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1 Formulation of the result

There are many papers (see for example [1, 6]) devoted to the question of the
absolute continuity of the spectrum of differential operators with coefficients
periodic in the whole space. In this article we consider the situation where
the coefficients are periodic in some variables and decay very fast (super-
exponentially) when the other variables tend to infinity. The corresponding
operator describes the scattering of waves on the infinite membrane or fila-
ment.
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We denote by (x; y) points of the space Rm+d, Ω = Rm × (0, 2π)d, 〈x〉 =√
x2 + 1. For real a introduce the spaces

Lp,a = {f : ea〈x〉f ∈ Lp(Ω)}, H2
a = {f : ea〈x〉f ∈ H2(Ω)},

where 1 ≤ p ≤ ∞ and H2(Ω) is the Sobolev space. Our main result is

Theorem 1.1. Consider in L2(R
m+d) the self-adjoint operator

Hu = − div(g∇u) + V u (1)

and assume that real scalar functions g ≥ c0 > 0 and V satisfy following
conditions:

1. g(x, y + 2πl) = g(x, y), V (x, y + 2πl) = V (x, y) ∀l ∈ Zd;

2. (g − g0), ∆g, V ∈ L∞,a for any a > 0, where g0 is a positive constant.

Then, the spectrum of H is purely absolutely continuous.

Remark 1.1. Operators with different values of g0 differ one from another
by multiplication by a constant, so without loss of generality we can and, from
now on, do assume that g0 = 1.

Remark 1.2. If V ≡ 0, (1) is acoustic operator. If g ≡ 1, it is the Schrö-
dinger operator with electric potential V .

The basic philosophy of our proof is the following. To prove the absolute
continuity of the spectrum for periodic operators (i.e. periodic with respect
to a non degenerate lattice in Rd), one applies the Floquet-Bloch-Gelfand re-
duction to the operator and one is left with proving that the Bloch-Floquet-
Gelfand eigenvalues must vary with the quasi-momentum i.e. that they can-
not be constant on sets of positive measure (see e.g. [6]). If one tries to follow
the same line in the case of operators that are only periodic with respect to a
sub-lattice, the problem one encounters is that, as the resolvent of the Bloch-
Floquet-Gelfand reduction of the operator is not compact, its spectrum may
contain continuous components and some Bloch-Floquet-Gelfand eigenvalues
may be embedded in these continuous components. The perturbation the-
ory of such embedded eigenvalues (needed to control their behavior in the
Bloch quasi-momentum) is more complicated than that of isolated eigenval-
ues. To obtain a control on these eigenvalues, we use an idea of the theory of
resonances (see e.g. [10]): if one analytically dilates Bloch-Floquet-Gelfand
reduction of the operator, these embedded eigenvalues become isolated eigen-
values, and thus can be controlled in the usual way.

2



Let us now briefly sketch our proof. We make the Bloch-Floquet-Gelfand
transformation with respect to periodic variables (see section 3) and get a
family of operators H(k) in the cylinder Ω. Then, we consider the corre-
sponding resolvent in suitable weighted spaces. It analytically depends on
the quasi-momentum k and the spectral (non real) parameter λ. It turns out
that we can extend it analytically with respect to λ from upper half plane to
lower one (see below Theorem 5.1) and thus establish the limit absorption
principle. It is enough for the absolute continuity of the initial operator (see
section 7).

Note that an analytic extension of the resolvent of the operator (1) with
coefficients g and V which decay in all directions is constructed in the paper
[2] (with m = 3, d = 0; see also [7] for g ≡ 1). In the case of a potential
decaying in all directions but one (i.e. if d = 1), the analytic extension of
the resolvent of the whole operator (1) (not only for the operator H(k) (see
section 3)) is investigated in [4] when g ≡ 1. Note also that our approach has
shown to be useful in the investigation of the perturbation of free operator
in the half-plane by δ-like potential concentrated on a line (see [3]); the wave
operators are also constructed there.

In section 2, we establish some auxiliary inequalities. In section 3, we de-
fine the Floquet-Gelfand transformation and construct an analytic extension
of the resolvent of free operator in the cylinder Ω. In sections 4 and 5, we
prove a limiting absorption principle for the initial operator in the cylinder.
An auxiliary fact from theory of functions is established in section 6. Finally,
the proof of Theorem 1.1 is completed in section 7.

