean IE[r]. The result is:
Lemma 3.7 . For all 0 < s < b*[4(log2)VZ]™!, for all positive integers k we have

= )
€

k _k4b22
P |:Tk < —1 <e % (3.46)

where V¥ is defined in (3.33). Moreover, for eg = €o(3,0,b) as (3.39), for all 0 < € < €, for all positive
integers k, and for all s > 0 we have

k
IP|1p > (s +log 2)01} <e (3.47)
€

where C1 = C1(B,0,b) is given in (8.44).

Proof: (3.46) is an immediate consequence of the Markov exponential inequality together with the exponen-
tial Wald identity see [27], pg 81. (3.47) is an immediate consequence of the Markov exponential inequality
together with (3.40) to estimate the Laplace transform. ll

As we shall check, the above stopping times with b = F* + %, provide a simple way to catch elongations.
It will be enough to find successive indices k > 1 (k < —2) such that Sy = Siy1 and eliminating a set
of small probability, see Lemma 3.10, (7x—1, Tk+1] (T, Tk+2] respectively) will provide an elongation which
is positive if S = 41, or negative otherwise. Still, if S_; = S, then (7_1,71] is an elongation. Not all
elongations are of this form, as one simply verifies, but what matters is that this procedure catches enough
of them, sufficient to prove Theorem 3.1. The basic ingredient is given in the next two lemmas.

Lemma 3.8 . Let g = €9(5,60,b) be given by (3.39). For all 0 < € < g, all integer k > 1, and all s > 0 we
have
k(s +log2)Cy

€

1
2k—1 )

IP |1, < die{l,.. . k=118 =S| >(1—eF)(1- (3.48)

11/ february/2004; 15:42 20



Proof: 1t follows at once from the fact, due to the symmetry, that conditionally on A7;’s the variables S;, i #
0’s form a family of i.i.d. Bernoulli symmetric random variables (see (3.38)), with the trivial observation
that for i.i.d. symmetric Bernoulli random variables

1
2k—1"

lP[Hie{l,...,k—l}:Si:Si+1]:1— (349)

Together with (3.47), this entails (3.48). W

To deal with the case where more than one elongation is involved, we define to the right of the origin

’LT Einf{’i > 1: Si = Si—i—l}

o . . o , (3.50)
szE1nf{22(zj+2):5i:,5’i+1:—Si;} j>1,
and to the left
(-1 if S_1 =51 =-8is,
-1 = sup {’L S —2: SZ = SiJrl = 7Slf} if Sfl 7& Sl or Sl = *Sii,
i,y = sup {z <it—2:8, =Sy = fSi;} ji>1, (3.51)

we then have:
Lemma 3.9 . Let g = €0(3,0,b) be given by (3.39). For all 0 < € < €g, all k and L positive integers, L
even, (just for simplicity of writing) and all s > 0 we have:

kL —1)(s+1log2)C . (kL— k-1
Ip [TkL—l < ( it . 82) = Vicjcn i) < JL} > (1 — ek 1)) (1- ) (1 - (%)Lp)
(3.52)
and
—kL(s +log2)Cy (L—1)(s+1log2)Cy ., » _
IP |11 > . , TL—1 < . ,’Ll<L, Vlgjgk ij>7]L
(3.53)

> (1 e ) (1 ) (1- ()77

Proof: We prove (3.52); (3.53) is done similarly. We again use that conditionally on A7;’s, the variables
S;’s are i.i.d. Bernoulli symmetric random variables. Recalling Lemma 3.7, it is then sufficient to prove that

k—1
IPli} < Lyis < 2L,....if < kL] > (1 — 57) (1 - (g)L/Q) , (3.54)

When k& = 1 this is just (3.49). On the other side, using the above mentioned properties of the random
variables S; we easily see that

Plity, —i5 < L|if,...if1>1— ()" as

from where (3.52) follows at once. W
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Next we verify that the above described method provides elongations, with overwhelming probability.
Recalling (3.50) let us assume, to fix ideas, that S;» = Si= 11 = 1. From the definition of 7;, see (3.37), with
b= F*+ (f/2), we have that

T{iy+1)

y((T{iT_l},T{qJ’_l}]) = Z X(O[) Z 2F* + f (355)

04:7'{,5171}-‘,-1

Therefore (T{q, 1} T{Z-»{H}] automatically satisfies one of the two conditions to give rise to an elongation, cf.
(3.2).
Let us see that, except on a set of small probability, the other requirement is fulfilled, i.e.,

inf a) > =2F* + f. 3.56
iy <ot S S ) :Z x(@) > / (3.56)

On the event {S; = 1}, we readily see that
inf > x(a) = -F*—f/2,and inf > x(@ >o. (3.57)

T{i—1yHl<a<T; Tri—1yti<a<m

a=T1(;—1}+1 a=«

Since Y02 x(a) =30, x(@) + 3202 11 x(@), on {S; = Si41 = 1} we have

a2

inf > —F*—f/]2> =2F* . 3.58
T{i—l}+1S0¢11£Ti<0t2§7{i+1} Z X(Oé) =7 f/ - Frd ( )

a=o1

In the last inequality we used f < F*/4 < 2F*/3. Therefore, it remains to evaluate IP[J (i7)UJ (i1 +1), Six =
1], where

j(l) = {T{i1}+1§1ro¢1f<a2§7'{i} a:zcn X(a) < f} - (359)

Note that on {S; = 1}, we have inf,, | t1<ai<as<r Poarq, X(@) = —2F* — f, where we used (3.57) and
SUD, ) 1<an < Zglz;ilﬂ x(a) < F*+ % As a consequence, for any integer i:

1), 9, =1y C 3 —2F" — f < inf a) < —2FF + .
{j(l) } - { = T{i71}+11£011<042§7'i &:Za X(Oé) o f}
An analogous inequality (with a sup instead of an inf) holds in the case S;x = —1. Therefore we need to

prove the following:
Lemma 3.10 . Let g = (53,0, 2F*) be given by (3.89) and Cy = C1(B,0,2F*) be given by(3.44). For all
0< f<F*/4 and for all 0 < € < €9 we have

s
r Uj—ixir+1 2F* — f < sup Z X(d) <2F + f
Ti—1<a1<az<Tj G—on

(3.60)
2G(ﬂ7 97 6, f) 1
ST gz %G00 )
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where

2f +9V(3,0),/elog &
G(B,0,¢, f) = 77 . (3.61)

Remark: Clearly ¢ is anticipating, and 7;+ 1 and 7+ are not stopping times.
Proof: Since IP[i} =i, S = 1] = 27", we have

IP[J(i7), S =1] < ilP[j(i),Si =1]+27% (3.62)

where i¢ will be suitably chosen. To treat the sum, we define the stopping times

[e3%

T . s =mf{a>my Y, x@)>F -} (3.63)
2 a=7;_1+1
— 3 . ~ * i
Ty g=mi{o>moy 3 X@2F+4; (3.64)
G=T(;—1}+1
T~ g =if{a>riy; Y x(@) <-F + 3} (3.65)
gy a=T7{;—1}3+1
By inspection we verify that {J(i),S; =1} C S(i) = {Tf 3f ST7 5 < Tf +f}, and by the strong
—5 T g “+g
Markov property, we have
o P
2 - - . .
IP|S(i)| < IP|T™ <T P edx| < IP\T, . <T: 3.66
[S@] = /_521 [ Fe-3 f*+£—z} [QZ;HX(O‘) ] SIP[Typ. 55 <Tos]  (3.66)

where, we have written Tz = inf{a >1: Yy > x}, T~ =inf {a >1:Y, < f:c}.
At this point we need the estimate (3.89), in Lemma 3.13 below, it gives

} R 2f +9V(B,0)/elog &
IP[Typ._g; < Tos] < F [ G(3,0,¢ f). (3.67)

with C; = C1(8,60,2F*) > (C1(8,0, 2F*=3f)V(2f)) if 0 < e < (B, 6,2F*) < €0(5,0, (2F* =3f)V(2f)).
Here we have used that €y(0, 6, b) is decreasing with b and that C1(3,0,b) is increasing with b.
Consequently, cf. (3.62), (3.66) and (3.67) we have

P[T(5F), Si; =1] <Y IP[S(i)] +277° < ioG(B,0,¢, f) +27% (3.68)

=1

-1

Taking iy = log m[log 2]”" we obtain (3.60), since the same works for i; +1. W

To show that (3.25) holds, we need to bound the probability of finding two extrema in an interval [Ti;f s Tir, 1,

at distance larger than p/e and whose values are within 5.

11/ february/2004; 15:42 23



We fix the interval [r;+ , 7ix] (the peculiarity of having fixed the origin will not bother), and for any given
h, k positive integers we denote

Ehyhy+) = {weQ:i* = —hif =k, S = 1}, (3.69)

where for definiteness we are considering only the case of maxima, i.e., we have assumed that Sy = Sx41 =
1,58, = S_ps1 = +1 on E(k, h, +). The case of minima is similar. Recall that IP [E(k, h, +)] < 27 (k+h),
The positive integers h, k in (3.69) determine a random interval {7_p, ..., 7,41} C Z in which the index
a of the variables x(«) varies. Using Lemma 3.7, on a set of probability larger than (1 — e’Sk) (1 — e’Sh),
we can replace this random interval by a larger deterministic one. In particular, assuming s > log 2, except
for a set of probability at most 4e~%, for all h,k > 1, {7_p, ..., Tkt1} C {L(=h,€),...,L(k+ 1,¢)} where

s +log2)Cy

L(r,e) = T( rezZ (3.70)

€
with Cy = C1(3,0,2F*) > C1(B,0, F* + (£/2)) as in (3.44).

We now partition the interval [£(—h,€), L(k + 1,¢€)] into blocks of length p/e, where p was already intro-
duced in (3.20). Assuming, as always, that we do not have rounding off problems, the number of such blocks
inside [L£(—h,¢€), L(k+1,¢)] is L(k +1,p) — L(=h, p), i.e., of order (k+ h+ 1)p~!, with L(-, p) defined as in
(3.70) with e replaced by p.

Given a = L(—h,e) < a1 <ags < L(k+1,¢), let:

V*(a,a1,0) = max Zx(a). (3.71)

Given 6 > 0, p > 0, and ¢ such that L(—=h,p) <L < L(k—1,p), let us define the event

Dk, h,p,8,+,€) = {w €Q:30,0, L(—h,p)<l<l <L(k—1,p);
(3.72)

|J}>k(g pl M)_y*(g,p_él’p(e:‘rl))' SQS}

7 e € €

We now prove the following estimate:

Lemma 3.11 . There exist positive constants vo(3,60) and po(B,0) such that for all v < v(8,6), for
0<p<po(B,8), for 6 = p*ta with a > 0, for 6*y < e < e0(5,0,p), where

4(p)22 4

€0(8,0, ) = 5725 4y oaomD) (3.73)

and for all s > 0 we have

1P [Uknz1 (EGk, b +) N DGk, b p.6.4.0)) | <

219C,(8,0,2F%) /2 1+ V(B,0)(elog LB:0277)y1/4 (3.74)
————"(s+10g2) | p"" + " .
V(8,0) 3/
Proof: By Schwartz inequality
5 1/2 ~ 1/2
P [Uk,hzlg(k’,h, +)m><k,h,p,5,+,e)} < N WPIEK b)) (zP [D(k,h,p,5,+,e)}) . (3.75)
hk>1
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Since
1 (kth)
IPE(k, h,+)]2 <27 2 (3.76)
will be summable in h, k, it remains to properly estimate the second term into parenthesis in (3.75). From
(3.72) we just write

L(k—1,0)—1 L(k—1,p)
P [D k,h,p,o < ! q. Py e+ pt p(e+1)
(khop, 0,0 < > > P (Ve 2, )= V(a )| <26 (3.77)
(=L(—h,p) £'=0+1

and estimate each summand on the r.h.s. of (3.77). If £+ 1 < ¢ we write:

V(e el p(€’+1)) ~V*(a pt p(€+1))

=7’ €’ € ’ e €
ol : p(L+1)
€ a €
a) + Z min Z a
> xla) o p(e+1> o, min 2 x(a),
p(€+1) 41 +1<a<—= p SaiT a=a+1
€

and using the independence of the x(«) we easily see that:

ot
[D} (a, E/a p(lljl)) -V (a, %Zv p(e+1))| < 25} < sup]P Z x(a) € [z, + 25]
o=l 4y (3.78)
45\ 27

TVB0OVO —=1)p

In the last inequality we have used the concentration inequality of Le Cam (e.g. [12], p.407) for the symmetric
random variables x(«) and assumed 0 < ¢ < (3, 0, p) see (3.73). This condition comes from a lower estimate
of what Le Cam called B2(7). In our case B2(25) = (¢ — ¢ — 1)2IE[1 A (x(1)/26)?]. A short computation

gives
A (/2577 2 D] (1 - ]E[(X(IQ){)&]I(‘Q';‘;;]"”}]) - (3.79)

Using (2.40), (3.33), Schwarz inequality, and that IP[|x(1)| > 48] < 2¢=20°/(VZ(8.9)  which follows from
(3.34), a short computation shows that for 0 < € < €y(5,0, p) the last term inside parenthesis in (3.79) is
bounded from below by 1/2.

When ¢/ = £+ 1, we bound the corresponding term on the r.h.s. of (3.77) as

sup IP [y*(g) € lz,z+ 25]} (3.80)

where YV*(a) = maxi<a<a Ya = V*(1,1,) if & > 1, and Y, given in (3.1). Putting together (3.70), (3.77),
(3.78) and (3.80), we get

P [D(k,h,p,g,—l—,e)} < (C1(8,0,2F)(s +10g 2)) 2(h+k+1)2v(5,9) (3.81)

+ (01(5,9,2]:*)(5 +10g2))2w sup IP [y*(g) € [z, z+ 25]
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The first term on the r.h.s. of (3.81) suggests to take 6= p?T® with @ > 0. The last term will be estimated
in the next Lemma 3.12, cf. (3.82) below.
Recalling (3.75), (3.76), (3.77), (3.81), and using (3.82) a short computation entails (3.74). W

Lemma 3.12 . There exist positive constants vo(03,0) and po(B3,0) such that for all v < ~v0(8,0), for
0 < p < po(B3,0), for 6 = p*t® with a > —1/2 , such that for §*y < € < eo(3,0, p) with eo(3,0, p) given in
(3.73), we have

1 . 11296 [0+ (2+V(B.0))y/elog
sup IP [y (2) e [z,z+25]} S )] 7 (3.82)

where C1 = C1(,0,2F*) is given by (3.44).
Proof: Let T, be the stopping time given after (3.66). We write

P [y*(é) € [z,z+2c§]} =1IP [TI <

P p poa P
_2—6,TI+25>j+lP[2—€<TI<E<TH25 . (3.83)

Observe that for any § > 0, we have {'2% <T, < L< TI+25} = {y*(i) < T, MAXp P Vo € [z, 2+ 25]}

therefore if 0 < € < €o(8,0, p), we obtain

p p = = 4627
IP|l—<T,<><T ;| <IP| max Y, €lz,z+26]| <supIP|Vp € u,u+20]| < —F+r—.
[26 € $+26} [ZSQSE [ ] UEI% [ QPE [ ]} V(ﬂa 9) V p/2
(3.84)

In the second inequality in (3.84), we used that the law of maxp ___p Vs is the convolution of the law of
2e =S¢
Y p with another probability (the law of Y*(£2), in this case).
2e

Let us now consider the first summand on the r.h.s. of (3.83). Decomposing according to the value of
Vi, T, and using the fact the variables y(-) are i.i.d. we get

p/2€ 2428
r |:Tx < Q%,THQS > g} = Z/ ]P{TI =k € dy:|lp|:Tm+257y > g —k
k=0""

Since z — y < 0 we can write:

s p sop
IP|T, 55, > b B < 1P|Tys > b K]
Integrating in y we then have:
S P p =P
PTe < 201,05 > 2] < P [T5 > 2] (3.85)
and collecting (3.83), (3.84), and (3.85), we get
= ~ 0 4627
supIP | YV*(&) e [z, +20]| <IP|T,); > — | + ——. 3.86
wp P [V (2) € | | <> 3]+ 5077 (3.86)
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Now, it is easy to check that

~ P ~ ~ ~ ~ 14
JP{T~>—]<1PT <T:|+P|T~ —AT):> 2, 3.87
26 2¢l — |: c /p/2 — 25:| + |: c /p/2 26 = 2 ( )
where Tﬁ is the stopping time defined after (3.66) for a constant ¢ to be chosen soon. Then we apply
c\/p

inequalities (3.89) and (3.91) given in the next lemma, with a = ¢\/p/2, d = p/2, and z = 26. Collecting all
together the estimates for IP [y*(g) € [z, z + 25]}, we have:

1 . 20+ 9V(3,0)\/elog & 8v25¢
= sup IP | y*( 25 .
p {y (&) elaat ]} = p(26 + ¢\/p/2) - VQ(B,H)/)3/2+

(3.88)

72 C . c
+ W\/@(Q(QéﬁLCVp/Q)qLV(ﬂ,@)\/E)

with C1 = C1(83,6, (20) V ¢\/p/2) see (3.44). Taking ¢ = V(,0) and assuming that po(8, #) is small enough,
we have C1(0, 6, (25) Ve p/2) < Ci(B,0,2F*), and a short computation entails (3.82). W

Lemma 3.13 . Forallx >0, a >0, Cy = C1(5,0,z Va) as in (3.44), €o(5,0,2 V a) as in (3.39), and if
0y <e<ey(B,0,2Va), we have:

P [2; - } . z+9V(3,0),/elog & (3.59)

r+a ’

P [~; . Tz] - a+9V(5,0),/elog % (3.90)

r+a ’

~_ ~ d 4zxa 36 Cl Cl
P [Ta ANTy > ;} < V2(3.00d ++V2(6,9)d“610g? (9(x+a)+V(ﬁ,9)\/elog?> : (3.91)

The proof of the previous lemma is a standard application of (3.36) and (3.40) together with Wald identity
applied to the martingales Vo, a > 0 and (V,)? — ec(3,0,7/5*)a, and also the bound (2.38). Details are left
out.

