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Branch-entangled polariton pairs in planar microcavities and photonic wires

C. Ciuti
Laboratoire Pierre Aigrain, Ecole Normale Supérieure, 24, rue Lhomond, 75005 Paris, France

(Dated: February 6, 2004)

A scheme is proposed for the generation of branch-entangled pairs of microcavity polaritons
through spontaneous inter-branch parametric scattering. Branch-entanglement is achievable when
there are two twin processes, where the role of signal and idler can be exchanged between two
different polariton branches. Branch-entanglement of polariton pairs can lead to the emission of
frequency-entangled photon pairs out of the microcavity. In planar microcavities, the necessary
phase-matching conditions are fulfilled for pumping of the upper polariton branch at an arbitrary in-
plane wave-vector. The important role of nonlinear losses due to pair scattering into high-momentum
exciton states is evaluated. The results show that the lack of protection of the pump polaritons in
the upper branch is critical. In photonic wires, branch-entanglement of one-dimensional polaritons
is achievable when the pump excites a lower polariton sub-branch at normal incidence, providing
protection from the exciton reservoir.

The generation of entangled states is one of the most
fascinating aspects of quantum mechanics1. In quantum
optics, parametric sources of entangled photon pairs have
been attracting great interest due to their remarkable
non-classical applications. In particular, polarization-
entangled pairs of photons2 are an essential ingredient for
quantum cryptography3, while frequency-entangled pairs
have been recently exploited for the so-called quantum
optical coherence tomography4. In atomic physics, para-
metric collisions are also enjoying considerable attention
with the possibility of creating entangled pairs of atoms
by parametric scattering off a Bose-Einstein condensate5.

Recently, semiconductor quantum microcavities
in the strong exciton-photon coupling regime6,7

have been shown to provide very rich parametric
phenomena8,9,10,11,12,13,14,15,16. In these systems, the
strong coupling between quantum well exciton and
cavity photon modes gives rise to two branches of
quasi-two dimensional bosons, the so-called lower and
upper branch polaritons. In a polariton device, the
parametric scattering is due to polariton-polariton
interactions, which are extremely efficient9,14. Moreover,
the energy-momentum conservation (phase-matching)
can be provided intrinsically by the peculiar shape of
the polariton energy dispersion. Interestingly, semicon-
ductor planar microcavities can be laterally patterned
with the possibility of creating zero-dimensional17 and
one-dimensional18 polariton systems with controllable
parametric properties. Efficient inter-branch parametric
scattering has been demonstrated in one-dimensional
microcavities18, where the presence of several polariton
sub-branches provides the opportunity of tailoring the
parametric processes in a remarkable way.

While the outstanding optical gain properties of po-
lariton parametric amplifiers involving the lower branch
are largely investigated, the study of the genuine quan-
tum properties is still in its infancy. So far, current re-
search has been focused on the generation and detection
of polariton squeezing19 due to the anomalous correlation
between signal and idler polaritons, both belonging to
the lower branch. Polariton squeezing has been recently

demonstrated in the degenerate configuration13,20 (sig-
nal, pump and idler in the same lower polariton branch
mode), but the detection of two-mode squeezing in the
non-degenerate configuration appears challenging due to
the very different extra-cavity radiative coupling of signal
and idler modes within the lower branch21.

One important issue yet to be explored is the possi-
bility of creating Einstein-Podolski-Rosen (EPR) pairs
of polaritons, which are entangled with respect to a cer-
tain degree of freedom and which can be efficiently trans-
ferred out of the microcavity. In this paper, we propose
a scheme to create polariton pairs, which are entangled
with respect to a peculiar degree of freedom, namely the
discrete polariton branch index. We show that spon-
taneous inter-branch parametric scattering can generate
pairs in the entangled state of the form

|Ψ〉 ∝ |j1, ks〉|j2, ki〉 + |j2, ks〉|j1, ki〉 , (1)

where |j, k〉 denotes a polariton state belonging to the j-
th branch (or sub-branch) mode with wave-vector k. The
signal and idler wave-vectors (ks and ki) are such to pro-
vide phase-matching for the two branch-exchanged pro-
cesses, as it will be discussed later in detail. We show that
the necessary (but not sufficient) phase-matching require-
ments for this kind of parametric effect are easily fulfilled
both in two-dimensional systems (planar microcavities)
and one-dimensional structures (photonic wires), thanks
to the dispersion of polariton branches, which can be en-
gineered. In our study, we evaluate the protection of
the considered parametric process from nonlinear losses
(collision broadening). In planar microcavities, we find
that pair scattering into the exciton reservoir can be a se-
vere limitation. In fact, when the pump drives the upper
branch, pump-pump, pump-signal and pump-idler scat-
tering into the high-momentum exciton states is partic-
ularly efficient. In photonic wires, this lack of protection
of pump polaritons in the upper branch can be naturally
defeated. In fact, in photonic wires, the additional con-
finement of the photon modes produces a many-fold of
sub-branches. In these systems, inter-branch scattering
is possible even under pump excitation of the lower sub-
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branch, as recently demonstrated experimentally18. We
show that by pumping a lower sub-branch at normal in-
cidence (kx = 0), branch-entangled pairs of polaritons
with a finite wave-vector can be obtained. Since the
pumped mode lies in a lower sub-branch, pump-pump,
pump-signal and pump-idler scattering into the exciton
reservoir can be suppressed.