We denote by Bδ(k0) a ball in real space

Bδ(k0) = {k ∈ R
d : |k − k0| < δ}

and by k1 the first coordinate of k, k = (k1, k
′). We will use the spaces of

function in Ω with periodic boundary conditions,

H̃2 =

{

f ∈ H2(Ω) : f |yi=0= f |yi=2π,
∂f

∂yi

|yi=0=
∂f

∂yi

|yi=2π, i = 1, . . . , d

}

,

H̃2
loc =

{

f ∈ H2
loc(Ω) : f |yi=0= f |yi=2π,

∂f

∂yi

|yi=0=
∂f

∂yi

|yi=2π, i = 1, . . . , d

}

.

Finally B(X, Y ) is the space of all bounded operators from X to Y , and
B(X) = B(X, X).

The authors are grateful to Prof. P. Kuchment for drawing their attention
to the question addressed in the present paper, and to Prof. T. Suslina for
useful discussions.
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2 Auxiliary estimations

In this section we assume that the pair (k0, λ0) ∈ Rd+1 satisfies

(k0 + n)2 6= λ0 ∀n ∈ Z
d. (2)

The constants in all the inequalities in this section may depend on (k0, λ0).
The set

J = {n ∈ Z
d : (k0 + n)2 < λ0}

is finite. In a neighborhood of (k0, λ0), the partition of Zd into J and (Zd \J)
is clearly the same. In other words, there exists δ = δ(k0, λ0) > 0 such that

if k ∈ Bδ(k0), λ ∈ Bδ(λ0), then (k + n)2 < λ ⇔ n ∈ J. (3)

Choose k̃ ∈ Bδ(k0) with k̃1 /∈ Z and put

k(τ) = (k̃1 + iτ, k̃′) ∈ C
d, τ ∈ R, (4)

M1 ≡ M1(k0; λ0) = (Bδ(k0) ∪ {k(τ)}τ∈R) × Bδ(λ0). (5)

Lemma 2.1. For all ζ ∈ Rm, (k, λ) ∈ M1, n ∈ Zd \ J , τ ∈ R, we have

ζ2 + (k + n)2 − λ 6= 0,

|ζ2 + (k(τ) + n)2 − λ| ≥ c|τ |.

Proof. By virtue of (3)

ζ2 + (k + n)2 − λ > 0 ∀k ∈ Bδ(k0).

The second inequality is an immediate corollary of the equality

Im(ζ2 + (k(τ) + n)2 − λ) = 2(k̃1 + n1)τ.

In the rest of the section we assume λ0 > 0. In this case, we will need
to change the integration path in the Fourier transformation. Fix η >

√
λ0

and, let γ be the contour in the complex plane defined as

γ = {−ξ + iη}ξ∈[η,∞) ∪ {α(1 − i)}α∈[−η,η] ∪ {ξ − iη}ξ∈[η,∞). (6)

Two following assertions are clear.
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Lemma 2.2. If g ∈ L2(γ) and η0 > η then the function

h(t) = e−η0|t|

∫

γ

eitzg(z)dz

belongs to L2(R).

Lemma 2.3. Denote by Γ the open set between real axis and γ (it consists
of two connected components). Let g be an analytic function in Γ, g ∈ C(Γ)
and |g(z)| ≤ C(1 + |Re z|)−2. Then,

∫

R

eitzg(z)dz =

∫

γ

eitzg(z)dz ∀t ∈ R.

Establish an analogue of Lemma 2.1 for n ∈ J .

Lemma 2.4. Let λ0 > 0, η >
√

λ0 and γ be defined by (6). For all ζ ∈ γm

(i.e. ζ = (ζ1, ..., ζm) ∈ Cm, ζj ∈ γ), (k, λ) ∈ M1, n ∈ J , τ ∈ R, we have

ζ2 + (k + n)2 − λ 6= 0,

|ζ2 + (k(τ) + n)2 − λ| ≥ c|τ |.
Proof. If k ∈ Bδ(k0) then Im(ζ2 + (k + n)2 − λ) 6= 0 for ζ 6= 0. So it remains
to prove the second inequality. We can write

ζ2 = −2i
∑

p

α2
p +

∑

q

(ξq − iη)2,

where the indexes p correspond to the coordinates of ζ which are in the middle
part of γ (i.e. |Re ζp| < η) and the indexes q correspond to the extreme parts
of γ (i.e. |Re ζq| ≥ η); it is possible that there are only indexes p or only q.
Without loss of generality, we suppose that, for all q, ξq ≥ 0. Thus,

ζ2 + (k(τ) + n)2 − λ =
∑

q

(ξ2
q − η2) + (k̃ + n)2 − τ 2 − λ

+2i

(

−
∑

p

α2
p −

∑

q

ξqη + (k̃1 + n1)τ

)

.