To prove (3.27) in Theorem 3.1 we need a classical result on the distribution of the localization of the
mimimum or the maximum of a simple random walk. Since their distribution is the same, it is enough to
consider the case of maximum. So, recalling (3.71), let us denote L,,. = inf{a > 0: Y, = V*(0,0, p/e)}. Such
kind of result was proved by E. Sparre Andersen [33]. Following step by step the very nice computations
he did, see Theorem 3 of [33], and using the Berry-Essen theorem to estimate what is there denoted by
IP{S,, > 0}, we can evaluate by the Cauchy integral formula the constant called C' at pg. 208, 3 lines before
(5.17) of [33]. After simple, however lengthy computations, we obtain the following result.

Proposition 3.14 . There exists a constant C(8,0) (related to V(3,0)) and po = po(B,0) such that for
all 0 < p < pg there exists eg = €o(8,0) such that for all 0 < € < peq, for all 0 < k < 1/2, for all interval
0<a<a <1 such thata' —a > %,

cos(mk) /a/(f’p) dx

1
™ a(e,p) x§+'€(1 —x)§_ﬁ

1 1
1 5+r 1 5k C(8,0)
<L () () ++QXP(8 e Qlog%)
I'(3—r)\p L(z+r)\p pla’ — a)

’]P [Lyye € lap/e,a’p/e]] —
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where z(p,€) = (pxr +€)(p+€)~t forx =a,d
Proof of Theorem 3.1

We start proving (3.22). For any Q > Qo = 4log2C1(f5,0,F*), if we take @/e blocks of length €/v
on the right of the origin, then using Lemma 3.8 with s = log2 and k = 1 + [¢/(2C1(5,0,2F*)log2)]
where [] is the integer part, with a IP-Probability at least (1 — 3e~@/2¢1(8:0:77)) there is at least one
index ¢ among 1,...,[Q/(2C1(5,0,2F*)1log2)] such that S; = S;y;. From Lemma 3.10 with IP > 1 —
G(B,0,¢, f)log G(S, 0, ¢, f)@ with G(0,0, ¢, f) defined in (3.61) we have an elongation there. Therefore
the probability of not having any elongation on the right of the origin within Q/e blocks of length €/~ is less
than

3¢ TTHIFT 4 é(l(ﬂ, 0, ¢, f)log G(3,0,¢, f) (3.93)

which implies (3.22).

The proof of (3.23) is done in a similar way. We first apply Lemma 3.9 with s = log2 and L = 1+
[Q/(kc(B,0,2F*)21og2)] then Lemma 3.10.

To prove (3.25), we recall Lemma 3.11 and the arguments that precede it. Taking S(p) = p?t® and
recalling (3.26) we have
r |:P2(f7 51, Q7 Ay, b’i+17 P g(p)):| < 4e™" + (S + log 2)G1 (65 95 S(p)v 6)' (394)

Choosing s = log4/(G1(8,6,0(p), €)) and taking po(5, ) and €o(0, 6, p) small enough, we get (3.25).
For the proof of (3.24), recalling (3.8) we write

PRyl Pt mexo @l <] | m @l ).

and taking p’ = (9f)Y/ 2+ we consider the event

7t

D@.p ) = {300, -Q/p <0< < (Q-1)/p " (@, £, £ — Y, (o, 22, L) —oF| < of}.
where Y, is defined as in (3.71) replacing max by min.

Simple observations show that P5(f, Q) N {max,e(—q/e,q/q X ()| < f} C D(Q,p,¢). Following the
arguments that lead to (3.81), assuming 0 < € < ¢o(3,0, f) = (9f)?/(2V?(3, 0) log 1944), using Lemma 3.12
with 20 replaced by 9f one gets (3.24).

1

The proof of (3.27) follows from (3.92) estimating the integral in the left hand side of (3.92) by 8(a’—a)2 ™"

which can be obtained by cutting the interval [a(e, p),d’(e, p)] into two equal pieces. Using (3.92) for a =
0,a’ = p and a short computation entails (3.27). W

Proof of Proposition 3.3
To prove (3.31), notice that vJ(w) D [eT—1,0] U [0, e71]. Therefore, using (3.46) and a short computation
one gets

(F*)?

IPy|J| € 2] < 2¢ 18:VZ5.0) (3.95)

for 0 < x < (F*)?/(V%(3,0)1810g2). (3.32) follows at once, due to (3.50), (3.51), and the fact that
vJ(w) C [eTi=,, €Tiz]. Therefore (3.54) with k = 2 entails

1 3\ /2
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Using now (3.47) with k = 2, s = log?2 one gets IP[eror, > 4LC1 (5,0, F*)log2] < e 2L1°82 Taking L =
x/(8C1(8, 6, F*)log2) one obtains after a short computation (3.32). W

The following lemma will be useful in the next section; it is in fact an immediate consequence of (3.25)
and the proof is omitted .

Lemma 3.15 . Under the hypothesis of Corollary 3.2 and with the same notations with IP—probability
larger than 1 — €ToCTD we have

[e %51 (631

Z x(a) > e/t Z x(a) > e/, (3.97)

— o
a=o1 a=af

provided oy is the beginning and of is the end of a positive elongation, af + 2 < oy < aj — £.

4 The block spin representation and the ¢ rigidity

We start by defining the set of profiles having runs of + or of —, with length at least %
Definition 4.1 . Given % > 0%, an interval Ag = [Q1, Qa2]y ™! of length in macroscopic units % = @27;621),
Q > 0 such that % and % are integers, 4 > (1 > 8y/0*, 1 >4 > 0* > 0, Ry > 0, n = £1, we define
A1 (Ag,n) = A1(Ag, d,(1,C4,0%, 7, €, R1,m) as

Al(AQ,n):{mg*Q:akeﬂV,ﬂrl,...,rke{%+1,%+2,...,%—2,%—1};
ro = &;rkﬂ—l = @,Tl <...<rg,dg € [rii(ri + 1)5] s.t.
€ € Y Yy
. €
"4 () = n(=1)"' Ve € Cr([(rio1 + 1)?% - Ri)), (4.1)

1> (g; — R1) = (=1)"" ', 0> (g; + R1) = (—1)'n,

1% () = n(—1)" Ve € [(q; + R1) A % %(mﬂ)], fori=1,.. k}

and
A1(AQ) = Upe(—1,+1341(Ag, m). (42)

Remark.

e The integer £ > 0 represents the number of blocks of length R; within Ag where there is at least one
change of phases which means that 7% (¢; — Ry) = (—=1)""'n, n%%(¢; + R1) = (—1)'n. There are no
restrictions on the profiles within the interval [¢; — R1 + 1,¢; + R1 — 1].

e 7; is the index of the i—th block of length €/ in macroscopic units such that in [¢; — R1,¢; + R1] C
[ris — Ry, (ri + 1)< 4 R1] we see at least one change of phases.

e Ry will be chosen as an upper bound for the length of the longest interval where the system can stay out
of “equilibrium”, that is to have a run of n>¢ = 0. This length is related to the parameters (i, d, by
Ry ~ (6¢3)71, see (4.69).

Another definition is needed to describe what happens in the intervals [¢; — Ry, ¢; + R1].
Definition 4.2 . Let Ap, = [¢1, 3] be an interval of length L in macroscopic units and § > 0, (4 > (1 > 8v/0*

as above. Forn = +1 orn= —1 we set

WS (AL, ) = {m’XL:n’S’Cl () =% (le) =n, 3, €4 <l < by 1°(0) = *77} (4.3)
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and WSS (A L) = WSt (A g, +1) UWE$a (A, —1).

Given a positive integer Ly we denote by B(Ag, L) = ﬂfig NAaLcAG (WS¢4 (Ap))e. The profiles in this
set do not have two changes of phases within an interval of length smaller than Lo, uniformly along intervals
that are within Ag. We set

A(Ag) = Ai(Ag) N B(Ag, L) (4.4)

If Ly > 2R; the profiles in A(Ag) have exactly one change of phase within each interval [¢; — R1, ¢ + Ra].
The main result of this Section is the following;:
Theorem 4.3 . Let 3,0 satisfy (2.17). We take k(5,60) > 0 verifying (2.20), F* is defined in (2.25), and
V(B,0) given by (2.35). There exist 0 < vo = v0(5,0) <1, 0 < dp = do(5,0) <1, and 0 < {o = (p(8,0) < 1,
such that for all0 < v < o, for all §*, 8, (4,1 with 6* > ~, v/6* <dop, 1 >0 > 6* >0, (o > {4 > (1 > 8y/d*,
and @ > 3 that satisfy the following conditions

32 5
PR (4.5)

128(1+0) 2(5+ F*) [~ .
50 F 5 <9, (4.6)

N 2
(1> (5184(1 + ¢(9))? 5l> v (120(e;f;) (?2) (4.7)
for constants ¢(8,0) given in (4.105), and c(56) given in (4.57),
3
Vitg@ < VIO (4.8)
if we call
4B+ FT)
RRTEAOES: )
and

Fro e
Ly=—"—\]— 4.1
2T 3Ra+0\ 4 (4.10)

then for any interval Ag of length % and any € > 6%, there exists Qu = Qu(7, 0%, Ag,€,0,(1,C4) with

Q 1-6y" — — EPYTISy e 4.11
IP[Qy] > 6y . exp{ 2V2(3.0) ( )
and for all w € Q4, we have
3Q - _B[(EB.0) 503y 5 F
ppo~ (AAg)) =21 - (?)% S (=GR achnF] (4.12)

To prove Theorem 4.3, we represent the system in terms of block spins. This representation was used also
in [13]. However, the way to treat some error terms that appear at the very beginning of the computations
is different, see (4.15) and (4.16).

Analysis of the block-spin representation
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With Cs- (V) as in Section 2, let X, denote the sigma-algebra of S generated by m{ (o) = (m?® (z,0),
x € Cs«(V)), where m?® (z,0) = (m® (+,2,0),m® (=, z,0)), cf. (2.7).
We take I = (i~,it] C IR with i* € ZZ. The interval I is assumed to be Ds--measurable and we set
OI={zecRit<z<it+1},0I={z€lRi" —1<z<i },anddI =0TTUO I
For (m$ ,md;) in Ms- (I UOI), cf. (2.10), we set m® (z) = (m{ () +m§ (2))/2,
Bm)=-2 Y Uyt @’ ), (113)
(z,y)ECsx (I)XCsx (I)

and

E(m) mds)=—6" > > Jp(z—y)w’ (@)@’ (y), (4.14)

2€Csx (I) yeCsx (0F1I)

where Js« (z) = §*J(6*x). It is easy to see that

) +0 Y haz— log[ I 1I ﬁU(“AWAW}, (4.15)

i€y~ z€Csx (I) yeCsx (I)

where
Uoa@yoaw) == »_ IOl = I |z = y)]oio;. (4.16)
i€A(x),j€A(yY)
Since the interaction is only between adjacent blocks of macroscopic length 1, see (2.3), we see that for all
intervals I, for s = 4+ or s = —
sup sup ‘Ww(arlﬂgrlasl) - %E(m‘}*,mg;[)‘ <&y (4.17)

5%

07711€M5* (mi* ) U,Y—lasIEM‘s* (m? SI)

where M% (m9" ) = {o €y~ :m® (z,0) = m® (z), Yz € Cs-(I)}.
Recalling (2.9), and using (4.15) and (4.17), if F?" is a %9 -measurable bounded function and mJ; €
M- (0I), and pg 9., (F|29;) denotes the conditional expectation of F¥~ given the o—algebra ¥J;, we have

Bos*
ei726

& 5 &
HB.0, (F Eal) maz) - 5. X
! | Z.0.~.1(my)

X Z F(S* (Tl’lg*)e (E(’WI )+E(m1 JTLBI)_@S ZIGC&* (I)(mf (I)—mg (m)))
mS" EMgx (I) (4.18)
280X(x1) Y., o
X Z H ]I{m5* (11,0):m5*(11)}e €D(z71)

Oy =151 €Csx (I)
~ H H e*ﬁU(UA(IZ)JA(yZ))
22€Csx (I) y2€Csx (I)

where

s 5 5% 5%\ ps* Sy s
Zﬂﬁ’e’](m‘gl) _ Z . W(E(ml )+E(my my)—*3 EIGC(;* (M1 (@)=ms3 (m)))

m8* (I)eMx (I)

280A(x1) Y . o
X Z H ]I{mé*(zl,a):m‘s*(ml)}e €D(zy1) (419)

o,—17 x1E€Csx (1)

> H H e*ﬂU(UA(mz)ﬁA(yQ))_

@2€Csx (I) y2€Csx (I)
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Equality (4.18) has to be interpreted as an upper bound for + = +1 and a lower bound for + = —1. Given
m$", we define the probability measure on {—1, +1} T by

Yo o ayecy. () Tpms* (Iha):mé*(Il)}emex(zl)ziw(ﬁ) " (o)
IE s |f]= — d S : (4.20)
mg 2 x1 ) T
2o 1, Harees 1) Tims* (@1,0)=ms" (1) € ertn

Inside the sum Zm‘f in (4.18), we divide and multiply by

Z H ]I{m5* (z3,0)=ms" (13)}6259A(I3)Z%D(E3) 7i

O =17 x3E€Cs+ (I)

to get
Bosx
o520

5 5
18,6, (F 281) (myr) = ———5~
! | Zﬁﬁml(mgl)

B 5* Y o 85* 5* 5*
X Z Fo (m‘s*)eiq(E(mI JrB(my my 772%65* (oM (@)=m3 (z)))
m3* € Mse (1) (4.21)
. PU(T A(wg) 7 Ayz))
X elog IEm? [H12¢y2 © : ]

2000 Y o
x Z H Ty (25,0)=mo* (3)} € SzweDus) )

0,11 ©3€Csx (I)

If we notice that the last sum ) L, factors out into a product over the intervals of length 6*y~!, indexed
v
by Cs«(I), we get that for each x € Cs-(I)

5*,}/—1/2 5*,}/71/2
]Im*:ca':m*x = ms” (z md* (z ’ 4.22
Z {m?" (z,0)=m’" (2)} <1+ E()5*7_1/2)<1+ ;25()5*7—1/2) ( )

0655*771

and recalling the probability measure on {1, 41}4(*) defined through (2.28), (4.21) becomes

+826* o~ . .
* * * * _E m5 m‘,s m5 m5
o (F™ | Sor) mfy) = ———— F (") T i 9 ni Ve -y 9)
Z0~.0(mgy) .
m9  €Ms=(I)

where
A s s . X gw 05* x .
F(m] lmgy) =E(m} ) + E(m] ,mjp) — =~ Y (mi (@) —mj (2))
z€Csx (I)
4.24
oY 2 < *y~/2 0*y71/2 424
- OB\ 1emd (@) o, ><1+m3*<z> - >
L B B\ @ g\ e ) 51
G is already defined by (2.26), (2.27) and (2.28) in Section 2, and
* * 1 o o
V(m§ ) =Vi(md  h) = BloglEms*(I)[ H PU@a@ 7aw)], (4.25)

z#y
z,y€Csx (I)XCsx (1)
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B sk
That is, up to the error terms ety , we have been able to describe our system in terms of the block

spin variables giving a rather explicit form to the deterministic and the stochastic part.
The following lemma gives an explicit integral form of the deterministic part of the block spins system.
For m € T, let us call

Fimitmor) = [ fotma))do+ 7 [ [ 3@ =i = m)P dedy
w3 [ o [ Ja =l - m)? dy

which is obviously related to (2.21).

(4.26)

Lemma 4.4 . If m{ 5, € Ms-(IUOI) and m(r) = m® (z) for r € ((x —1)8*,26*] and x € Cs-(IUDI), one
has

|f(m§*|m‘§}) — F(mg|mor) +%* Z [ﬁ”b‘s* Z Js(x —y)| < |I|—1og 6—* (4.27)
y€ECs= (OI) z€Csx (I)
Proof: Since
1L ji-ji<1/2y — Lo ja—yi<i/oyl < Lmsep1/2<6% jo—y| <65 +1/2} (4.28)
we have that 5
[U(0a(): Tam))| < 7( )2 W1 25+ <6+ [w—y|<1/2+6% )} (4.29)

Given m9 € Ms-(I), we easily obtain from (4.29) that, on M?® (m$"):

)+ > haz— m9") :% log[ I 1II eﬁU(aAwWAw} < |Il6*y~t (4.30)

i€y—1I z€Csx (1) y€Csx (I)

Using Stirling formula, see [30], we get

5*,)/71/2 5*’)/71/2
Z ﬁ ( +I( ) Z 10g <1+m2‘15* (z) 5*7_1/2> <1+mg* (=) 5*,7—1/2>‘

wECs+ (I) IECJ*(I) 2 (4.31)

where Z(+) is defined after (2.14). Recalling the definition of fgg(m), cf. (2.14) the lemma is proven. W

Concerning the stochastic part in (4.23), note that there are two random terms in (4.23): g(m§*) and
V(mg*). To treat them we will use the following classical deviation inequality for Lipschitz function of
Bernoulli random variables. See [26] or [13] for a short proof.