Fix some σ ∈ (η−1
√

λ0, 1). If
∑

q ξq ≥ σ|τ | then

∣

∣Im(ζ2 + (k(τ) + n)2 − λ)
∣

∣ ≥ 2
(

ση − |k̃1 + n1|
)

|τ | > 2(ση −
√

λ0)|τ |,

as (k̃ + n)2 < λ0. If
∑

q ξq ≤ σ|τ | then
∑

q ξ2
q ≤ σ2τ 2 and

∣

∣Re(ζ2 + (k(τ) + n)2 − λ)
∣

∣ ≥ τ 2 + λ − (k̃ + n)2 − σ2τ 2 > (1 − σ2)τ 2

again by virtue of (3).
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3 The resolvent of free operator in the cylin-

der

Let us consider the Floquet-Gelfand transformation

(Uf)(k, x, y) =
∑

l∈Zd

e−2πi〈k,l〉f(x, y + 2πl).

It is an unitary operator

U : L2(R
m+d) →

∫ ⊕

[0,1)d

L2(Ω)dk.

Introduce the family of operators H(k) in the cylinder Ω

H(k) =
(

i∇− (0, k)
)∗

g(x, y) (i∇− (0, k)) + V (x, y), (7)

DomH(k) = H̃2, k ∈ C
d.

Then, the Schrödinger operator (1) is unitarily equivalent to the direct inte-
gral of these operators in Ω:

UHU∗ =

∫ ⊕

[0,1)d

H(k)dk. (8)

In this section we investigate the free operator

A(k) = −∆x +
(

i∇y − k
)∗

(i∇y − k) (9)

(which corresponds H(k) with g ≡ 1, V ≡ 0). For k ∈ R
d, Im λ 6= 0 its

resolvent can be expressed as

(

(A(k) − λ)−1f
)

(x, y) =
∑

n∈Zd

∫

Rm

eiζx+iny(Ff)(ζ, n)dζ

ζ2 + (k + n)2 − λ
, (10)

where F denotes the Fourier transformation in the cylinder

(Ff)(ζ, n) = (2π)−m−d

∫

Ω

e−iζx−inyf(x, y) dx dy.

Let (k0, λ0) ∈ Rd+1 satisfy (2), J and M1 be defined by formulas (3), (4),
(5) in previous section.
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Lemma 3.1. There exists a neighborhood of the set M1 in Cd+1 such that,
for (k, λ) ∈ M1, the operator R1(k, λ) given by

(R1(k, λ)f) (x, y) =
∑

n∈Zd\J

∫

Rm

eiζx+iny(Ff)(ζ, n)dζ

ζ2 + (k + n)2 − λ

is well defined and is bounded from L2(Ω) to H2(Ω). The B(L2(Ω), H2(Ω))-
valued function (k, λ) 7→ R1(k, λ) is analytic in this neighborhood. The esti-
mate

‖R1(k(τ), λ)‖B(L2(Ω)) ≤ C|τ |−1

holds.

Proof. It immediately follows from Lemma 2.1.

Lemma 3.2. Let λ0 > 0, η >
√

λ0, a > η
√

m and the contour γ be defined
by (6). Then, there exists a neighborhood of the set M1 such that the operator
R2(k, λ) given by

(R2(k, λ)f) (x, y) =
∑

n∈J

∫

γ

· · ·
∫

γ

eiζx+iny(Ff)(ζ, n)

ζ2 + (k + n)2 − λ
dζ1 · · · dζm (11)

is well defined as bounded operator from L2,a to H2
−a. The B(L2,a, H

2
−a)-

valued function (k, λ) 7→ R2(k, λ) is analytic in this neighborhood. The esti-
mate

‖R2(k(τ), λ)‖B(L2,a, L2,−a) ≤ C|τ |−1

holds.

Proof. If f ∈ L2,a then the function (Ff)(·, n) is square integrable on γm.
By Lemma 2.4, the denominator in (11) never vanishes for (k, λ) ∈ M1, and
therefore in some neighborhood of M1. So

∣

∣(ζ2 + (k + n)2 − λ)−1eiζx+iny
∣

∣ ≤ C|eiζx|

where the constant does not depend on ζ ∈ γm and on x; the same is true
for the second derivatives of (ζ2 +(k +n)2−λ)−1eiζx+iny with respect to x, y.
Hence R2(k, λ) ∈ B(L2,a, H

2
−a) by virtue of Lemma 2.2. Lemma 2.4 yields

the estimation for the norm of R2(k(τ), λ).

Now, we construct an analytic extension of the resolvent of A(k).
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Theorem 3.1. Let (k0, λ0) ∈ Rd+1 satisfy (2) and the set M1 be defined
by formulas (3), (4), (5). Then, there exist a neighborhood M0 in Cd+1

of M1, a real number a and an analytic B(L2,a, H
2
−a)-valued function, say

(k, λ) 7→ RA(k, λ), defined in M0, such that

RA(k, λ)f = (A(k) − λ)−1f for (k, λ) ∈ M0, k ∈ R
d, Im λ > 0, f ∈ L2,a

(12)
and

‖RA(k(τ), λ)‖B(L2,a, L2,−a) ≤ C|τ |−1. (13)

Proof. If λ0 ≤ 0, we can take RA = R1 (R1 is constructed in Lemma 3.1;
here J = ∅ and a = 0).

If λ0 > 0 then, we put RA = R1 + R2, where R1, R2 and a are defined
in Lemmas 3.1 and 3.2, and, M0 is the intersection of two corresponding
neighborhoods of M1. If f ∈ L2,a then (Ff)(·, n) is an analytic function in the
domain {ζ : | Im ζ | < a} and is uniformly bounded on {ζ : | Im ζ | ≤ η

√
m}.

If ζ ∈ Γ
m

where Γ is the open set between R and γ (see Lemma 2.3), then
Im ζ2 ≤ 0 and therefore the integrand in (11) has no poles when Im λ > 0.
Hence the integral in right hand side of (10) for n ∈ J coincides with the
corresponding integral in (11) due to Lemma 2.3, and (12) holds.

The estimate (13) is a simple corollary of the estimations of Lemmas 3.1
and 3.2.

4 Invertibility of operators of type (I + WRA)

Lemma 4.1. Let W ∈ L∞,b for b > 2a > 0. Then, the operator of multipli-
cation by W (we will denote it by the same letter) is

1) bounded as an operator from L2,−a to L2,a;
2) compact as an operator from H2

−a to L2,a.

Proof. The first assertion is evident. In order to prove the second it is enough
to introduce functions

Wρ(x, y) =

[

W (x, y), |x| < ρ,
0, |x| > ρ,

and note that the multiplication by Wρ is a compact operator from H2
−a to

L2,a and
‖W − Wρ‖B(L2,−a,L2,a) → 0

when ρ → ∞.
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The next lemma is a well known result from analytic Fredholm theory
(see e.g. [5, 8]).

Lemma 4.2. Let U be a domain in C
p, z0 ∈ U . Let T (z) be an analytic

function with the values in the set of compact operators in some Hilbert space
H. Then, there exists a neighborhood of the point z0 and a scalar analytic
function h defined in this neighborhood such that

(I + T (z))−1 exists if and only if h(z) = 0.

Now we can establish the existence of the inverse operator for (I +WRA).

Theorem 4.1. Let (k0, λ0) satisfy (2), RA(k, λ) and a be defined as in Theo-
rem 3.1. Let W (x, y, λ) be a function which belongs to L∞,b, b > 2a, for all λ,
and is analytic with respect to λ i.e. W ∈ Hol(C, L∞,b). Then, there exists
a number ε > 0, a neighborhood U in Cd+1 of the point (k0, λ0) containing
the set Bε(k0) × Bε(λ0), and a scalar function h defined and analytic in U ,
having the following properties:

∀λ ∈ Bε(λ0) ∃k ∈ Bε(k0) such that h(k, λ) 6= 0, (14)

and for any (k, λ) ∈ U the operator (I + W (λ)RA(k, λ)) is invertible in L2,a

if and only if h(k, λ) 6= 0.