Lemma 4.5 . Let N be a positive integer and F be a real function on Sy = {—1,+1}" and for all
ie{l,...,N} let
F(h) — F(h)

(h,il):hj:flj,vj;éi |h1 - hl|
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If IP is the symmetric Bernoulli measure and ||0(F)||%, = vazl 10:(F)||2, then, for all t >0

t2

IP[F—IE(F)>t]<e 40@I% (4.33)

and also
t2

IP[F —IE(F) < —t] < e #00I% (4.34)

For F(h) = |20)\(x3) ZiED(Ig
Lemma 4.6 . (The rough estimate) For all §* > v > 0 and for all positive integer p, that satisfy

) o;|, as it appears in (4.21), Lemma 4.5 implies the following rough estimate:

1
64(2 4+ p)o*log— <1 (4.35)
v

there exists Qrp = Qre(y,0%,p) C Q with IP[Qrr] > 1 —~2 such that on Qgr we have:

sup > wecs. (1) [P(@)] — IE[|D(z)[] < V64(2 +p) \/,y log 1 (4.36)
y Y

IC[—y~P,y7P] 1]
and, uniformly with respect to all intervals I C [—y~ P, y7P],

sup y| Y 20M(x) Y oi <20 (|I|,/;—*+\/64(p+2) |[|’710g%) g49|1|,/57—*. (4.37)

ore{-L+1" ecn 1) ieD(x)

This Lemma is a direct consequence of Lemma 4.5, since [20A(2) 3¢ p(,y 0il < 20(|D(2)| — IE[|D(x)[])
+20IE[|D(2)[] , [D(@)| = | Xoie () hil, and IE[|D(2)]] < /6* /v by Schwarz inequality.

For the function V(m9") in (4.25), the previous rough estimate is useless. In Theorem 7.1, with the help
of the cluster expansion, we prove the following

Lemma 4.7 . For any finite interval I, let

Vi (mﬁ* ) h) -Vi (mﬁ* ) il)
10:Vr oo = sup = (4.38)
(h,R):hy=hy Vit |h — h
Then, for all B8 > 0, for all §* >~ > 0, such that
(0%)° 1
< 4.39
v T 6e3f (4.39)
we have
sup sup |9 Vil < S —2— (4.40)
u u ( oo X T, 5 .
rezaer = E1=8

where S is given in (7.4), 0 < S < 6636(6;)2'
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Together with the above estimates for V7, we also need an explicit expression for G(m9"). Since D(z) C
B™N(), G, o- (x) (A(@)), see (2.27), depends only on one component of m?” (z), precisely on m?, ., . In
@)

fact, we have
6259A(z) ZiGD(I) o

ZUE{—LH}B*MM @) H{m§1x<1) (z’d):mssi)\(x)
2 2

, (4.41)

@) gy Dy 5% «
Zae{—1,+1}B M@ HqmY| () @e)=md | )}
2 2

}BMw)(z)

since the sums over the spin configurations in {—1,+1 — the ones that depend on mS A — cancel
322

out between the numerator and denominator in (2.28).
Depending on the values of m9,,,, Go.mo* (z) (A(z)) has a behavior that corresponds to the classical
A=)

Gaussian, Poissonian, or Binomial regimes, as explained in [13]. However, as we shall see in Remark 4.17,
we need accurate estimates only in the Gaussian regime.

Let go(n) be a positive increasing real function with lim, . go(n) = oo such that go(n)/n is decreasing
to 0 when n T oo.
Proposition 4.8 . For all 3,0 that satisfy (2.17), there exist yo = vo(5,0) and do(8) > 0 such that for

0 <7y <0, 7/0" < do(B), on the set {sup,cc,. ryp(x) < (27/6%)/*}, if

. 3y 1/2) 16p(x) 36
s <1 (%l 4.42
Imssre (@) < 5172 ' 1 tanh(260) )’ (4.42)
then
Yr@)280.p(2)m3,, ) (@)
gw mé™ (z (/\(1'>) =7 10g >
,m®” (z) B \Ifo,o,miix(z) (z) (4.43)
2
1 . o
~ 51D(@)] [logcosh(26) +log (1-+ Alw)m ¥y (r) tanh(206) ) + G(m¥oyc (), 22250, ()]
2 2
where
P () 208,00 < (22) 20001+ 00) (4.44)
m ) \ L), X , X =~ - m .
T g 5) (U= m (@))2(1 - tanh(269))
2
and
3\ 5%
/\(z)2ﬁ9,p(z),m,+>\(m) (x) 18 2y 1/4
log 2 < — + (—*) c(80), (4.45)
\po,07m53’1)\(1) (z) go(6*y~1/2) g
2
with ¢(30) given in (4.57).
Remark 4.9 . Recalling (2.34), we have
lI/Q)\CE 0,p(x),\(z)ms" \IloofAzm‘s*
Ea(w, 80, p(x)) = —A(z) log I ple) e S0 (4.46)
Yor(@)86,p(x),~A@)m3, Y0,0,4A@)ms",

and choosing go(n) = n7, (2.34) follows from (4.45). (2.33) follows from (4.44).
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roof: e general strategy of the proof is similar to that of Proposition 3.1 in . However, since
Proof: The g 1 strategy of th f is similar to that of P ition 3.1 in [13]. H i
there are important differences we give some details. We introduce the “grand canonical” measure on
{-1, +1}Bik(m)(z), with chemical potential v € IR, given by

IEG'B*X(E)(I) [f(g)eVZiEBA(m)(I) O’i:|
IE, ., (f) = -
IFE |:€V ZigB*MI)(m) ai:|

O5=A(@) ()

where IE, is the Bernoulli uniform on {—1, —|—1}BiMI)(z)_ Then defining

B (a)

/\(I)2BOZ_ o;
IE, . |e iep(@) T )
@,z [ V3 ZiEB—MI)(m)(ﬂ—m‘;MI) (z))—O}]
2

Vi 2)md | (2) = (4.48)
A(@)260,p(x), 3+2(w)( ) lEm,z/g ez\(z)QﬁHZiED(I) G'i:|
and
H(m%ire (#), A(2)260, p()
4.49)
5 5 cosh(ve + \(x)200) cosh(vz) (
= — — - 1 1— log —— 27
(1 = vy ()l o RSO (1 )10 S )
a simple computation gives
L Dezses@ i w @
gw,m‘s* (z) ()‘(:E)) = _B 1Og W, 2 - B(b(miﬂ\_(f) (‘T)a )‘(‘T)Qﬁevp(‘r)) (450)
0,0,m‘;lx(z) (z) 2
We choose v such that miik(m) (x) = tanh vy and v, such that
M9 ae () = p(x) tanh(vy + A(2)2660) + (1 — p(z)) tanh vs. (4.51)

By using elementary formulae on hyperbolic tangents and cosines, one can check the following identity

(Mo (2), A@)280, ()

. . (4.52)
= |D()] [log cosh 230 + log (1 + A@)m¥se, () tanh(200)) + @(mse (), 2X(2)6, p(2))]
where
|D($)|¢(m@:§u) (), 2A(x) 30, p())
o 5 &* 5
= %(yl - Vg)m3+;(x) (x) + > log (1 + Matre) (x) tanh(vy — 1/1))
+ 2 logcosh(vs — 1)
> ogcosh(ve — 1g (4.53)
5* Az) tanh(2680) (1 — (Mm%, (., (x))?) tanh(vy — ;)
+ 2—p(z) log |1+ 2
7 (1 + Mx)mS' ., (@) tanh(269)) (1 + m% aw () tanh(va — ul))
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To study (4.52), we need extensions of results proved in [13]. Defining

1 1

2 _
= +(1- —_—, 4.54
Trz)280 = P(¥) cosh? (vy + A()26) ( p(x))coshQ (v2) (4.54)
and using again elementary formulae on hyperbolic tangents and cosines one can check that
Rwpan = (1= (MEesen (@))%) [1 = p@)1 = p@)S(p(@), mTese ()] (4.55)
where
0 < S(p(e), miie (@) < (1= iy (2))?) ¢(89). (4:56)
with
h?(2530)(1 h?(230))?

[1 — tanh?(236)]2[1 — tanh(2/36)]¢

Assuming that v/0* < do(3) for some well chosen dy(5), and following the arguments of the proof of
Lemma 3.3 in [13], we check that

4
lve — 11| < pa(*x)ﬁé' . (4.58)
L- (m3+§<z) (x))?
Using the fact that (4.42) implies that T )Zti()g;ll)ifptanh(%@)) < 1, recalling (4.52), and using Taylor
T’
expansion we get
¢(m63*+A<x> (), Mz)260,p(x)) .
o — p() [log cosh 286 + log (1 F @M () tanh(wo)ﬂ
2— 2

! (4.59)

32p? () BO(1 + B9)
T (1= Imiae (2)))?(1 — tanh(250))

2

A short computation concludes the proof of Proposition 4.8. W

To prove Theorem 4.3, we need results that have been proven in [13]. We first define the subsets of the
complementary of A(Ag) which will be treated in a similar way to that in [13].

Let Ap = [¢1,¢5] be an interval of length L = ¢5 — ¢; € IN. Let 6 > 6*, {4 > (1 > 8y/5* be positive real
numbers.
Definition 4.10 . We set

O (AL) = {S () =0, VeA,NnZ}. (4.60)
Taking L < L a positive integer, let Aj = [(1,05], A; C Ap. Define for n=+1 orn=—1.
Rg:%11<4 (AL, i) = {775,41 ([1) = 77‘5’<1 (fg) = } n Og’@([fl + 1,40 — 1]) N 08741 (AE) (4-61)

and Ry (Ap, L) = Ry (Ar, L) URY (A, L).

Note that Rgf]l’c‘* (Ap, L) decreases in L, therefore Ui:1<i<LRg§717C4 (Ap, L) = Rgf;’@ (Ar,1).
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We set
R31C11C4 (I) = U U Rngh@ (Ar, 1), (4.62)

L: 2<L<|I| Apcl

o Lr)= U U o @n). (4.63)

R: Ri<R<|I| ArCI

and recalling Definition 4.2,

W<1’<4(I,L2) = U U W<1’<4(AL). (464)

L:2<L<L, ApCI

Theorem 4.11 . Given (3,0 as in (2.17), there exist vo = v0(8,0) > 0, do = do(5,0) > 0, and 0 <
Co(B,0) <1 such that if 0 < v <79, 6* >, v/5* < do, and p is a positive integer such that

1 1
(p+2)6* log 5 < o (4.65)

there ezists Qrp = Qre(y,0",p) with IPQre] > 192, such that for all 6,1, ¢s with 1> 6 > 6% >0,
Co(B,0) > (4 > ¢ > 8y/6%, and

128140),.. [~
8¢§ > K(ZQ ) (1, (4.67)

where k(3,0) > 0 satisfies (2.20), on Qrg we have

3.0 (Ut o0 (00 (L B UWSS (1 L) URES (1)) ) < e 7L . (468)

with F* given in (2.25),
4(5 + F*)
R 4.
' K(83,0)0¢ (4.69)

and

F 1
S 641+ 0) 6 v /T

Ly (4.70)
The proof of Theorem 4.11 is the same as the proof of Corollary 5.2, Corollary 5.4, and Corollary 5.6 in
[13], with AF in [13] is equal to 2F* here. Moreover with a little work, one can make explicit the constants
depending on 3,6 that appear in [13]. Note that the condition (2.17) on (3,6 is weaker than the condition
used in [13], however this will make no difference at all since we just use the rough estimate, see Lemma 4.6
to treat the random field.
Let Bo([=y7P,77P], R1, L2) = Nic[—y-—»y-7] (Og’<1 (I) UWSS (1, Ly) U RG-S (I)))C.On this set we can

only have runs of n%¢ = 0, with length at most R; and runs of n%¢(¢) = n € {—1,+1}, with length at least
Ly. The next step is to prove that the length of the previous runs of n°¢ = 5 € {—1, 41} is indeed bounded
from below by €/7.

Definition 4.12 . Forne {+1,—1}, {1 < ly < ly < by with3 <, —y < Ry 3 <y — {5 < Ry, let

VNV§1’<4 (1,01, 09, 05) = {mfy p 0> (01) = 0" (1 +1) = 0 (b — 1) =< (by) =,

) R N (4.71)
N> () = —n, VL€ [y — 1,05 + 1]}
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Proposition 4.13 . Let 3,0 satisfy (2.17). We take k(3,0) > 0 asin (2.20), F* > 0 as in (2.25), V(5,0) as
in (2.35), and c(B) as in (4.57). There exist vo = Y0(5,0) > 0, dg = do(5,0) > 0, and 0 < o = (x(5,0) < 1
such that if 0 < v < 79, 0* >, v/0* < dp, and 0 < (1 < (4 < (o, 1 > § > 6* > 0 verify the following

conditions
1281+ 6)(5+F*) [~

8¢ > 5.0 F = (4.72)
63 12\ 2
(1> (5184(1+c(69))2 5l> v (12(:(6,%) (? > (4.73)

for a constant ¢(3,0) given in (4.105), if Ag is an interval containing the origin, of length Q /7 in macroscopic

units, with

Ao < V2oL (1.74)

and € > 0", then there exists Qu = Q4(8,0,7,(, 9, Ag, €) with

(F)? (F)?
P[Qy] >1 -39 — &e*ezngﬁ(a,e) _ @e*ezﬁvz(a,e) (4.75)
€
such that on Qy4, we have, for n = +1
* * % A 1,C4 77 R2Q 72_7-‘*
/’[/5191’7 (U[el,ez]CICAQ U[iljz]c[gl,@] Wg = (ElaflaEQaEQ)) S ,;3_6 v . (476)

In (4.76), the union U* has the constraint |I| = e/~ while U** refers to the extra constraints 2 < {, —{; < Ry,

by — 05 < Ry, with Ry given by (4.69).

Remark.

e The constraint (4.74) is present since we use the rough estimate, Lemma 4.6, to control some terms.
Note that taking p = 2 + [log Q/log(1/7)], (4.73) and (4.74) imply 64(p + 2)6* log(1/~) < 1, which is the
condition (4.35) for the rough estimate. We will see that Q4 C Qgrg.

1

e The constraint /o — {1 < ey~! enters into play in (4.75), giving the terms proportional to e~! into the

exponential.
e The uniformity with respect to the intervals inside Ag gives the prefactors % in (4.75) and not %, since
a maximal inequality is used. The union in (4.76) contains at most RZe2Q~y~3 terms.
Proof: We split it in 4 steps.
Step 1: reduction to finite volume
Recalling (4.71), we define
R(n) = R*(n) = R* (01, b, ) = {mfghgﬂzn‘m(f) =,V € [EI;ZQ]}a (4.77)
and
WS (g + 1,01, 02,03 — 1) = {0 (61 + 1) = > (b — 1) =} ﬂR(fn). (4.78)
We can write
WEHS (b, by, Uy, £) = {n>C (01) = 0> (L) = n} (WS4 (01 + 1,61, b2, £ — 1), (4.79)
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Let us first consider a volume A such that YA D Ag. Recalling (2.3) and (2.4), multiplying and dividing by
Ty=18[e1+1,69-1]

5.0,y 1[ti41,6,—1) W€ have

116,0,,A (VNV#’C“ (51,571,572,62)) =

1 E —BH(o ) o1
e ANy~ L[e1+1,09—-1] I 5.¢ e oz~ d[271+1,(271]
Z3,0,v,A {n®Cr(lr)=n>1(€2)=n} 3,0,y [t1+1,£2—1]

TANy=1[e1+1,00-1]

(4.80)

e_BHw(Uwfl[e1+1,1271])—5ww(0771[z1+1,1271]’aw*16[11+1,12711)

Z ]IW$717C4(61+1721722762*1) ZGW*IB[Z1+1,1271]
Ole1+1,60—-1] 8,07,y "1 [1+1,02—1]

Since 7% (£1) = 0> (01 + 1) = >t (5 — 1) = n>S1 (f3) = n, using (4.17) and recalling (4.18) , we get

e*ﬁHv(‘77*1[e1+1,e271])*ﬁwv(‘7~r1 (141,65 —1 71061 +1,05—1])

Z HW51’<4(41+1£17527@2,1) Oy =19[01+1,69—1]
Tle1+1,62-1] B,0,7, 7~ 141,62 —1] (4.81)

B * * *
+84(5*+¢1) o s 9 =
<e's HB,0,~ wa11*<4(41+1741742742_1)‘26[&-{-1,@2—1] (ma[41+1,ez—1] = my)

where m4 (m_) is the constant function on %1 or 9~ I with value m‘g; (resp. Tmﬁ*).
Notice that for any A such that yA D Ag

1 Z —BH (o ) Oy—1a[e ¢
e R SRR D | PNy SN/ SR Ao Akt
Z3.94A {1 (e)=n"1 (b2)=n}“B,0,y,y~ 1 [l1+1,62—1]

Oy 1t 41,9 -1] (482)
< 118,70, AL s.ca (0)=noca (0)=n}) < 1.