Proof. Due to Theorem 3.1 and Lemma 4.1 the operator W (λ)RA(k(τ), λ)
is compact in L2,a and satisfies the inequality

‖W (λ)RA(k(τ), λ)‖B(L2,a) ≤ C|τ |−1 ∀λ ∈ Bε(λ0).

Therefore, in the space B(L2,a) the operator (I + W (λ)RA(k(τ), λ))−1 exists
for |τ | large enough. The operator-valued function λ 7→ W (λ)RA(k, λ) is
analytic in M0 where the set M0 is defined in Theorem 3.1. The analytic
Fredholm alternative yields that for each λ ∈ Bε(λ0) one can find k ∈ Bε(k0)
such that the operator (I + W (λ)RA(k, λ))−1 exists. Now Lemma 4.2 with
H = L2,a, z = (k, λ), T (z) = WRA completes the proof.

5 The resolvent of the operator H

We can reduce the general case of operator (1) with a “metric” g to the case
of “pure” Schrödinger operator due to the following lemma. This identity
(for the totally periodic case) is known (see [1]). We include the proof for
the convenience of the reader.
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Lemma 5.1. Let the operators H(k) and A(k) be defined by (7) and (9)
respectively and the conditions of Theorem 1.1 be fulfilled with g0 = 1. If
u ∈ H̃2 then,

(H(k) − λ) g−1/2u = g1/2 (A(k) + W (λ) − λ) u,

where

W (λ) =
1

g

(

∆g

2
− |∇g|2

4g
+ V + λ(g − 1)

)

. (15)

Remark 5.1. If g ≡ 1 then W (λ) ≡ V .

Proof. It is enough to prove the equality

(

i∇− (0, k)
)∗

g (i∇− (0, k)) (g−1/2u) = g1/2

(

A(k) +
∆g

2g
− |∇g|2

4g2

)

u.

(16)
We have

(i∇− (0, k)) (g−1/2u) = ig−1/2∇u − i

2
g−3/2∇gu − (0, k)(g−1/2u).

Therefore the left hand side of (16) is equal to

(

i∇− (0, k)
)∗
(

ig1/2∇u − i

2
g−1/2∇gu − (0, k)(g1/2u)

)

= −g1/2∆u +
1

2
div(g−1/2∇g)u − i〈k,∇y(g

1/2u)〉C

−ig1/2〈∇yu, k〉C +
i

2
g−1/2〈∇yg, k〉Cu + k2g1/2u

= g1/2

(

−∆xu + (i∇y − k)∗(i∇y − k)u +
1

2
g−1/2 div(g−1/2∇g)u

)

.

In the following theorem, we describe the possibility of analytic extension
of the resolvent of H(k).

Theorem 5.1. Let the conditions of Theorem 1.1 be fulfilled, the operator
H(k) be defined by (7) and (k0, λ0) ∈ Rd+1 satisfy (2). Then, there exists
numbers a ≥ 0, ε > 0, a neighborhood U of (k0, λ0) in Cd+1 containing the
set Bε(k0)×Bε(λ0), a function h ∈ Hol(U) satisfying (14) and an operator-
valued function RH(k, λ) having the following properties:

1. RH is defined on the set {(k, λ) ∈ U : h(k, λ) 6= 0} and is analytic
there;

10



2. RH(k, λ) ∈ B(L2,a, L2,−a);

3. for (k, λ) ∈ U , k ∈ Rd, Im λ > 0, f ∈ L2,a

RH(k, λ)f = (H(k) − λ)−1f. (17)

Remark 5.2. It will be seen from the proof that RH(k, λ) ∈ B(L2,a, H
2
−a)

though we do not need this fact.

Proof. One can see that ∇g ∈ L∞,b ∀b. So if we define W (λ) by (15) then
W (λ) ∈ L∞,b ∀b too, and we can apply Theorem 4.1. Let U , h, a and RA be
as in this theorem. On the set where h(k, λ) 6= 0, we put

RH(k, λ) = g−1/2RA(k, λ) (I + W (λ)RA(k, λ))−1 g−1/2.