Therefore, inserting (4.81) in (4.80) and taking the limit A T Z we get

HB,0,~ (W’gl,Ql (£17 gl) 227 62))

(4.83)
B * ~ = * *
< 674(<1+6 )Mﬁa‘ga’Y (Wél,@([l 4+ 1,01, 05,05 —1) ‘ Eg[elﬂ,eru) (m5 3[& + 1,05 — 1] = mﬂ)‘
To continue, recalling (4.19) and writing m$, = (mg*,l, m‘g;l), we set simply
Zoot (Mg = meps ey =me ) = 270 (4.84)
when (mg,,ms,) € {m_,0,my}? where m, and m_ are as above, and for m,, = 0, we set in (4.19)

E(mg*,mg*,[) = 0 while for m,, = 0 we set E(m] , mgij) = 0. In a similar way, recalling (4.23), if F' is
9" —measurable we set

. _BSF 5% 5% 5% _ 5% 5%
2P () St eptonny Flmd e HEO 105w mmea gt v}
_ I
Zm517m52 = stl,m52 . (485)
I I

Using the fact that 7%¢(f;) = n%¢(f; — 1) and 7%¢(fy + 1) = n%¢(f2) we can decouple the contribution
coming from the interval [/} — 1,75 + 1] and restrict the configuration in the denominator in a suitable way
to get

3.0 (WSS (0 + 100,800 = 1) | S, 1 00m) (7016 +1,6 — 1] = my)

< J28¢ ZEZT]J;T,Z—H (7 (b +1) = n) Z&ﬁgﬂ(R(*n)) ZEZ;”{?Z_H (> (by — 1) =n) (4.86)
e .
= My,My 6,(1 _ 0,0 My, My 5,C1 — —

Z[41+1,t7171](77 @b +1)=mn) Z[il,éz](R(”)) Z[Z2+1,4271} (%<1l = 1) =)
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The first and the third ratio on the right hand side of (4.86) are easily estimated. Since 0 < 1 — 0 < Ry,
0 < ly— 0y < Ry with R; given by (4.69), using the rough estimate Lemma 4.6, it can be checked that on
Qrp, uniformly over all intervals [(1, /] C [—y 7,7~ ?], we have

B ; (mS*
My, M—n 4,¢ _ 7—1nfm5* ~ e{n%€1 (01 +1)=n} (m[[ 41,7 71]\mn,m,n)
Z[€1+1721*1] (77 1(61 + 1) - 77) < eg(8(1+9)R1\/5I*) € [L141,8,—1] n 1 n 1 1
1 - PP e/ ’
Z[é:—i—l,%l—l] (’)’]6’<1 (61 + 1) = 77) e_g]:(T 2”7”2,[€1+1,l7171]|mn,mn)
(4.87)
where F(-) is given in (4.26) and we have used the fact that since 771%* = me%* the boundary terms, see
(4.27),

53* > [ ()] > Js-(x = y) (4.88)

yECs« (8[1+1,6,—1]) z€Csx ([L1+1,01—1])

cancel between the numerator and the denominator in (4.87).
It can be proved that
~ 5 ~ l1-n s

inf inf f(m[21+1,e7171]|m77’ M_y) — ]:(TTmB,[llJrl,Elfl]

0y — 5% 5,¢ =
1< élSle[11+1,2171]€{n 1(€1+1)=n}

> F* — (4Lo + 2R1)(1 4+ 0) <5* % \/55> )

where F* is defined in (2.25) and Lo = ﬁ 1og% with «(3,0) as in (2.24). A similar argument can be
used for the third ratio in (4.86), and we get

My, M)

(4.89)

Zy @O+ ) =) Zp (6 = 1) = )

[61+1,0,—1 [la+1,6—1] < efg(zfngz(ue)(RﬁLo),/él*)_ (4.90)
Zy PG+ ) =) Z T (= 1) =)

It remains to treat the second ratio in (4.86), that is

—2{Fm? 10)+7G(mS. )+yV(m] )}

200 (R(=1)  Loms* ey (fia) LR (-m)€ e
[€1,€2] — I1o (4 91)
0,0 - = sx * * ’
Z3 ;. (Rm)) —2{ Bty 104200 4oV ) |

mi” €My () TR} ’

where fv(mé; |0) is as (4.24) for I = L5 = [{1, 5] but with the term E(m$ ,m%;) = 0 and, recalling (2.13),

we have set TR(n) = R(—n) and Mgy} = ]I{R(—n)}(m?;)'
Notice that if we flip h; to —h;, for all ¢, then A(z) — —A(z), BY(z) — B~ (x) while |D(z)| does not
change. Therefore,
0,0 B 0,0
Z[lez] (R( 77)) h _ Z[éhfz] (R(n>)
Z30 ;. (R() Z30 5 (R(=m)

(=h), (4.92)

z2° . (R(=n))

which implies that log Z[Z&,’UZQ] o) (

[21.82]

h) is a symmetric random variable and in particular has mean zero.

Step 2: Extraction of the leading stochastic part.
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Recalling (2.29), we introduce

AG(mty ) = n[Gms )~ grm? ;)] (4.93)

57112

where mg*ilz was defined before (2.29). By definition, |m?; —mg| < 8y/0* and taking dy small enough (4.73)

implies |m?; —mg| < 8y/6* < (3. Thus, the block spin configuration constantly equal to m?; (resp. Tmf;)
is in R4 (4+1), (resp R4 (—1)). Using the fact that the functional F is left invariant by T', we write

0,0 -
w h) = eﬁAng(mf;fu) Z—1,0,6,¢4 (~I12) (4.94)
Z%BZZ](R(U)) Z’r],O,(?,Q; (112)
where
N (8 0725 "G(mS )4V (Tm] )
Z—7],0,(5,<4(112) _ Zm?j cMS* (112) ]I{RJ (4(77)}6 ’Y{ 0 I12 Ijo } (4 95)
Zy06.64(112) ~2{ Pty 0 taa6 s ) +vins )}
m3* eMge (Ti) LRI ()} €
12
with
Ang( 112) = Z Agga}cl,mt‘* () (496)
2€Csx (12)
and, recalling (2.27),
Al gm o (z) = gm 25 o (o )()\(x)) — gzﬁTlanmg* (z)()\(ac)) (4.97)

with T° equal to the identity.

Step 3: Control of the remaining stochastic part.

To estimate the last term in (4.94), we use Lemma 4.5. A control of the Lipschitz norm is needed. Since
it is rather involved to do it, we postpone the proof of the next Lemma to the end of the section.
Lemma 4.14 .  Given (3,0 that satisfy (2.17), there exist vo = 70(5,0) > 0, do = do(8,0) > 0, and
Co = Co(B,0) such that for all 0 < v < o, for all 6* >~ with v/6* < dy, for all 0 < {4 < o that satisfy the
following condition

G > (5184(1 + (59))2(1)1/2) v (1288 0V (4.98)
e ‘ &* c(8,0) v '
where ¢(B0) is given in (4.57) and ¢(5,0) is given in (4.105), then for all a > 0,
Z_ i da + 12 2Q e ¢
IP | max * max |log 1,0,9,C4 (~ 12) a+ 12¢, < _Qeiu (4.99)
ICAQ hacr Zy0.8.¢4(112) v € 1—e" ¢

a” g

1 _
and u = G0

where maxjca, ™ denote the mazimum over the intervals I C Agq such that |I| = ey~

Step 4 Control of the leading stochastic part.

To estimate the first term in the right hand side of (4.94), we recall A”g(mg}u) = =N secs. () X (@)
where X (z) is defined in (2.32). Using Lemma 3.4, exponential Markov inequality, and the Levy inequality
we get

4 AT
]P{max* max "y Z X(z)’ >2 } Q 2€V . (4.100)
197 hacl e
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Then we collect (4.99), (4.100) and make the choice a = F*/16, s = F*/32. Using the hypothesis (4.72)
and the definition (4.69), choosing dy small enough, we get 32(1+ 0)(Ry1 + Lo)+//6* +46* < F*/2. Taking
o small enough to have 28(; < F*/8, we get

118,0, (WS4 (01, £y, ba, £2)) < o~ 5 (2F=32(140)(Ri+Lo)y/ 75 ~4(G1+6") ~24¢ ~da—ds)  ~5F" (4.101)

with IP—probability at least

_u (F9)2
2 € 4Q -5557
g 20 e 4Q vy (4.102)
€ 1— e—z €
where
f* 2
w= —F (4.103)

211G c2(8,0)

The unions in (4.76) involves at most R?e2Q~~3 terms. This ends the proof of Proposition 4.13. H

Proof of Theorem 4.3:

It is an immediate consequence of Theorem 4.11 and Proposition 4.13 assuming (p small enough to have
u< (F*)2/20vE). i

Lemma 4.5 is the basic ingredient to prove Lemma 4.14. An estimate of Lipschitz norms is given in the
next lemma. Then an Ottaviani type inequality will be used to take care of the max in (4.99). We state
Lemma 4.15 for a general ¢ since it will be used in Section 5 with a ¢ different from (4.

Lemma 4.15. Let 8 > 1,0 > 0 that satisfy (2.17). We take c(8) as in (4.57). There exist vo = v0(8,6) > 0,
do(53,0) >0, and (o(5,0) such that for all 0 < v < 59, for all §* >~ with v/6* < dy, and for all 0 < ¢ < (o,
that satisfy

N 2
<> (5184(1 + 0(59))2(51*)1/2) v <Cl(2;3£ (57)2> (4.104)
where ¢(B0) is defined in (4.57) and
_ 1 1 ape L +tanh(280) 257\ s=miGEez T
<(8,6) = 257 ((1 ~tanh(250))? | 1mﬁ,1) e ann(280) (( - ’ ) (4.105)
then
; log M < \/Ce(B,0) + 12635ﬁ < 24/¢e(B,0) (4.106)
Z—05¢(12) || 0

where ?LC(I:H) is defined as in (4.95) with {4 replaced by ¢
—,0,6,¢ (112)

The proof of Lemma 4.15 is done similarly to the corresponding estimates in Section 4 of [13]. The main
differences is that the explicit form of AJG in (4.95) is not the same, and we use the cluster expansion
method to estimate the Lipschitz factors coming from V(m?L). Since we did not see a simple way to modify
the proof given in [13] we prefer to start from the very beginning of the computations .

Given i € vy 'I;o, let (i) = [yi/0*] be the index of the block of length 6* that contains i, and let
u(i) = [x(4)d* /&) be the index of the block of length ¢ that contains (7).
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Let us denote

L N xz(i)o*] o x(i)0*| ¢ )
66/6* (’U,(Z)) = C(;/(;* (’L) = {:L' € Z, |: 5 :| (5_* <z < |: 5 5—* + (5_* (4107)
i.e., the set of indices of those blocks of length 6* that are inside the block of length ¢ indexed by (7).
Given a sample of h, let us denote h(*) the configuration hy) = h; for j # 1, hEZ) = —h;. To simplify the
notations, we do not write explicitly the ¢, dependence of Z4 (5 and we write the Lipschitz factors as

Zi06¢ _ 1oy Zrolh)(h) _ Z-olho)(h) (4.108)

0; log = ; = .
Z-04 Zy0(I12) () Z_ o(L12)(h9)

To continue we need a simple observation: if ECEGC&/g* ) [m®” (z) —mgll1 < ¢, then, given g1(¢) decreasing

such that lime o g1(¢) = 0 but % <1, and if ¢ < 1, we have

g1
0 ¢
D Tgms @mehisaon 2 55 (1= =) (4.109)
z€Cs 5+ (1)
This suggests to make a partition of Cs/s- () into two sets,
Km™) = {& € Csys-(0) 5 [m (2) = malls < 01 (O)} (4.110)

and B(m®" ) = Cs/s- (i) \ K(m?"). Let £(i) = [iv], for all m®" = m‘g(*i) we write

Topcean-ny(m® ) = D> Temxy(m® ) Mp—xey (m® )T egiy—1y (m®) (4.111)
XCCygx (i)

where the sum is over all the subsets of Cs/5+(i) and X¢ = Cs/5-(i) \ X. It follows from (4.109) that
ms¢(£(7) = Tand |X| < (1 -
in (4.111). Let

g%(é)) are incompatible. Therefore we can impose that [X| > 2 (1 — g%(())

o

5* 5
N = ) x2Sy = > (2) (4.112)

X CCsys+ () k:%(l—ﬁ)
and notice that (4.108) is the same as
Zy o(h2)(h Z_o(L2)(h
log +0(112)(R) g 1 0(l12)(h) (4.113)

N(C)3 Zy o(I12)(h) N(O3Z_ o(Tia) (BDY

The two terms are estimated in the same way. We consider the first one. It is easy to see that, with
self—explanatory notation,

Zeolho)h) 1o [e%(wégﬁmvAégﬁfii)e%(wdmyh)w<f12vh“>>)], (4.114)
N(Q)2Z4 o(h2)(hD)  N(¢)>

where Q is the probability measure

7% {ﬁ(m‘i*

+on(0) s* 5% 1 (4)
30 AF G (S )4 V(mdT h®)

.7 - W(md )T e fi2
Q+[\I/] _ Zm5 (I12)EM s+ (I12) ( ) {R(+)} — . . (4-115)
- {f(mf.; 0)+YAFGHY (M Y4V (ml” R )}
2om* (ha)eMge (1) LR(H)}E
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Applying Schwartz inequality to (4.114) we obtain

~ l 1
Zrolha)(h) ( L o, {eéz(mgg;f(i) m+g;flf)]> (Q+ [eg2(7V(I~12,h)*’YV(f127h(i))>:|)5.
N(Q)5 Zy o(112)(hD) — \N(Q)

(4.116)
The last term on the right hand side of (4.116), can be immediately estimated through Lemma 4.7, and

we obtain

1 i P R 5%)?
’5 log Q.+ [652(’7‘/([127]7‘)*7‘/(112,}1( U)} ’ < 6635(7). (4.117)

The needed estimates for the first term in the right hand side of (4.116) are summarized in the next Lemma

Lemma 4.16 . Let ¢ and g1({) be the quantities defined before (4.109). For all 3,0 that satisfy (2.17),
there exist (o(B80) and do(86) such that for all 0 < ¢ < (o(80), for all v/0* < do(B,0), for all increasing
go(n) such that lim, 1.0 go(n) = 0o but go(n)/n is decreasing with limpqoc go(n)/n = 0 we have that

’ log —— N(C) o [ —2(7A0QI(1) ’YAUQZ((:)))” < fl(o + gl_é(hc)elfz—fl@)\ (4.118)
where
() 1 1 72 29\ /4
F1(C) < |h = hD]125691(¢) ((1 (@00 T Ty 1) T E ) (5—*) 4¢(B0)  (4.119)

with ¢(30) given in (4.57) and

1 + tanh(230)

fo = f2(8,0) < |[h—n® H(logm

+ 459) . (4.120)

Proof: We insert (4.111) within the [.] in the left hand side of (4.118). Then, see (4.56) in [13], it can be
checked that if we have an estimate of the form

AFGh,) - ATgL

< fiOLz@exy + f2La(esy- (4.121)

From (4.112) we then get

h n(t
log —— N(O o [ ﬁ2('YA Gty =70 Qw))” < f1(0) + g%(oebfl(c)l_ (4.122)

To get (4.121) with f1(C) that satisfies (4.119) and f, that satisfies (4.120), we recall (4.41) and denote

1
gx,m5* (z) ()‘(‘T)) =—7 lOgL

3 z,md ()( ()20, D(z)), (4.123)

3+A(I)
so that

*

=0 m5 ) (o2 M@ (0))268, D((0)))

T oy O ()26, DO (2(0)))

8D @y
2

L5 e 5 (\@(0)206, D(a i)

™ sy (30))
A —

iy OO ()26, D (2(7)))

(i)
p (AJFQW) AJGJ’Z@) —log 75

(4.124)

+ log
I(Z),

3+A<1><x< )
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where A (z(i)) and D® (x(3)) are the respective images of \(z(i)) and D(z(i)) by the map h — h(®.

The first case to consider is when A(¥)(x(i)) = —A(x(i)), in which case |D(x(i))| = |[D® (x(i))| = 1 and,
using (4.41), it can be checked that

8 (A5G, — AT
L+ Az )mw(z( » (@(i) tanh(A(2(i))260) 1 —)\(ﬂﬁ)mf;mwn (2(i)) tanh(=A(x(i))230)  (4.125)
L+ A(@)m @HM;(I-))( (i) tanh(A(x(i))260) 1 — A(a)m)_ s (#(7)) tanh(=A(x(i))260)

= log

Now if {p is chosen in such a way that g1 (¢) < (1—tanh(256))/2, noticing that (2.17) implies 0 < tanh(2560) <
1 when 1 < 8 < oo, a simple computation gives that ||m?® (z(i)) — m‘g; [l1 < ¢1(¢) implies

4m®” (2(5)) = m§ |lx «_ 490

A G~ ATGh)| < 4.126
‘5( 09a() ~ R0 Y9:)| S — tanh(200) = T tanh(230) ( )
while without condition on ||m®” (2(i)) — m%* [|1 we have
i 1 + tanh (236
(256l — AFGH)| < tog 1 ARETD (1127)

1 — tanh(230)

therefore (4.119) and (4.120) are satisfied in this particular case.

The other case to study is when A (z(i)) = A(z(7)) and therefore |[D(x(i))] — |DO)(z 0l =1.

If 2(i) € B, recalling (4.122), we do not need a very accurate estimate for the terms in (4.124). Recalling
(4.41), it is not difficult to see that each term in term in the right hand side of (4.124) is bounded by 256,
so we get

BIASGE ) — ALGh | <450 (4.128)

therefore collecting (4.127) and (4.128), we have proven (4.120).

It remains to consider the case where z(i) € K. Recalling (4.121) and (4.122) this will give us the term
f1(¢). Here we want use the explicit form of G given in Proposition 4.8. To check that (4.42) is satisfied,
let us first note that since g1 (z) and go(z)/x are decreasing, limg|o g1(x) = 0 and limy 100 go(n)/n = 0, if we
choose (o = (p(3,0) such that

N
x,m9

Cog0(4/¢o) y 16(Co/4)'/*30
4 1 — tanh(230)

91(Co) + <1—mg, (4.129)

and then we choose dp such that v(6*)~! < dy and (4.104) implies ¢ > 8y(§*)~1, we get

go(0*y~"/2) | 16(27/6%)"/* 50
91(¢) + 57172 T tanb(zgg) = "8 (4.130)

which implies that on K(m® ) and on the set {sup,ec,.)p(z) < (2v/6*)/4}, we have (4.42).
Remark 4.17 . The fact that it is enough to have accurate estimates only in the Gaussian case comes from
the previous sentence together with (4.121), (4.122) and (4.128).

To estimate (4.124), we first notice that the contribution to g3 ‘A+gw A{f ggé;; coming from the terms

that correspond to (4.45) is bounded by

1/4
m + (?) 4c(0) (4.131))
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with ¢(86) the positive constant given in (4.57). The terms in (4.124) that come from

3+A @)

—|D(x)]| {log cosh(230) + log (1 + M@)o ace () tanh(QBG))} (4.132)
in (4.43) give a contribution that is bounded by

891(C)

1 — tanh(230) (4.133)

when ||m?” (z(i)) — m%* [li < ¢1(¢). It remains to estimate the contribution to (4.124) of the terms that come

from

DI (), 27250, () (4.134)

in (4.43). Unfortunately the estimate (4.44) is useless and we have to consider the explicit form of @, see
(4.53). The contribution of ¢ in (4.124) can be bounded by

dpdm. (4.135)
((i))ApD mfs;;(z) (x)/\mg;é(z) L@ Omdp

/W“”VP“) /m_> @V ) |92 [p| Blp(m, 2A(x)86, p)]
P

It is just a long task to compute the previous partial derivative, using (4.51), (4.54) and (4.57) and to check
that the following estimates are valid if ¢ is such that ¢1(¢) < (1 — tanh(230))/2

772 < D
p — o2, Om o2’
52 A . ) 0 (4.136)
1] x 0< — — < Pc(ﬁ )
Ipom| — o2, o2 1—-m2~ o2 °

It is clear that unpleasant looking terms like (1 + mtanh(vy —v1))~! appear in the computations. Using
(4.58), the fact that we can assume that (o = (o(0, 8) is small enough to get that if { < {y then ||m—mgl||1 <
91(¢) implies 1 — |m| > (1 — mg,1)/2. Then, assuming do(5,0) to be small enough in order to have that
v/6* < do(B3,6) implies 430(y/5*)/* /(1 —mgs1) < 1/2, we get

B 4dmg 1 00p(x) o

1
1+ mtanh(rg —14)) > 1 T 1

(4.137)

for all m and p that occur in the integral in (4.135). So, these terms do not present any problem. We get

0 [p| B|@(m, 2A(x) 36, p)] 1 1
< |B|256 . 4.138
’ 8mdp < 1BI256 | i ramm@aez t 15, (4.138)
Notice that

p@)VpD md L ) (@VmS L) (@) X .9
/ / z =7 dpdm < ||m® — m% li= (4.139)

PP Im ) @AmY, ) @) B

2 2 ’

Thus, inserting (4.138) in (4.135), using (4.139) and then collecting (4.131) and (4.133) we get (4.119). W
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Proof of Lemma 4.15 We recall (4.108), (4.113), and (4.116) and apply Lemma 4.16 and (4.117). The
presence of ¢ in (4.119) and ¢/g1(¢) in (4.118) suggests to take g1(¢) = +/C. The presence of (go(6*y~1/2))~!
and (27/6*)'/* in (4.119) suggests to choose go(n) = n'/%. Thus, calling

1 1
1(8,0) = 256 ((1 ~tanh(250))7 | 1 mm) (4.140)
and
1 + tanh(2430)
= — o T\ A
=c(0,0)=c¢ T tanh(230) (4.141)
we get that the left hand side of (4.118) is bounded by
V¢ (c1 + cpeV/CartT2(1+e(80) (3 >”4) +72(1+ c(ﬁe))(?)”“ (4.142)

from which we get the first term on the right hand side 0f(4.106) with the ¢(3,6) given in (4.105). H

Proof of Lemma 4.14
Using Lemma 4.5 and Lemma 4.15, we get after a simple computation, for all a > 0, for all intervals
Lip = [01, £o]
2

IPH 1ogw‘ > 2} < exp (— _ ) . (4.143)
Zn0,5,c0(112) Y 8y[¢1 — €2|¢c?(5,0)

To get (4.99), we need the following modification of the Ottaviani inequality done in [13], see Lemma

(5.8) there. Given an interval I C I, calling Y (I) = log Z*L“((Il)), then for all a > 0, for all ¢ > 8y(§*)~*
we have

. da 412 [IY )| = ﬂ“}
P [;nax ‘Y(hz)‘ > plat 1% . (4.144)
fuacl 7 inf7 1P H (112)‘ S 5%}
Then for all a > 0, setting £ = 4a + 12(, we obtain
L2 i &
IP | max * max |Y(112 | > ﬁ —IP| max |Y(l2)|>p-]|, (4.145)
ICAqQ IpcI € I~12C}\[g,2] Y

where IA[OQ] = [0,2ey71]. This implies (4.99) after a short computation. W

5 Proof of Theorems

In this section we prove Theorems 2.1, 2.2, and 2.4. They will be derived from Proposition 5.2 stated and
proved below. We will use the following strictly positive finite quantities: k(/3,6) that satisfies (2.20), F*
defined in (2.25), V(3,0) in (2.35), ¢(53,0) in (4.105) and ¢(80) in (4.57). We denote

99 G
a(8,0.60) = ~log 3 (150 — 3,6) > 0 (5.1)
where (o = (p(5, 0) is a small quantity that satisfies requirements written before (6.17). Recalling (2.24), we
have a(3,0) > a(8,0,y). The results from Sections 3,4, and 6 require relations among various parameters.
For 79, do, ¢o sufficiently small depending on 3,6 as stated in Theorem 2.1, 0 < v < v, v/0* < dp 1 > § >
0 >0, >C>C0>C>8Y/0" Q>1,e> 0, we assume that the following constraints are satisfied:
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The Cy constraints:
128(1+60)2(5+F*) [~

G 7 e < (5.2)

%@ <0 (5.3)
(5184(1+c(59)>2 5l> y <120(e;’l;) (5;)2>2 e 5
0.6 aros <ot (55)
V7logQ < Vs (5.6)

ﬁ\/ﬁ <e (5.7)
Remark. The constraints (5.2), (5.3), (5.4), and (5.6) come from Theorem 4.3, where (5.4) was written for
(5 replaced by a larger value ¢; ; now we impose the stronger restriction (5.4), as it will be needed later.
Notice that (5.7) and (5.2) imply that ey~ > 2R;. (5.5) comes from (6.33) in Corollary 6.5.
Remark 5.1 . Note that in (5.2) one can take § = 41, in (5.3) § = d4 and in (5.5) § = J5, with J5 = nsd*,
01 = n1d5, and 04 = nyd* for some positive integers that will diverge since 6* | 0. This would allow d4 to be
small without imposing as in Theorem 2.1 that it goes to zero. Since this would introduce new parameters
we have decided, for simplification, not to do it.

With the choice of parameters that satisfy the Cy constraints, we apply Theorem 4.3, Corollary 6.5 with
p = 2+ [(log@)/(log(1/7))], Lemma 3.15, and Corollary 3.2 with k¥ = 5, to determine measurable sets
Q= Qu(y,0%,A0,6,0,(1,6), Qre = Qre(v,0%, p) = Qre(y,0%,Q), Q., and respctively P(5,¢€, Q) such
that, calling Q51 = Q4 N Qre NP(5,€, Q)¢ N N, we have

N . 1
P[] > 1 — 10”67 — 570070 — Q2w — Qe 23V 50 — T2, (5.8)

when 0*y < e < e(5,0) and a > 0.
For w € P(5,¢,Q)¢, the origin belongs to an unique elongation [a} , a7 ;] where jo = —1or0, see (3.11)
and (3.13), moreover on this set, recalling (3.20), we have,

2,2] c [k, hsr] [-2,9]. 59
v Y Y v
We write, for n € {—1,+1}
et et
Qn(€7Q> = {w € P(5567Q)Ca sgn |:%a ]TOH] = 77} ) (510)

For concreteness, we take jo = 0 and we assume that this elongation is positive, that is, we are on Q51 N
Q7% (¢,Q). We have the following result:
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Proposition 5.2 . IfCy holds and

1/4

8f1+Afs +A4f3+ 3207 +16¢ < 67 (5.11)
where
1 ~ o*
=101+ 60— /L log —, 5.12
S =100 5 6 G V 5 8 (5:12)
fo=8V(B,0),/71o (l) (;10 <5—) +R > (5.13)
? TG ) a0, 6) B\ Y ' '
. _A(B+TFY)
with Ry = (3,0)5C3 7
f3=16(1+6)R1 |- (5.14)

5%’

and 0 < z < 1/2, there exists Qs such that

2
2 exp(— 26Q<§62(B,9))

P[Q25] > 187" — 5 (5.15)
1 = exp(~wgeam)
such that on Q5 N Q51 NQ(e,Q),
ape aje
15,6, (ﬂf € [70 + g + Ry, 71 - g — Ra],n>4(0) # 77) <
(5.16)

5 5
3 _ B[ r5(8,0) » ) /4 4 174
- (Lj) e 642)AF}+2SR%( Q) e exp{_QegT}.

where p = €T

Remark Recalling (3.19) and Proposition 3.3 the interval J = [%, %] is random, its length being a finite
and positive random variable, of order y~!. On the other hand when choosing the parameters p + vR; will
tend to zero.

Proof. We assume that n = +1, the case n = —1 being similar. To simplify notation we denote by
Ny, = %age, Ny = %oﬁe, I'=[Ni+Ri+% No— Ry — £, n%¢4 () = n(¢) and B(¥) = {0 : n(¢) # 1} Recalling

(4.4), we have that

B0~ (30 € In(l) # 1)) < ppoy (Ms(Ag) \ A(AQ)) + D 1o~ (B) N A(Ag)), (5.17)
el

where we denote by A(Ag)¢ the complement in My« (Ag) of A(Ag).
According to Theorem 4.3, for w € Q51 C €4 we have

5 B (8,6 3 *
118,07 (Ms-(8g) \ A(Ag)) < (i—?) o H{ (M=) a7} (5.18)
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To estimate the other term in (5.17) we need to restrict the infinite volume Gibbs measure to a finite volume
one. We write

1.0, (B(0) NA(AQ))
Ni1+R1

< ) > Z Mﬁ,e,w (> (0r) = 7, 1 (£2) = 72, B(£) N A(Aq)) (5.19)
1,72€{—1,1}2 £1=N1 L2=
+ 10,5 (171 (£) = 0,90 € [N1, N1+ Ra]) + pp 0.0 (07 (¢) = 0,VL € [N2 — Ry, Na]) .

Using Theorem 4.11, with p = 2 + [(log Q)/(logy~1)], on QrE D Q51 we have

18,0 (V€ € [N1, N1 + Ra], %< (£) = 0) + g0, (V£ € [N2 — Ry, NoJ,n><* (£) = 0)

405 ~(8,0) * (520)
B s (42}
Y
where R = % and we have used the fact that our choice of p entails Qy~! < v~P < Qy~2 to replace
’ 1

34y~ in (4.68) by 3*Q°y~1% in (5.20).
Recalling (4.17) and using that n®!(¢1) = 7; implies that on the left of ¢;

* * * §*

5 5
| E(m5 1y 2,0, -1 (@) 151 (4, —1,0,(07) = B(mS -1 g, a4, 1) (U)’mT%ﬁﬁ 1] | <G (5.21)

for ¢’ such that 1>t (¢y) = n%< (¢1)(o” (-1 51]) = 71 and similarly on the right of /2, we get

1.0, (171 (1) = 71,07 (£2) = 72, B((), A(Aq))

< o2(ci+5m) 25, 1y (179 (02) = i, 17 (£2) = 72, B(0), A([lr, £2])) (5.22)
<ev - - ,
Z[Oeloe ] (%61 (€1) = 71, %<1 (€2) = 72)

To get an upper bound for (5.22), we restrict the denominator to profiles that we expect to be typical
for the Gibbs measure under the constraint 7% (¢1) = 71, %<1 (f5) = 7o given that we are inside a positive
elongation. Without the constraints, taking into account only the presence of a positive elongation, the
profiles we expect to be typical are of course 7% = 1 for all £ € [¢1, f5], this is also the case for (7, 72) =
(4+1,41). To take into account the cases (71, 72) # (+1,+1), we leave intervals [¢1, ¢1+Lo] and/or [¢a— Ly, £2],
where Ly is a positive integer to be chosen later to allow the profiles to change from, say n%¢ (¢;) =7 = —1
to 721 (¢ + L) = +1. We actually require the profiles to satisfy 7% (¢1 + L) = 41, with ¢5 < ¢; for a
reason that we explain later.

To proceed on this it is convenient to define: given Ny < {1 < ¢5 < Ny and 7 € {—1,+1}, for i = 1 and
1=25

Ri(77, 1, b2) = {m?e*l,ez]iné’ci (6) =i =n>" (52)}, (5.23)

75,1(4’1,61,62) n {776745 (61 + Lo) = 7]6’<5 (62 — Lo) = +1} fOI‘T_]l =—-1= 7_72;
E(H1,81, b0, 71, 72) = { Ra(+1,41,62) N {n®5 Uy — Lo) = +1} fori = 1,7 = —1; (5.24)
751(4’1,61,62) N {7767(5(61 + Lo) = +1}f01"771 =—-1,m2 =1,
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where the +1 on the left hand side is associated to the sign of the elongation, chosen here to be positive.
We then estimate the expression in (5.22) as in Section 4 (see (4.86)), to obtain

g0,y (N7 (01) = 71, (L) = 72, B(£), A(Ag))

= tutscrensny D (P9 (0) = P (02) = o, B0, A1, )

X
Z[%Oe ](5(+1,€175277717772>) (5.25)

0,m 5, o my,0 S5, _
> Z[lljlrJrLU*l] (77 ‘ (61) B +1) Z[ethoJrl,ez] (77 ‘ (62) 7 +1)
0,m — m4,0 _ .
Zigg 4 Lo-1) (17 () =) Zip,Up 4y 0 (174 (2) = 72)

To apply Lemma 6.3 to the last two terms in (5.25), we take

1 1 5*> 1 1 oF
R SN SRR i
a(B3,6,60) 2y T a(B,0) t8y

Replacing the f11 of Lemma 6.3 by fi defined in (5.12), since here /5= > §*, we obtain

Lo = (5.26)

18,00 (6) = 1,1 (62) = 02, B((), A) < e 4(C+Cs+267) LB (FTH2f) [5(Im 1+ —1D] o

250y (05 (01) = 0.0 (€2) = 72, B(0), ([t 62]) (5.27)
Z&Oé ] (5(+17 617 625 7717 7_72))

To treat the last term in (5.27), we make a partition of the set of profiles in A([¢1, ¢2]) distinguishing the
profiles according to the number and the location of the changes of phases in [¢1, f5].

A([61, £2)) = UN_g Ugas ajmny A1, £2], A, ) (5.28)
where N is the number of the < blocks in [¢1, (2], i.e

€

N = [|e2 - m%} - [(;[ai —af] - 231) g] - [[a; —af] - 2%31 (5.29)

[x] is the integer part of x, and the first equality follows from (5.7) that entails ¢/ > 2R;. Moreover in

(5.28), A C % +1, % +2,..., % -2, % — 1} . The integer n represents the cardinality of the set A and
therefore the number of 5 blocks where, in each one of them, there is one and only one interval of length
2R; in which only one change of phases occurs. Recall that in the definition of A([¢1,¢3]) cf. (4.1) the r;,
i =1,.., N indicate that in [Tii, (ri + 1)5] there is g;, such that in [¢; — R1, ¢; + R1] there is only one change
of phases and there is no change in [rz ,(ri + )£\ [¢s — R1,¢; + Ry]. The notation A([¢1, 2], A, n) is
self-explanatory. When there is no amblgulty we denote A([€1, 4], A,n) = A(A,n). Going back to (5.17),
taking into account (5.20), (5.27) and (5.28) on 51, we have that

5*) N
3Q> %{(_"(ive)égi)/\}—*} +6M

1p0,y (30 € I,n(l) #1) <2 (7 2t > S, (5.30)

n=0
where
S, = e%%(‘ﬁlfl\ﬂﬁzfl\)(f*ﬂfl)X
Z Z Nih Z Z 0{107@2 (1 (5013 = i1, 7> (l2) = 72, A(A,n), B(()) | (5.31)
Lel ijy,m2e{—1,1}2 £1=N1 {>3=N>—R; A,|A|=n Z[gl 2](5(4‘1,61,62,7?1’772))
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We must estimate S,, for any n, taking care of the probability subspaces on which we are working. At first
sight one could have thought that the presence of n—changes of phases would simplify the analysis, at least
for n large, due to the presence of terms proportional to exp(fngf *). Unfortunately this is not the right
picture since we must control the local contributions of the magnetic field. For A’ C [af, o] we only know
that >~ o as x(a) > =2 (F* — f). The analysis is therefore more delicate, being summarized in Lemmas 5.3
and 5.4 below.

To complete the estimate of the expression in (5.30) we need to sum up the upper bounds of the S, cf.
Lemmas 5.3 and 5.4. For this we use the following inequalities that follow from Taylor formula: for all z > 0,

l 1+1
(1+2) =3 (ka) o= %e(m‘”z < (aN)HreM. (5.32)
k=0

Recall that ]\7% =[(le=) L] < (b= ) < %; || < % To simplify the computations, when necessary,

1—z
we take half of negative part in the exponential to compensate the positive part. We also use (5> > (5.
Denote Q25 = Q51 N Q53, with Q53 as in Lemma 5.3. After some easy however lengthy computations, using
(5.11), we see that on Q5 N QT (¢, Q),

7&51/4
3 ’ -Z m(8.0) 5 * 2 5 /4 {—4Qe Y5 }
uﬁvev’)’(a[e[;n(ﬂ)#l)SQ( Q) e ’Y{( 4 6<2)Af}+28|R1|2( Q) 67% = e v (533)
v

72

which is (5.16). (5.15) follows from (5.34) since IP[Qggr] > 1 —~2. This ends the proof of Proposition 5.2 if
we assume Lemmas 5.3 and 5.4. W

Lemma 5.3 . (n=0) For f; given by (5.12) and fo given by (5.18), for % >z > 0, there exists Q53 with

2
9¢ FAEIEH

IP[Q53] > 1 —47* — = (5.34)
1— 67 8QCZc2(8,6)
such that on Q% (e, Q) N Q53 N V51,
So < R?|I|€g (451+12) Ge 5" (5.35)
where
G = 2Gt2A 11667 ) (1 L s e 5<§)_ (5.36)

Proof. In this case the profiles have no change of phases, therefore we must have 71 = 2. If 71 = 772 = +1
and we take |A| = 0 in (5.28), we have

{7 (1) = m, > (l2) = 7o, A([lr, £2], A, 0), B()} = 0

and there is nothing to prove. So we consider the case 771 = 72 = —1. With this choice the set to estimate
in (5.31) is

{n*< (1) = n1,m> (b2) = 12, A([01, 2], A, 0), B(£) }

e e ) - (5.37)
= {77 CH(ly) =02t (o) = —1L, VL€ [l + 1,0y — 1], 0”5 ({) = *1} = Rya(—1, [0, 42])
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To estimate the quotient of the two partition functions in (5.31), we need to extract the contribution of the
magnetic field as we did in the proof of Proposition 4.13, see (4.94). If, however, we proceed exactly as it
was done there, we should get (4 instead of (5 on the right hand side of (5.34). Since (4 is fixed and @ will
be large at the end, such an estimate would be useless. Therefore an extra step is needed. For 7 = £1,
0y < th such that ¢} — ¢4 > 46y + 8, ¢y > 0 to be chosen later, let us denote

Rs(, 160, 6)) = {miyy gy (0) =7, ¥ e [¢5, 6] (5.38)

2

and
Ria5(—1,[€1,02])) = Ria5(—1, [l1,€2]) (o) = Ri,a(—1, [l1,42]) N Rs(—1, [¢1 + Lo, L2 — Lo)). (5.39)

Then we write, see (5.31) and (5.37)

ZreyBraCL 10,6 Zghe (Rras(CLIG D) Zpey(Rra(=1 10, G]) (5.40)
200 (EHL G e, —1,-1)))  Z50 (1, 00,60, =1, =1)) — Z0  (Raas (=1, [0, 6])) .