By Theorem 4.1, RH(k, λ) ∈ B(L2,a, H
2
−a). Let f ∈ L2,a. Then

(I + W (λ)RA(k, λ))−1 g−1/2f ∈ L2,a (18)

and we can apply Lemma 5.1 to the function

u = RA(k, λ) (I + W (λ)RA(k, λ))−1 g−1/2f ∈ H2
−a, (19)

so
(H(k) − λ)RH(k, λ)f = g1/2 (A(k) + W (λ) − λ)u. (20)

For real k and non real λ with we have by (12) and (18)

(A(k) − λ)u = (I + W (λ)RA(k, λ))−1 g−1/2f,

hence by (19)
(A(k) + W (λ) − λ) u = g−1/2f,

and finally by (20)
(H(k) − λ)RH(k, λ)f = f.

The operators (H(k)−λ)−1 and (A(k)−λ)−1 are well defined in L2(Ω) because
Im λ > 0, so RH(k, λ)f ∈ L2(Ω) and RH(k, λ)f = (H(k) − λ)−1f .

6 One fact from the theory of functions

Lemma 6.1. Let V be an open subset of Rd. Let f be a real-analytic function
in a rectangle (c, d)× V . Let Λ be a subset of V of measure zero, mes Λ = 0.
Then,

mes{k ∈ (c, d) : f(k, λ) = 0, ∂kf(k, λ) 6= 0 for some λ ∈ Λ} = 0. (21)

11



Proof. The Implicit Function Theorem implies that, for any point (k0, λ0)
such that f(k0, λ0) = 0 6= ∂kf(k0, λ0), we can find rational numbers k̃0,
r̃0 > 0, a vector λ̃0 = (λ̃1

0, · · · , λ̃d
0) with rational coordinates, and a cube

Cr̃0
(k̃0, λ̃0) where

(k0, λ0) ∈ Cr̃0
(k̃0, λ̃0) = (k̃0 − r̃0, k̃0 + r̃0) × Cr̃0

(λ̃0) ⊂ (c, d) × V

Cr̃0
(λ̃0) = (λ̃1

0 − r̃0, λ̃
1
0 + r̃0) × · · · × (λ̃d

0 − r̃0, λ̃
d
0 + r̃0)

and a real analytic function θ : Cr̃0
(λ̃0) → (k̃0 − r̃0, k̃0 + r̃0) such that

1. θ(λ0) = k0;

2. f(k, λ) = 0 ⇔ θ(λ) = k if (k, λ) ∈ Cr̃0
(k̃0, λ̃0).

Therefore,

mes{k : (k, λ) ∈ Cr̃0
(k̃0, λ̃0), f(k, λ) = 0 for some λ ∈ Λ}

≤ mes θ(Λ ∩ Cr̃0
(λ̃0)) = 0.

The set
{(k, λ) : f(k, λ) = 0, ∂kf(k, λ) 6= 0}

can be covered by a countable number of cubes Cr̃(k̃, λ̃) constructed as above,
say (Cr̃i

(k̃i, λ̃i))i∈N; hence, the measure of the set under consideration in (21)
is also equal to zero as

{k ∈ (c, d) : f(k, λ) = 0, ∂kf(k, λ) 6= 0 for some λ ∈ Λ}
⊂
⋃

i∈N

mes{k : (k, λ) ∈ Cr̃i
(k̃i, λ̃i), f(k, λ) = 0 for some λ ∈ Λ}

Lemma 6.1 has a multidimensional analogue.

Lemma 6.2. Let U be an open subset of Rd, and V be an open subset of Rd′.
Let f be a real-analytic function on the set U ×V , and pick Λ ⊂ V such that
mes Λ = 0. For k ∈ U , we write k = (k1, k

′) where k1 is real and k′ ∈ Rd−1.
Then,

mes{k ∈ U : f(k, λ) = 0, ∂k1
f(k, λ) 6= 0 for some λ ∈ Λ} = 0. (22)

Proof. Cover U with countably many sets of the form (a, b) × Ũ i.e.

U =
⋃

i∈N

(ai, bi) × Ũi.
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For i ∈ N, one has

{k ∈ (ai, bi) × Ũi : f(k, λ) = 0, ∂k1
f(k, λ) 6= 0 for some λ ∈ Λ}

⊂ {k1 ∈ (ai, bi) : f(k1, k
′, λ) = 0, ∂k1

f(k1, k
′, λ) 6= 0

for some (k′, λ) ∈ Ũi × Λ} × Ũi

(23)

By Lemma 6.1, the set in the right hand side of equation (23) has measure
0 (as Ũi × Λ has measure zero in Rd+d′−1). As

{k ∈ U : f(k, λ) = 0, ∂k1
f(k, λ) 6= 0 for some λ ∈ Λ}

=
⋃

i∈N

{k ∈ (ai, bi) × Ũi : f(k, λ) = 0, ∂k1
f(k, λ) 6= 0 for some λ ∈ Λ},

(22) holds.