The choice of £ is related to the needed length to go from 7% (0) = 1 to 7% (Iy) = n knowing that we are
within a run of n>% = 7. It is determined estimating the last term in (5.40) from which we start. Since
R17415(71, [61,62]) C R114(71, [61,62]) we have

Z[(;’lo,ez] (R1,a(=1, 1, 2])) 14 Z&’SM (R1,a(=1,[l1, €2]) N (R1,4,5(=1, €1, €2]))¢)
250 (Ruas(=1, [0, 6a])) — 250 (Ruas(=1, [, £a]))

(5.41)

From Corollary 6.5 it follows that on Qrg D Qs1, if

. 5121046) [7. &
OG> L05.6)a(5.0.G0) \/6;%7 (5.42)

where (8,0, (p) is defined in (5.1), and £y is chosen* as Lo defined in (5.26), then

200, (Rua(=1, 101, £a]) O (Ruas (1, [0, €2])°)
750, (Rias(~1, 01, &2]))

_ B r(B,0) 53
SeT T,

(5.43)

uniformly with respect to [N1, No] C [-Qvy~ 1, Qv Y, ¢1 € [N1, N1 + R1], and ¢3 € [Ny — Ry, No]. To treat
the first term in the right hand side of (5.40), recalling that, see (5.24),

E(+1,01,0,—1,—1) = Ry(+1,[l1, €2]) N Rs(+1, [l + Lo, 2 — Lo])

we first split the interval [¢y, £2] into three intervals [¢1,¢1 + Lo — 1], [¢1 + Lo, ¢2 — Lo and [¢2 — Lo + 1, £3].
On the first and the last interval, we use a block spin representation, the rough estimate Lemma 4.6 with
p =2+ [(log@Q)/(log(1/7))], and then the symmetry m — T'm of the block spin model. Thus, on Qrg =
Qre(y,0%,Q) D Q51, we get for the first term

Z&:ZJJO_H (> (1) = —=1,V0 € [l1 + 1,41 + Lo — 1], > (¢) = —1)

0,m
216, iy po-n (0> (1) = 1) (5.44)

*

B 1 6_ * 2
< 70U+ aEaey loe )V 5 SN

*  The Lo chosen in (5.26) is obtained setting d = 2 in Corollary 6.5.
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and in the very same way for the other term. Therefore, on Qrg D (51, we have

[el 42](R1 1,5(=1,[€1, £2])(Lo)) < 2465220 Z[OZ,10+L07£2 Lo) (B5(=1,[€1 + Lo, €2 — Lo]))

0,0 0,0
Zy) ) (E(+1, 01,05, -1,-1))) 230 ots— 10 (B5 (L, [61 + Lo, £2 — Lo)))

y Z_1,0([¢1 + Lo, {2 — L))
Zi1,0,([01 + Lo, €2 — Lo])

(5.45)

o
= e_BAg(mﬁ,[fﬁrLo,EQ*Lo]

where Ag( €1+L0 0y Lo]) = D 0eCse ([t1+Losta—Lo]) X () and the remaining term is defined in (3.35) with
R(n) replaced by Rs(+,[¢1 + Lo,¢2 — Lo]). The equality in (5.45) is obtained by extracting the main
contribution of the random field as we did in (4.94).

To estimate the last term in (5.45), we use Proposition 4.14 and (4.144) with ¢ = (5, a = C5 , for some
0 < z < 1/2. Using (5.4), this entails that on a subset (54, with
Y LR
¢ 8QCZ(B.0)
Py >1 - ———— (5.46)

1 — e BQE32[.0)

we have
Z_1,0([¢1 + Lo, 2 — Ly))
max
[61,62]C[-Qv—1,Qv~1] Z41,0,([€1 + Lo, b2 — Lo))

1—2
< 51667 (5.47)

Some care is necessary to estimate the contribution of the first factor of the r.h.s. of (5.45). By definition,
on 27 (e,Q), we have A*‘g(m‘;; s ar ) > 2F* 4+ f = 2F* + /. However the random contribution we
1

extracted in (5.45) is merely ATG(m! B (14 Lota—Lo))» With €1 € [N1, N1 + R1], €3 € [N2 — Ry, No]. It is easy
to check that there exists a subset (255, that depends on (v,6*, Q) with IP[Q55] > 1 —8v2, such that on Qss,
uniformly with respect to [N, No] C [-Qvy~ %, Qy7!], and ¢1 € [Ny, N1 + Ry], {2 € [No — Ry, Na|, we have

7ﬂAg(m B,[€1+Lg,L2—Lo] ) S e_g (2}—*+€1/4_f2)’ (548)
where fy is given in (5.13). Collecting (5.44), (5.45) and (5.47), on QT (Q, f) N Qre N Q54 N Qs5, we have

[él 52](R145( 16, 62))) 12 (452514166, 7)

0,0 ——~ ¢ 5 (27 e/ p) (5.49)
Zid e ](5(+1,€175277717772))

Now, collecting (5.40), (5.41), (5.43) and (5.49), and calling Q53 = Q54 N Qs5, on QT (Q, f) N Q3 N Q1 we
have

0,0 5,¢ R e -
Zi ey (0 1(51)0—0771,77 H(l2) = 2, A([61, L], A, 0), B(£)) < Ge-2(2F +dip) (5.50)
Z1; g (E(F1L, b1, 2], 71, 772) )
from which we get easily (5.35). B

Lemma 5.4 . (n>1) On Q(54) N Q51 N QT (e, Q) N Qe, we have

S < RAI|[ls — t1]es @Nthtfstat) ge=5e/ (5.51)
2 (N (€\" ne(fstac) o —Lnasn o

Sn < RY|I| n)\5 e Gz2e 72 neven =7 =1 (5.52)
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S, <R2|I|€~,(4fl+2f2)( ) (E) GE 1S (fs+40) =5 (/1 B-n] T+ 252 1/1) n>2 =7 —=—1 (553)
n) \y

S, < R2|I|e52h (N) (E) Slpraal git o2 (B O odd (5.54)
n) \y

where f1 is defined in (5.12) fa in (5.13), fs in (5.14) and G in (5.56).

Proof. We prove explicitly the case n = 1. The n > 1 can be done similarly following the general
strategy outlined later. When n = 1 the magnetization profiles have only one change of phases and are
therefore compatible only with boundary conditions 71 # 72. Suppose that 71 = —f2 = 1. The reverse
case is done similarly. Denote by r; the index of the £ block in which the change of phases occurs. When
[r1£ =Ry, (ri+1)£+R1)] C [Na— Ri— £, 2] we have {77“1 (1) = 1,01 () = =1, A, 051 (A,1), B(0)} =0
since ¢ € [N; + Ry + E ,No — Ry — f;] Therefore we may assume that [7’15 — Ry, (r1 + 1)% + Ry)] C
[1, No— Ry —£]. We spht the interval [¢1, £5] into three adjacent intervals [¢1,¢q1 — R1], [(1 —R1+1, 1+ R1—1]
and [¢1 + Ry, fg], assuming that the change of phases happens in the interval [¢ — Ry, ¢q1 + R1]. Recalling
Definition 4.1 in Section 4, one has n®< (17) is equal to +1 for £ = ¢; and for £ = ¢; — Ry while it is equal
to —1 for ¢ = q; + Ry. We associate the interactions between the intervals to the middle interval. Suitably

restricting the denominator we get

257 1y (161 (02) = +1,m (L) = =1, Ap, 1,)(A, 1), B(0)) faci,,

<e
250, (Ru(+1,61,62) N {12 (€ — Lo) = +1})
70 moy,m_
Z[Zl a ] (RM(JFL o Rl])) Z[‘htR1+17q1+R1*1]

X (5.55)

0,0 ~ X m4i,m =
AT (Ri(+1,61,q1 — Ry)) Z[q1+—R1++1,q1+R1—1] (Ri(+1,q1 — R1+1,q1 + Ry — 1))

Zﬁl,lo"rpu,fz] (R174(_15 [fh + Rla 62]))

Z[(‘)IIOJFRI £2] (Ri(+1,q1 + Ra, €) N {n>%s (€5 — Lo) = +1})

Since Ry 4(+1,[¢1,¢1 — R1]) C 7%1(+1,€1,q1 — Ry), see (5.37) and (5.23), the first ratio on the right hand
side of (5.55) is smaller than 1. The second ratio in (5.55) is treated in a similar way as in the proof of
Lemma 6.3. However, since the volume we are considering is [¢1 — R1 +1,¢1 + R1 — 1], the error terms that

£ with f3 given

come from the block spin approximation and the rough estimates, see Lemma 4.6, are e~
n (5.14). Therefore, on Qrp D Q51, uniformly with respect to the position of the change of phases in the

interval [-Qv~!, Qv~ ], we have

m4 ,m_
[q1~—R1+1,q1+R1—1] <e w(]:* f3) (5.56)
2 mvrgam—n (RiFLa = Ri+ L g + Ry — 1))

It remains to treat the last ratio in (5.55). We claim that on Q54 N QrE D Qs3, see just before (5.50), we
have

0,0
Zlqi+ Ry 2] (Ria(—1,[q1 + Ry, 42]))

Z[0‘11()+R1 £2] (R1(+17 Q+ R1,£2> n {776;(5 (€2 _ LO) — +1})

+ 5%
—BAG(m /3[q1+R1+L0+1 Lo—Lg— 1]) Ge —BATG(my Ja1+R1+Lo+1,60—Lo— 1])

(5.57)

1—=
8 Blgc. T ]
< o5 a2h 5166 (14+e~

rc([i,ﬂ) (5(3)
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where G is defined in (5.36).

Let us explain where those terms come from: We have written the ratio on the left hand side of (5.57) as

8 1(5.0)
a product of two ratios in the very same way as in (5.40). The second ratio gives the term (1 4+¢e >~ 1 66

as in (5.41) and (5.43), and this occurs on Qrg. The first ratio was treated by first splitting the volume
[q1 + R1,¢2] in three intervals [¢1 + Ry, ¢q1 + R1 + Lo, [¢1 + R1+ Lo+ 1,2 — Lo — 1], and [¢3 — Lo, ¢2]. The
first and the last intervals give us the term exp(§2 f1) that comes from the rough estimates, and therefore

occurs on Qrp. There is also a term exp(%élgr,) that comes from the interactions between the intervals. We
remain with a term similar to the left hand side of (5.45) but in the volume [g1 + Ry + Lo+ 1,02 — Lo —1]. It

give us the term exp(%lGCS%z) and the last term in (5.57) and this occurs on Q54. Collecting (5.55), (5.56),
and (5.57), we have, on Q51 N Q53

ritl,
N1+R1 E -3 s 5 8
Z Z E E E ; (F* +2f1)e*;(.7: *f3)674C1X
=N, lo= —Ry ™ qlf e q1— Ry
—BATG(mY ) 5.58
x Ge B:la1+R1+Lo+1,62—Lo—1] ( . )
7‘1+1
g Ni+Ry N
e Chitfa+a0) o E E E E e BA g(mﬁ l[a1+R1+Lo+1.02—Lo— 1])
ll N1 62 Rl T1 q1=

By Y7 we denote the sum over blocks of length < contained in the interval [(y, No — Ry — £], so that

2:1 1<l —4]T < % The contribution of the magnetic field in (5.58) is estimated using Lemma 3.15

r1+1
Y

and therefore occurs on §2.. By definition, for any value under consideration of ¢; € [%e, €] and 71, we

in fact have that

5
AG(M (g4 Ry 4 Lot 1,6 Lo—1]) = Z X(z)
z€Csx ([q1+R1+Lo+1,62—Lo—1])
1 o1 (5.59)
=- > x@- > X
K a:7q1+R1+L0+17 TECs* (22*L0,N2)

The point is that of is the end of a positive elongation, that is a maximum, and by construction |aj —
1
%'ﬂ > £, recall p = €72 . Therefore recalling Lemma 3.15 on Q%(Q, f) N Qc N Qs3 we have

AGMY s pysrea]) = % (61/4 B f2) , (5.60)

This entails that on Q51 N Q53 N QT(Q, ), see (5.58),
S1 < RI|[ly — £y]e CRtfatfotac ge=5e (5.61)
Remark: The fact that No = aje/v is a maximum is crucial here. In the case 7j; = —1,72 = +1, it would be

essential that of is a minimum.
General strategy. The estimate of the terms with n > 1 in (5.30) is a simple modification of what we did
in the cases n = 0 and n = 1. Let us summarize the general strategy:
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a) Similarly to (5.55), if n changes occur we bound the ratio of two constrained partition functions by the
B

product of ratios over the n intervals [¢; — R1, ¢; + R1] where the changes occur, a factor e~ and a product

of ratios over the intervals with no change of phases.

B1F"— fs]

b) The contribution of a ratio corresponding to a change of phases is estimated by ev! where f3 is

given in (5.14), as we did in (5.56). This holds on Qrg since a rough estimate is used and therefore on {2s;.

¢) The contribution of a ratio over an interval, say J, where there is no change of phases is bounded by
1 when the profile is (s-near mg, that is for a run of n>% = +1. If, instead, the profile gives a run of
n®% = —1, as in (5.57), then the corresponding ratio is bounded from above by

= . * *
G216 T ) (1 4 =5 HEREE ) —EAGE 1) _ G TAG(mS ), (5.62)

on Q51 n 953.

d) The contribution of Ag(m?; 7) in (5.62) depends whether J is between two consecutive changes of phases
or not, with 7 being located at an extreme of I. In the first case we use ) . x(a) > —(2F" = f) =

5+4a

— (2.7:* — 61/4)) which holds on Q% (e, Q). In the second case, if the length of 7 is larger than 2 = ™ 8¥1a,
we apply Lemma 3.15 as in (5.60), on Q.. This gives A"’g(m%*,j) > ~[e'/* — fo]. Otherwise, we use the
fact that

[e%4 t
inf >0 inf >0 5.63
élgg&;tx(a)_ ,nf Z*x(a)_ : (5.63)
= a:ao

since aj is the location of a maximum and «f the location of a minimum.
e) At least there are two factors in (5.51), (5.53), and (5.54) that come from

T Zee(d) -

Proof of Theorem 2.1 The proof of Theorem 2.1 is a consequence of Proposition 5.2 and of the next
choice of parameters. Take g(-) satisfying the hypothesis of Theorem 2.1, i.e., g(x) is increasing, g(z) > 1
diverges as x T oo, 27 1¢g3%(x) < 1 and

g% (x) |0, (5.65)
a0 5.66
ETES (56
Q = exp % (5 67)
loglogg(%) )’ '
1 1 1
CTEEGa ) T o0
Q= —1  and s—— 1 (5.69)
L 1609(2) 5(g(%))1/2 '

First we have to check that the Cy constraints are satisfied if the parameters are chosen as above. (5.2) is
immediate from (5.69) and (5.65). (5.3) is just (2.43) with the choice in (5.69). (5.4) is just (2.44) with
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(5.68) and (5.65). (5.5) is immediate from (5.68) and (5.65). (5.6) is immediate from (5.67), (5.65), 6* < 1
and /0 < doy, by taking dp small enough. (5.7) follows from (5.65) by taking vy and dp small enough.
It is immediate to check that (5.11) holds and also that (5.16) implies (2.48) after easy simplifications. It
remains to check (2.45). Notice that (5.68) gives 26Q¢Zc?(3,0) = Q/g, and taking dy small enough we have
e=B/(2°QE*(8,0) < ¢=AVI. Tt is then easy to check that with our choice of ) the leading term in (5.8) is
5eT6eTa) from which we easily get (2.45).

We then set

El
and T7(w) = +1ifw € QT (6, Q)N Qs and 7(w) = —1 if w € Q7 (¢,Q) N Q5. The estimates (2.46) and (2.47)
are immediate consequences of Proposition 3.3. W

Proof of Theorem 2.4 Since the proof follows from arguments similar to the ones we already used, we will
sketch it. It is enough to consider two consecutive elongations

age aje
Iy= [i+31+5,71 Rl—ﬂ
. (5.70)
L= [%Mﬁﬁ,% R 3}
Y v
with sgnly = +1 and sgnl; = —1. The main point is to estimate ug g,(Co,1) where
aje p o
601W“<—1 -2 R+ R2,§4)0AA2 5.71
il S il 7] (A2q) (5.71)
where W is defined in Definition 2.3. Using Theorem 4.11, we get
S
148,6,~[Co1] < Z Z Z 118,6.[Cor N {n>< (01) = n1, > (b2) = Tha}] +
M2 E{-1 +1}€ o —Ry @276(19{ (572)
vat (22) el
v

where @ is defined in (5.67). To study p,0.~[Cor N {n>(£1) = 71,7% (£2) = 72 }], we decompose the event
in a way similar to (5.28). Consider first the case 7; = +1. To be able to use (5.52) where there is a
positive elongation, we need to have another >t (¢) = +1 for £ on the left of O‘TTE — Ry — £ instead of the
775 G (E) = 1 that is present by Theorem 2.1. Using Theorem 4.11, we will find such an ¢ in the interval
[ = — 2R - £, T Ry — £], and we apply (5.52) in the interval [¢,¢,] C [ — 2R - £, age]_ As a
consequence, on Q51 N 53, the Gibbs—probability to have an even number of Changes of phases n > 2 within
[0‘1€ 2R, — £ age R;] is bounded from above by

vy
{Q 7£€14/4 }
(1/4 Je 7
)5enge ’ . (5.73)

Consider now the case 7j; = —1. Thus, within the interval [E - R - £ ml] the profile makes an odd

56 R (—

number of changes of phases. When n > 1, we can apply (5. 54) and we get that the contribution of these
terms is also bounded from above by (5.73).
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So, on the left of aj, there are two cases left from the previous analysis: no change of phases when 7; = +1
or a single change of phases when 7; = —1.

The same arguments apply on the right of o and therefore we can have at most one change of phases on
the left of o] and at most one change of phases on its right. Now we show that to have simultaneously one
change of phases on the right of aj and one on its left has a very small Gibbs—probability. It only remains
to consider the case ; = —1,72 = +1. Since 77“4(0‘7IC + R+ f’;) = —1 the profile in Cp; makes two changes

of phases on the right of ¢; but since we are on A(Ayq) this means that there exists an ¢ € [¢1, % + R+ £]
with ¢ — ¢1 > ¢/~ such that n®¢ (¢) = 41. That is within the negative elongation that occurs on the left of
i, we have 9%t (fy) = +1,7%¢ (f) = +1. By using the very same argument as in (5.52), taking care that
here with the same notations as in (5.45), we will merely use

0,0
2k 1o 1o (B (1, [ + Lo, £ — Lo))) o AB8GS n orop) Zrr0([f2 + Lo, £ — Lo])

, (5.74)
20 1oty (Bs (=1, [fa + Lo, € = Lo])) Z_1,0([2 + Lo, ¢ — Lo])
and since we are within a negative effective elongation we have
VAG(MY 1)1 100 10) < 2F* — /%, (5.75)

As in (5.52), the 2F* cancels with the contributions of the two changes of phases and we get a contribution
which is bounded from above by (5.73).

Therefore we are left with the three cases 71 = —1,72 = —1, i1 = +1,72 = +1, and 7; = +1,7p = —1
that belong to Wi ([QT;6 — Ry — 5% + Ry + 5], R, C4). This ends the proof of Theorem 2.4. W

6 Functional

In this section we prove some estimates needed in Section 5, based on results on a finite volume version of
the excess free energy functional, F(-), see (2.21). They are adaptation to our case from results in [16] and
[9]. More care is needed here, since the profiles belong to 7 C L* (IR, [—1,+1]) x L>*(IR,[—1,+1]) instead
of L*(IR,[—1,+1]) and the norm involved, see (6.2), is stronger than the L° norm used in [16] and [9].
e I: Minimizers in finite volume

As in Section 2, Ds denotes the partition of IR into the intervals ((¢ — 1)4, 49, £ € Z, for 6 > 0 rational.
In particular, if § = nd’, n € IN, then Ds is coarser than Ds . For r € IR, we denote by D%(r) the interval
of Ds that contains r. A function f(-) is Ds—measurable if it is constant on each interval of Ds. In terms of
the notation of Section 2, we have D?(r) = A;([r/d] + 1), where [z] denotes the integer part of z. We define
for m = (m1,me) € T, see (2.11),

s 1

mg(r) = < m;(s)ds i=1,2. (6.1)
(S DS(’I‘)

By definition, the functions m?(-),i = 1,2, are constant on each D°(r). Definition (2.41) is extended to

%

functions in 7', and, with an abuse of notation, we denote 7%¢(¢), £ € IN,

o +1if Vue(e-1,: 5 Jpsuy @slm® (s) —mglls < ¢
MO = =1 i uco1 3 s dslm® (s) = Tmgly < ¢; (6.2)
0 otherwise.

If m% (z) = m% (z,0) for x € Cs-(I), see Section 2 before (2.10), and we identify it with an element of
T, piecewise constant on each ((z — 1)0*, xd*], and take § = kdé*, then (6.2) coincides with (2.41). Given
LoeIN,0>06*>0,(>0and ne {—1,+1} we set

V&,C,Lo(n) = {m = (m1,m2)2 (77m1,77m2) € Moo, 776’<(0) = —77a776’<(L0) = 77} ) (6-3)
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where Mo, was defined in (2.22).

Lemma 6.1 . Let > 1 and 0 > 0 satisfy (2.17). There e:m'st do = 80(5,0) > 0, (o = (o(B,0) > 0 such
that for all 0 < § < §g and 0 < ¢ < (o, for all integers Ly > log 1/¢, with A\(3,0) given in (2.24) we

ﬁ a(B,0)
have
inf F(m)=F"= inf F(m), (6.4)
mGV(s,C,LO(‘Fl) mGVJ,C,LO(*l)

where F* is defined in (2.25). The infimum in the first (last) term of (6.4) is a minimum, attained at a
suitable translate of m (T, respectively).

Lemma 6.1 follows from the variational result proven in [14] and recalled in Section 2, once we show that the
set Vs.¢,no(+1) (Vs,c,0o(—1)) contains a suitable translate of m (T, respectively). Due to the T-invariance
of the functional F it suffices to check the first. This is easily obtained. Namely, from the exponential
decay properties of m, see (2.23), ||m(r) — mg|1 < ¢ for r > a(é ) loge/¢ and ||m( ) — T'mgll1 < ¢ for

r < —
— a(ﬁ 0)
translate of m in the set Vs ¢ r,(+1).

loge/¢. Taking into account the definition (6.3) we can take Lo > (ﬁ 77 1og ¢/¢ and find a

For any interval I C IR and m = (m1,m2) € T, we denote by m; = m1; the function that coincides with

m on I and vanishes outside /. We define
1 - - 2
Fomn) = [ Balm(r) = foatma) dr+ 5 [ dr [ s = o mte) a0 (65)
I I I
where fg 9 is defined in (2.14) and m = 22 For a given m € 7, we denote

F(mr|lmy;) = F(mr) + %/ dr/ dr' J(r — r’)[ﬁl(r) — m(r’)] ) (6.6)
I c

Both functionals are positive and well defined for all I C IR, however they could be infinite if I is unbounded.
Observe that when my = mg (or my = T'mg) then F°(my) reaches its minimum value F°(mg) = FO(T'mg) =
0 in I. The same holds for F(m|my;) when my; = mg (or my; = T'mg). When the boundary conditions
mer are different from mg (or T'mg) but are suitably close to them we will prove that the minimizer exists
and it decays exponentially fast to mg (or T'mg) with the distance from the boundaries of I. The value of
the functional at the minimizer will be, therefore, close to the null value. For all n € {—1,+1}, we denote

M(C,6,m) {m (my,mg) € T; 775’4(6) =n, Ve Z}, (6.7)
A(¢,8,m) = {m = (m1,m2) € T; 7o) =n, Yl e z}, (6.8)
where 7%¢(-) was defined in (6.2) and
1 if Yueo1,g[lm®(w) —mglli <G

,6, _ .
P70 = § ~1 it Ve, Im? () — Tmgly < ¢ (6.9)
0 otherwise.

Using ||m?(u) — mglls < 671 st(u) ds||m5* (s) — mgl1, it is easy to see that M(¢,0,m) C A((,6,n). We
denote by M;(¢,0,n) = {m1;for m € M(¢,6,n)} and in a similar way A;(¢, d, n).

Theorem 6.2 . For (8,0) that satisfies (2.17), there exists 0 < (o = (o(5,0) < 1 and, for 0 < ¢ < (o,
there exists 69 = d9(¢) > 0, such that for any 0 < § < &g, given a Ds—measurable interval I and boundary
conditions mg; € Mar(C,0,+1) there exists an unique ¥ = (YP1,v¢2) in M(C,0,+1) such that

NP _r _ 6.10
mfe/\ll?(c,é,ﬂ (mrlmy;) (Y|mey) (6.10)
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The minimizer Y is a continuous function with uniformly bounded first derivative in the interior of I,

lim,19+ 7 2(r) and lim, | 5- ;9 (r) exist, with the further property that

[Y1(r) = mpa| + [Po(r) —mpo[ < ¢ Vrel (6.11)

[1(r) — mpga| + [1h2(r) — mg2| < Ce_a(ﬁ’e’co)[gd("am Vr el suchthat d(r,0I)> (6.12)

N =

where d(r,0I) denotes the distance from r, to the closure of OI, [-] refers to the integer part, and o (3,0, (o)
is defined in (5.1).
Remark: An analogous result, changing mg to T'mg, holds for n = —1.

Proof: Since M((,d,1) C Ar(¢,6,1), we first prove that the infimum of F(-|my;) over Af(¢,d,1), a priori
smaller than the one in (6.10), is reached at a unique ¥ € A;({,0,1). Then we prove that ¢ can be taken
continuous and that it verifies (6.11). This implies that ¢ € M((,d,1), and therefore (6.10) holds. The
proof that the minimizer of F(-|my;) over A;((,d, 1) exists is obtained dynamically. We study a system of
integral differential equations for which F(-|my;) is decreasing along its solutions:

0
% = —my + tanh{B (Jxm + 0 + J xmy;)};
) (6.13)
% = —my + tanh{B (J * 1 — 0+ J x ;) }.
Therefore the minimizers of F(-|mg;) correspond to stationary solutions of(6.13), i.e:
U1 :tanh{ﬁ (J*1;+9+J*@61)}?
(6.14)

wgztanh{ﬁ(J*z/;—G—i—J*@aI)}.

This method has been already applied to characterize the minimum of the infinite volume functional (2.21),
see [14] and reference therein. To show (6.11) set ¢ = 3 (11 + ¢2) so that, from (6.14),

-1 - 1 -
&= §tanh{6 (J*¢+9+J*m6,)} n §tanh{6 (J*wfo%f*@a])}. (6.15)
Since, see (2.16), gg(s,0) < s when s > g and gg(s,0) > s when 0
0 < ¢ < 7y there exists do(¢) such that for § < 6(C), [P(r) — Mg
derived, once we observe that

< Mg, it is easy to see that for

<s
< % for » € I. (6.11) is then easily

[91(r) = mg | = | tanh B[] x (¢ + 1ig;) (r) + 6] — tanh Blims + 0]
(6.16)

| 5B = anb G5 (54 o) o) + (1= ) 0] [ 4 9+ s )0) = v ] -

Replacing my; by m~561(r), we obtain

|1 (r) — mpa| < B [1 — tanh? f{is — g ~ 5+ 9}] (75 (B + 10 51)(r) + 8 = 1 * Trusr)(7)

gﬁ[l—tanhzﬁ{ﬁ”Lg—g—(S—i—@}} <g+6).

11/ february/2004; 15:42 62



Doing something similar for the other component we obtain

[W1(r) = mpa| + [P2(r) — mpa| < e BT [ 4 25],

where we set «(8,0,() = —log aﬂ(ﬁz@g — %, 0), gz being defined in (2.16). By the smoothness of gg, since

om

(2.18), there exists (o = (p(8,0) so that for ¢ < (4(5,0) and § small enough (depending on () we have
e~ (CH20)[¢ 4 28] < ¢. To get (6.12) we first show that ¢ solution of (6.15) has the following property

- 1
[ih(r) — gl < ge—awv%)[%(ﬂ@”] it d(n I >3, (6.17)
where [z] is the integer part of z. Since mg is a solution of (2.16), we have:
‘1/3,(7») - mﬁ\ < e B0 | T xr(r) — | + e B0 T x|, |(r), Vr e L. (6.18)

Notice that (J * [mg;|)(r) = 0 for r € I, d(r,8I) > % and, since J(r) = Ty, <12}, if 7 is such that
d(r,0I) > Ny/2 for some Ny € IN, we have (J*No x |my;|)(r) = 0. Therefore, iterating (6.18) No—times, for
r such that (No +1)/2 > d(r,0I) > Ny/2, we see that

3106) = g < e=N02O99 | T (1) — g < e Noo809E (6.19)

Since e=(8:9:¢) < 1 for ( < (o, we obtain (6.17). Since d(r,0I) > 3 implies that (J % 1) (r) = 0, from
(6.16) and (6.17), and doing similarly for the other component, we obtain that

|4p1 () — m571| + |ha(r) — m5,2| < 6—04(57974)(6—04(5797(0)[Qd(Taal)] < Ce—a(B,G,C)[M(T,@I)L (6.20)

O
e II: Surface tension.

Lemma 6.3 . Given (3,0) that satisfies (2.17), there exist vo = v0(83,0) > 0, dy = do(3,0) >0, 1> (y =
Co(B,0) > 0 such that for all 0 < v < 79, all §* > 0 with v/6* < dy, and all positive integer p satisfying

11
(p+2)d* log I (6.21)

there exists Qrp = Qre(y, 0%, p) with IP[Qrp] > 1 —~2 such that for any w € QrE, any 1 > § > §* > 0,
and any (o > ¢ > 8y/8*, if Lo = ﬁe) log(%) for some d > 2 and (B, 0) defined in (2.24), we then we
have, uniformly with respect to the choice of [€1,€1 + Lo — 1] and [l — Lo + 1, ¥43] inside [—y~ P,y P]:

m4,0 5,¢1 _ 0,m 5,1 _
Z[é;_Lo-i-l,Zg] (%<1 (L) = +1) Z[&,Zt—i—Lo—l] (> () = +1) < eg(fmrfu) [%(W171|+\ﬁ271|)]7

m4,0 5,¢ — 0,m4 5,C _ (622)
Z[gz_Lo_,_l,ez](n $1(la) = 12) Z[41741+L0_1] (n°<(€1) = m)
where F* is defined in (2.25) and
fi1 = 10(1+ 0)(5* V /=)dlo U (6.23)
11 = (5* g 87 .

0,m
z,"* 361 (01)=7
(. Loy D) m)) from below. When 7; = +1, the previous quantity is

Proof: We start estimating —7-=

20ty (1 =41

equal to 1 and there is nothing to prove. We then suppose that 7; = —1 and to simplify notation we set
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{1 = 0. We perform a block spin transformation as in Section 4 and use Lemma 4.4. For the random terms
we use the rough estimate, Lemma 4.6, obtaining for w € Qrg,

L0(5*+05* log <% > +49\/ ) B [f(mo Lot ‘m

Z0m (P 0) =) > e S0.20- 11)]
20— (7 (0) =) (6.24)

* sk 2
+g [67 Zyecs* (8]0,Lo—1]) [mé (y)] Zmecs*([U,Lo—l]) J“*(Ify)]

where méa*[O,Lo—l] is the profile associated to the chosen boundary conditions, i.e., mg*, 0,Lo—1] = 0, mg: [0,Lo—1]
= mg* and T?L[&g,Lo_l] € M~ = M ([0, Lo — 1]) N {n®<1(0) = —1} will be suitable chosen in the following.
In a similar way, we estimate the denominator by

Z[%”L%: 1]( 5.61(0) = 1) <e Lo(8"+40\/5%) o o3[Logelog &) o 2 [Locsk log 5]

% e—g I:inf{m,‘s* emty -7':(777/6* |ﬂ65*[0,L071])] X (6,25)

* _s* 2
% e+g [ST Zyeca* (8[0,Lo—1]) [mé (y)} Zmeca* ([0,Lo—1]) T (zfy)} )

The term e7 %07 19657 comes from counting the number of configurations of m® € Ms-([0, Lo — 1]). The
infimum in (6.25) is over the set M+ = M- ([0, Lo—1])N{n>*(0) = 1} and it is attained on the configuration
{m® (z) = m%* Vo € Cs+(]0, Lo — 1])}, since the boundary conditions are at one side zero and at the other
side already equal to mg*. We need only that {; > 8y/d* to be sure that ||mg* —mgll1 < (1 entails that the
configuration constantly equal to mg* belongs to M™. Taking in account (6.24), (6.25) we obtain

0,m 4 5,¢ .
Zo[o Lo-1)(”"*(0) =) > e~ 31m—1[2Lo(5" +(14e) 5 log 5-+40/35 )]
Zig ra—y (%€ (0) = +1) (6.26)

The exponent in the last line of (6.26) can be written as

*

| F iy o180, 1)) = F S 1m0, 1)) = FOCS 1)) + [F(ma) = F(m N[ — 1]+

+ %* Z Z Js«(x —y) [”;16* (z) — m66*[0,L071] (y)]2

2€Cyn ([0 Lo—1]) yECs- (90, Lo—1]) (6.27)

- %* Z Z Js<(x —y) [ﬁl% (z) - m66*[0,L071] (y)]2

x€C;sx ([0,Lo—1]) y€Csx (0[0,Lo—1])

where FV is the functional deﬁned in (6.5). We take ¢ = 85 in Lemma 6.1, assuming that /6" is smaller
that the {y there, Lo = a(ﬁ o) log & 87 with d > 2, and a(ﬁ, ) defined in (2.24). Then, Lemma 6.1 says
that a suitable translate of m belongs to Vs 1., see (6.3), provided and 0 < § < J§;. By an abuse of
notation we always denote such translate by m. Since M~ C Vs¢,1,, we can choose m® € M~ such that
M0 (r) — m(r)||1 < 8v/6* for all r € [0, Ly — 1], where m is the previous chosen minimizer. An easy

computation gives

£m) = £ o — 1+ PG 1) — P (0 )| < 8ol 40 [L. (629
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Since m® E Vs.c,Lo and ¢ = 855, the difference of the last two sums in (6.27) is bounded from above by
645 < /& and & is small enough. Since F°(in;) < F* we obtain

0,m4 5,¢ _
Z[éol’elJrL”_l] (1 () = —1) > o~ ZIF"+10(14+0) (6" v/ 55 ) Lo)] (6.29)
210y 4y +L0-1) (2 (1) = 1)

Repeating similar arguments for the term with 7 we end the proof. O
e ITI: Shrinking of the typical profiles.