Theorem 6.1. Let U be a region in Rd, Λ be a subset of an interval (a, b),
mes Λ = 0. Let h be a real-analytic function defined on the set U × (a, b) and
suppose that

∀λ ∈ Λ ∃k ∈ U such that h(k, λ) 6= 0.

Then
mes{k ∈ U : h(k, λ) = 0 for some λ ∈ Λ} = 0.

Proof. For any k ∈ U and λ ∈ Λ, by assumption, there exists a multi-index
α ∈ Zd

+ such that ∂α
k h(k, λ) 6= 0. Therefore

{k ∈ U : h(k, λ) = 0 for some λ ∈ Λ}

⊂
d
⋃

j=1

⋃

α∈Zd
+

{

k ∈ U : ∂α
k h(k, λ) = 0, ∂kj

∂α
k h(k, λ) 6= 0 for some λ ∈ Λ

}

.

Reference to Lemma 6.2 then completes the proof of Theorem 6.1.

7 The proof of Theorem 1.1

The following lemma is well known (see for example [9]).

Lemma 7.1. Let B be a self-adjoint operator in L2(Ω). Suppose that RB

is an analytic function defined in a complex neighborhood of an interval
[α, β] except a finite number of points {µ1, . . . , µN}, the values of RB are
in B(L2,−b, L2,b), b > 0, and that

RB(λ)ϕ = (B − λ)−1ϕ if Im λ > 0, ϕ ∈ L2,b.

13



Then, the spectrum of B in the set [α, β] \ {µ1, . . . , µN} is absolutely contin-
uous. If Λ ⊂ [α, β], mes Λ = 0 and µj 6∈ Λ, j = 1, . . . , N , then EB(Λ) = 0,
where EB is the spectral projector of B.

Proof of Theorem 1.1. By Theorem 5.1, the set of all points (k, λ) ∈ Rd+1

satisfying (2) can be represented as the union

∞
⋃

j=1

Bεj
(kj) × Bεj

(λj),

where, for every j there exist

• a number aj ≥ 0,

• an analytic scalar function hj defined in a complex neighborhood of

Bεj
(kj) × Bεj

(λj) with the property

∀λ ∈ Bεj
(λj) ∃k ∈ Bεj

(kj) such that hj(k, λ) 6= 0,

• an analytic B(L2,aj
, L2,−aj

)-valued function R
(j)
H defined on the set

where hj(k, λ) 6= 0 and satisfying (17).

Now, pick Λ ⊂ R such that mes Λ = 0. Set

K0 = {k ∈ [0, 1]d : (k + n)2 = λ for some n ∈ Z
d, λ ∈ Λ},

K1 = {k ∈ [0, 1]d : hj(k, λ) = 0 for some j ∈ N, λ ∈ Λ}.

Thanks to Theorem 6.1, we know

mes K0 = mes K1 = 0. (24)

For k 6∈ K0 denote

Λj(k) = {λ ∈ Λ : (k, λ) ∈ Bεj
(kj) × Bεj

(λj)}.

It is clear that Λj(k) ⊂ (λj − εj, λj + εj), mes Λj(k) = 0 and

Λ =

∞
⋃

j=1

Λj(k) ∀k 6∈ K0.

If k 6∈ (K0 ∪ K1) and Λj(k) 6= ∅ then hj(k, λ) 6= 0 for λ ∈ Λj(k) and hj(k, λ)
as function of λ ∈ [λj − εj, λj + εj] has at most a finite number of zeros. So
we can apply Lemma 7.1, therefore

EH(k)(Λj(k)) = 0 ∀j ⇒ EH(k)(Λ) = 0.

14



Finally

EH(Λ) =

∫

[0,1]d
EH(k)(Λ) dk =

∫

[0,1]d\K0\K1

EH(k)(Λ) dk = 0

by virtue of (24). So we proved that the spectral resolution of H vanishes on
any set of Lebesgue measure 0, which means, by definition, that the spectrum
of the operator H is purely absolutely continuous.
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