Theorem 6.4 . Given ((,0) that satisfies (2.17), there exist 0 < 9 = v0(83,0) < 1, 0 < do = dp(5,60) < 1
and 0 < (o = (0(0,0) < 1, such that for all 0 < v < o, v/0* < dy, for all p € IN verifying the condition

1 1
(p+2)0* log S <= (6.30)

64’

there exists Qpr = Qrp(y, 6%, p) with IP[Qrp| > 1—+2 such that for any w € Qrp, 7 € {-1,+1}, { € IN,
8,Ca4,Cs with 1 > 6 > 6* >0, and any (o > (4 > (1 > (5 > 87/6*, we have

Sup o (Rua(, [0, £2)) 0 (Rua s (7, 100, ) (b))
ApC[—vy~P,y7P] ( )
6.31
2 75{—“(‘;9)5(372@6“(5'9'40)[”0]712(1+0)(420+10)[5*v %]}

)

where Ry 4,57, [(1,¢2])(lo) is defined in (5.39), and Ry 4(7,[¢1,0s]) in (5.87), k(B,0) > 0 satisfies (2.20),
a(B,0, () is defined in (5.1) and Ay, = [l1, 03] is an interval of length L > 4¢y 4+ 10. Moreover

sup 250 0 (B, 4(77, [flale) (B1,4,5(7, [€1, £2]) (£0))°) (6.52)
ALC[-y~PyP] [@1 £5] (Rl 4 5(77a [fla 62]))

satisfies the same estimates as (6.51).

Remark: Note the crucial fact that the last term in the exponent on the right hand side of (6.31) is
proportional to 4¢g + 10 and not to L.

The following corollary is an immediate consequence of Theorem 6.4. Its proof consists essentially in choosing
an appropriate £ in (6.31), see (6.35), and taking in account that, under (6.34) and 6* > ~, we have
V& =VE

Corollary 6.5 . Under the same hypothesis of Theorem 6.4 with the further requirements

. 512046) [y, &
oG > n(ﬁﬁ)a(ﬁ,e,co)\/éj*log? (6.33)
62 1
2 < 53 (6.34)

where k(3,0) > 0 satisfies (2.20) and (0,0, (o) is defined in (5.1).

4,

"7 (0.6

d>1, (6.35)
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then for w € Qrp and 7 € {—1,+1}, we have

~(8,60

swp  pugon ((Rual, (61, £2) 0 (Ruas(, 100, 6]) (0)7) < e (6.36)

ApLCl=yPy77]
where Ay, is an interval of length L > 40g + 10. Moreover (6.32) satisfies the same estimates as (6.36).

Proof of Theorem 6.4 Given an interval Ay, = [¢1, ls], with 5 — ¢; = L > 4¢y 4 10 for some ¢y to be
chosen later, £ € [¢1 + 20,02 — 24g], 7 = £1, we denote

Eq(0) = {m5* (x),2 € Cs-(AL) : %S () = 0,04 () =7 V' €[l — 26y — 5,0+ 20y + 5]}. (6.37)
Since
R (7, [01,62]) 0 (Ruas(7, [0, £2]))° C U252, E5(0) (6.38)

it is enough to estimate /Lg,gw(gﬁ(f)) and we assume 77 = +1. After an easy computation, calling I =
[0 — 28y — 5,0+ 209 + 5], for w € QprE, introduced in Lemma 4.6, for all £ € [—y~?,47P], we obtain

1
&1(0)) <
pe.o(E1(0)) < Zooin
Z eiﬁH(dA\vill)]I{ns’@(4726075):1}(0—7’161)]1{775’44(l+240+5):1}(O—V’laf)Zﬁjej;iyjfll
anamis (6.39)

B {inte, ) F(m Im1(0) ~8(140) (4t +10)5"v /7] }

e_’Y
X ~
o F @) }

3

where F is given in (4.26) and mJ is a fixed profile. This inequality is obtained as follows: writing
1g.0,~(E1(£)) as a sum of the expression in (2.4) over the configurations in op € & (¢) we multiply and divide
by Z;Ae\;}l ', inside the sum over 0., -1, perform a block spin transformation in the volume v~ and roughly
estimate the magnetic field applying Lemma 4.6. This last two steps are done in the numerator and the
denominator and they produce an error term 8(1+6)(44o+10)[6* V /5-]. We get an upper bound restricting
in the denominator the sum over all profiles to the single one mﬁ*. Notice the important fact that the term

57* o) Y Je@—y) (6.40)

yECsx (0I) x€Csx (I)

in (4.27) cancels out in the formula (6.39), since it is present both in the numerator and in the denominator.

We can subtract from the two F in (6.39) the quantity f(m?)|I| obtaining F(-md;(0)) instead of f"( .

Im$;(c)). Therefore to prove Theorem 6.4, it remains to prove that we can choose m in such a way that

53 — 204 B0 _ 4(40y + 10)(1+ 0)y | - + F(m3 |mSy)  (6.41)

. 0
inf  F(mg |md;) > ~(6,9) 5

mé* €& (6) 2

uniformly with respect to m$; € Ry 4(+1,[¢1,4s]). In fact the terms in the second line of (6.39) will be
bounded by Zg g..a uniformly in A and we get (6.31). It is rather delicate to prove (6.41).
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Using (6.5) and (6.6), and splitting I = I~ U (¢ — 1,4 U I" where I~ = ({ — 20y — 5, — 1] and [T =
(6,0 + 20 + 5], we get that for all m9 € & (¢)

F(

Y > inf Fml~|md_,, + F
2 L F )+ P )
e (6.42)

inf Fmi+|mip_1 g, m ,

Moy (Cad A1) (my+| M1, M+ 1)

where m‘g;fl’e] = {m% (z),z € Cs-((¢ — 1,£])}. Since mgll belongs to Mg+;((s,d,+1) and m?;q,e} to
M 1,4 (¢4, 6,+1), using Theorem 6.2, there exist unique minimizers ¢7, € M+ ((4,6,+1) and 3 €
1-(C4,0,+1) such that

F(my [ mpr) = F@p-|mg- (o), miyy,0) + FOmisy,g) + F@F me (), mly,0), (6.43)
for any fixed boundary condition and any m$ € & (£). By (2.20)

n(ﬁ, 0) .3

]:O(m((s;—u]) 2 C5 d5. (6.44)

Denote by I7 = (£ — 26y — 5,0 — ¢y — 3], I; C I~. By the positivity property of the functional, see (6.6),
f(w}flm%*—z(o),m?g_l,e]) > ]-'(1/1}1,|mgil(a),1/1(15_50_3,@_@0_2]).
Applying (6.12) of Theorem 6.2 we have that

]'—(1/111,|m 1) le—to—3.0—00—21) = (1/11 |m (o), mpL(r—gy—3,0-t5—2)) — Cae™ B0C02b0],

Doing the same computations for f(w%+|mgil(0),m‘(5;71 ¢) and sefting If = (0+ €y + 3,04 20y + 5], we
obtain

Fbp-|md- (o), mfy_y g) + FW7e | mds (o), ml_4 4)
> FW | my- (o), mplie—to-,0-t5-1) + F(WFe,| M 1(0), maTests1,e+00+3)) — 2ae OO0
1

= F(W7mj- (o), mys(0)) — 2Gse P00l
(6.45)
where we set ¢} =11 +mpalp_g,3.040043) + Y7+ In the last equality in (6.45) we use that F°(mg) = 0.

By Theorem 6.2, there exists an unique ¢ € My((4,0,+1) such that

inf F 5 = F(u* o . 6.46
wIeMIII(l<4,6,+1) (Wrlmby) Wilmar) ( !

Therefore, since ¥3 € My((s,6,+1), we have
F@i|m- (o), md: (o)) = F(@5|my- (o), mys (o)), (6.47)

Then, from (6.43), (6.44), (6.45), (6.47) we obtain

) . . y . . k(3,0 —a
inf  F(mg [md;) = F(i|my- (o), mys (o)) + (2 )C5355 — 2(ye” P00kl (6.48)

mé* e (6)
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Choosing for 72§ a D" ~measurable approximation of 1% with values in M. (I), see (2.10), we get

Fimby) > FO (@3 | mdy) — 4(4Lo + 10)(1 + 0) (5* v 51) . (6.49)

Collecting (6.48) and (6.49) we get (6.41). W

7 Appendix: The cluster expansion

In this section we prove Lemma 4.7 of Section 4. We will write V(m$ , h), defined in (4.25), as an absolute
convergent series and then estimate its Lipschitz norm.

To state the result we need some preliminary definitions. Let I C IR be a bounded, Ds«— measurable
interval, A(I) the set of blocks A(x), € Cs«(I). We denote by A = (A, A’) a pair of different blocks
belonging to A(I) and by A = AU A’ its support. We define a graph g in A(I) as any collection of pairs of
different blocks g = {A1, Ag, .., Am }, with 0 < m < L A(1)| = 1), such that A, # A, for all s # . A graph
g will be said to be connected if, for any pair B and C of disjoint subsets of A(I) such that BUC = U™ |\,
there is a A\, € g such that A\, N B # () and A\, N C # 0. Given a graph g = {\1, A2, .., Am }, A1, A2, ..y Ay are
called links of the graph g and the blocks A(x) belonging to U™, A are called vertices of

g. We denote G 41y the set of all connected graphs of A(I). A connected tree graph T (or simply a tree
graph) is a connected graph with m vertices and m — 1 links. We denote by 74(;) the set of all tree graphs
in A(I). Given a tree graph 7 the incidence number of the vertex A(z), denoted by da(,), is the number
of links A in 7 such that A(z) N As # (. In the following we denote by a polymer R a subset of blocks of
A(I), by Cs-(R) = {z € Cs-(I)such that A(z) € R} and m% = {m® (z);2 € Cs-(R)}. We have the following
Theorem.

Theorem 7.1 . For all 5 >0, h € Q, for any bounded interval I C IR, for §* > 0, @ < 661%, V(mﬁ*,h)

can be written as an absolutely convergent series:
5 | T -
V(ms, _BZ_' > ®"(Ry, Ry, ..., Rn) [ p(Re), (7.1)
n=1 R1,R3,...,R,,|R¢|>2 £=1

where ®T(Ry, Ra, ..., Ry) are the Ursell coefficients, see (7.10), and p(Ry) is given by

_ . BU(0A(x):TAm)) _
p(RO) = p(Reh) = B | > ] [ 2 —1]]. (7.2)
9EGR, (z,y)€g,2#Y

Gr is the set of the connected graphs in R and x is a short notation for A(x). (So (z,y) € g is a short
notation for (A(x), A(y)) € g.) Moreover

. 1 S
s
< |Cs- (I)|=—2— .
Vom b < (D5 =5 (7.3)
where
*\2
S =sup sup Z elBlp(R) < 6636ﬂ <1 (7.4)
h 2€Cs«(I) gyer v
and s 1
sup sup [|0;Vr oo < 1-55 (7.5)
ICZ icl 1-5p
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Proof: The proof is obtained via a standard tool of Statistical Mechanics, the so called cluster expansion,
see [11] and bibliography therein. This expansion is done in three steps:

(1) express the log V' as a formal series,

(2) establish sufficient conditions for the series to converge absolutely,

(3) control that under the hypothesis of Theorem 7.1 these conditions are indeed satisfied.

We start with the following identity

lEm?* [H eﬁU((TA(a:)ﬂjA(y))] — lEmf* H[eﬁU(UA(a:)aa'A(y)) — 14+ 1]

T#Y TEY
_ -+ —U(R1,..-Ry)
=1+ > e [Ir(Re),
n=1 R1,R2,..,Rn,|Rg|22 =1
where
U(Ry,....Rn)= Y U(Ri,Ry), (7.7)
1<4,s<n
N 0 if RNR,=0
U(Ry, Rs) = (7.8)
0 if RN Ry # 0

and p(Ry) is given in (7.2). Since |A(I)| < oo the number of terms contributing to (7.6) is finite. We have
that the log of the right hand side of (7.6) can be written as a formal expansion

. oo 1 _~ n
BV (m§ ) =log |1+ Z p Z e VR, ) Hp(Rg)
n=1

R1,Ro,..., Rn,lR[‘ZQ =1

ZZ% 3 ®T(Ry, Ra,..., Ry) [ o(R0),

n=1""Ry,Ra,....Rn,|R¢|>2 =1

where ®7(Ry, Ry, ..., R,) are the Ursell coefficients

3 [I [e0Fro-a] i n>2

®T(Ry, Ry, ..., Ry) = { 9EGR;...Rn (£:5)€g,04s (7.10)
1 if n=1

Observe that @T(Rl, Ry,...,R,) =01if g € Ggr, . .gr, is not connected.
We must now prove that the formal series (7.9) actually converges. Fix « € Cs«(I) and a polymer R, such
that A(z) € R. Recall that ®7(R) = 1, when n = 1. Then, (7.9) can be written as

. 1
BV(my b= > Y. AR) 1+ —=Bu(R)|, (7.11)
z€Cs+(I) R,zER,|R|>2 n>2

where

Bn(R) = > [[p(R)2"(R, Ry, ..., Ry). (7.12)
Ra,...; R, | Re|>2 €=2
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From the definition of ®T(R, Ra, ..., R,) we see that B, (R) can be written as

Bu(®)= > Y (=t > [, (7.13)

9€GR.Ry,...,Rn FCg Ra,...,Rn,|Re|>2 =2
where f C g means that every link of f is also a link of g. Recall that, from Rota inequality, see [31],
> (=l < N(y),
fCg

where N(g) is the number of connected tree graphs in g. Setting 7r g,

X =X 2wy

9EGR,,....Rn T€T, g: 7'69

R, = 7, we have that

.....

and then we can express

Bu(R) = > w(r) (7.14)

where

w(r) = > [1r(7) (7.15)

Ra,....Rn,|Re|>2,7€9(R,Ra,...,Rp) {=2

For any fixed set R’ we have the bound

> <IR|smp Y

R,RAR'£0 w€R per
then

w(T)S|R|d1Hl sup Y[Rl p(Ro) | (7.16)

=2 z€Csx (I) Ry:x€Ry

where dy is the incidence number of the vertex £ in the tree 7. Using Caley formula [?], we get

(n—2)! - de—1
< |R|" = sup [Re| ™™ [p(Re)|
2 ) [To—i(de —1) g 2€Cs () Ri;}u
) ] (7.17)

| oo, 5 S moil™s

t=2 [#€Cs+ () R, ze Ry dy=1

Z IRId

di=1

g(n—l)!(eR—l)f[[ sup D [p(Re)lell
(=2

z€Csx (I) Ry:x€Ry

n—l

< (n —1)lelBlgn—1,

where in the second inequality we used that n — 1 > d; to obtain the factor d%! and in the last inequality we
set

S =sup sup Z e®p(R). (7.18)
h zec‘s*(I)R:zGR
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Thus, under the condition that S < 1 we obtain

S R B < S R 1Y s

R,|R|>2,2€R n>2 R,|R[22,z€R n=22 (7.19)
S S

< X e [T = 1

R,|R|>2,z€R

Therefore, recalling (7.11), we obtain (7.3). The important remark to prove (7.5) is that to obtain the
Lipschitz norm we make the difference of two absolute convergent series having the only difference in one
site .. We then obtain

V(m% ,h)—=V(m3 h') =

I2?

% Z% Z &T(Ry, Rs, ..., Ry)

n=1 R1,Ro,.. nv‘RZ‘ZQ

2., 1 -
SBZE Z ‘@T(Rl,Rm---an)’HSL}le|p(Rlvh)|'
=1

n=1"" Ry,Ra,....Rn,|R;|>23:i€R,

[[o(Be,n H (R, b*
=1 =1

(7.20)

Following the same strategy used above we obtain (7.5). Next we show that S, see (7.18), satisfies (7.4).
Taking into account (4.29) and setting ®(z,y) = L1 _secsejpmy|<iys+) ([3(67)2) we obtain that if g is a
connected graph with support R, then:

S%p Em‘;; H |:eﬁU(G'A(I)70'A(y) — 1} < H d(z,y). (7.21)
(z,y)€9,2#Yy (z,y)€g,2#Y

In the last estimate we used (4.28). From (7.18) we have that

S=sup sup |p(R)|e! ¥l
h xzeCs«(I) RIZER

< sup > > T oGy

mec‘s*(l) R:z€RgeGr (z,y)€9,274y

(7.22)

An essential fact to prove (7.4) is that ®(z,y) # 0 only when 1 —6* < 6*|z —y| < 3+6%, ie., the block A(2)
interacts only with three blocks, the A(y) block which is at distance W from it and the two blocks, to the
left and to the right of A(y)* . Therefore for any fixed polymer R, x € R, |R| = ¢, the number of graphs
that contribute to the sum in (7.22) is at most 3¢*1). Namely, £ — 1 is the number of links connecting the
¢ vertices of the graph and 3 is the maximum number of links that a vertex can have with the others, since

*

This depends on the particular choice of the potential, ]I\JCK%' For general potential, always with support {ac : |.Z‘| < %}
this will be not true. In that case (I)(Z, y) # 0 when (5*|Z — y| < %, therefore the block A(Z) will interact with 5% blocks.

Nevertheless this will not cause problems to get (7.4). Namely in this case the function ®, using Taylor formula to estimate

)2
the potential, becomes P(x = My5u), 1 ) co* |, where ¢ is a positive constant depending on the potential.
Y (6" lz—yl<3} \ "+

Performing the sums in (7.23) we should replace 3 with 6% The result will be similar. The only difference is given by the

presence of the constant C.
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®(z,y) # 0 only when 1 — §* < §*|z —y| < § + 6*. Since @ is translational invariant we can assume z = 0.
Then from (7.22) we obtain that

S < Z Z el H D(z,y) = Z Z Z el Bl H D(z,y)

R:0€R geGR (2,9)€9,27Y £>2 R,0€R,|R|=£gEGR (2,9)€9,27y
(7.23)

3
63(571) 4 E o 214—1 3 67 é 5* 2 6 3E 5" 2.
SQZQ 6[7( )T < [1362%(5*)2] 7( )° < e’y( )
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