The paper is organized as follows. In Section I A, we
describe the proposed inter-branch process in a planar
microcavity, where the upper polariton branch is excited.
The generation of branch-entangled pairs of polaritons is
treated within a quantum Hamiltonian model, presented
in Section I B. Section I C treats the coupling to the
extra-cavity field, which is responsible for the sponta-
neous emission of frequency-entangled pairs of photons.
In Section I D and I E, we address the important issue of
nonlinear losses. In Section II, we consider the case of
photonic wires. Finally, conclusions are drawn in Section
III.

I. 2D MICROCAVITIES

A. Phase-matching for inter-branch scattering

We start by giving the general idea of the proposed
process and then we turn to a more detailed theoreti-
cal analysis. The strong coupling between exciton and
cavity photon modes is known to produce an anticross-
ing of their energy dispersions EC(k) and EX(k), result-
ing in the appearance of the lower and upper polariton
branches, whose energy dispersions E1(k) and E2(k) are
depicted in in Fig. 1(a). So far, studies of polariton para-
metric scattering in planar microcavities have focused on
the lower branch, in particular under pump excitation
near the inflection point of the lower branch dispersion.
Here, we consider a different process, which involves both
branches. Suppose a pump laser injects polaritons in
the upper branch state with zero in-plane wave-vector
(kp = 0). Two injected upper polaritons can scatter
coherently, being parametrically converted into a signal-
idler pair of polaritons, namely a lower and an upper po-
lariton with opposite in-plane momentum (see Fig.1(a)
and (b)). The phase-matching is fulfilled when the idler
and signal wave-vector are such that |ks| = |ki| = kr,
where kr depends on the polariton splitting and exciton-
photon detuning. Note that for a given ks, there are
two equivalent processes, where the role of signal and
idler is exchanged between the lower and upper polariton
branch. Quantum entanglement is due to our ignorance
on which of the two scattered polaritons is in the lower or
upper branch. Fig. 2 depicts the phase-matching pattern
in the two-dimensional momentum space. We have plot-
ted the phase-matching function η(k) = η1(k) + η2(k),
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FIG. 1: (a) Solid lines: in-plane energy dispersion E1(k)
(E2(k)) for the lower (upper) polariton branch. Dashed lines:
dispersion EC(k) (EX(k)) of the cavity (exciton) mode. Ar-
rows depict the considered inter-branch polariton pair scat-
tering process. (b) Sketch of the excitation geometry of the
planar microcavity.

with

η1(2)(k) =
γ2

(E1(2)(k) + E2(1)(2kp − k) − 2E2(kp))2 + γ2
,

(2)
where γ represents the polariton broadening. Note that if
the energy-momentum conservation for the inter-branch
scattering is strongly violated, η1(2)(k) → 0. On the
other hand, when k is an exact phase-matching wave-
vector for a lower (upper) polariton signal, η1(2)(k) = 1.
Importantly, if a wave-vector k is phase-matching for
both branches, then η(k) = 2. Fig. 2(a) shows the
case kp = 0, where η1(k) = η2(k) and η(k) = 2 on
the ring |k| = kr. Entangled polariton pairs can be
achieved with opposite momentum on the ring. On the
other hand, Fig. 2(b) shows the case kp 6= 0, where
the lower and upper branch signal phase-matching curves
split (η1(k) 6= η2(k)) and branch-entanglement is possi-
ble only at the two intersection points. Note that this
phase-matching profile is topologically different from the
∞-shaped profile obtained under pumping of the lower
branch22. Moreover, we point out that the pattern in Fig.
2(b) is reminiscent of the one achieved in type-II para-
metric down-conversion, which generates polarization-
entanglement of photon pairs2.

B. Quantum Hamiltonian description

We now turn to a detailed treatment of this system. As
a result of the strong exciton-photon coupling, the lower
and upper polariton boson operators p1,k and p2,k are
linked to the quantum well exciton and cavity operators
bk and ak by an unitary Hopfield transformation, namely,
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FIG. 2: Phase-matching function η(k) (defined in the text)
as a function of the signal in-plane wave-vector k (k0 units).
(a) The pump excites the upper branch at normal incidence
(kp = 0). (b) kp = 0.15 k0 x̂. Parameters: EX = EC(0) =
1.5 eV, k0 = EC(0)/(h̄c), 2h̄ΩR = 4 meV, γ = 0.5 meV.

(

bk
ak

)

=

(

M1,1,k M1,2,k

M2,1,k M2,2,k

) (

p1,k

p2,k

)

. (3)

The matrix of Hopfield coefficients Mi,j,k is such that

M1,1,k = M2,2,k = 1/
√

1 + ρ2
k and M1,2,k = −M2,1,k =

√

1 − M2
1,1,k, where ρk = h̄ΩR/(E1(k) − EC(k)) and

2h̄ΩR is the polariton splitting when exciton and photon
modes are exactly resonant. Polaritons are interacting
bosons, due to the exciton-exciton exchange interaction
and due to the anharmonic part of the exciton-photon in-
teraction (saturation)23,24, whose respective Hamiltonian
contributions HXX and Hsat

XC are

HXX =
1

2

∑ λ2
x

A

6e2

ǫλx

b†k+qb†k′−qbkbk′ , (4)

Hsat
XC = −

∑ h̄ΩR

nsatA
a†
k+qb†k′−qbkbk′ + h.c. , (5)

being A the excitation area, λX the 2D exciton radius,
ǫ the static dielectric constant of the semiconductor and
nsat = 7/(16πλ2

X) the exciton saturation density. In the
polariton basis, both effects contribute to create an ef-
fective pair interaction potential. In our previous treat-
ment of polariton parametric scattering22,24, we limited
our decription to the lower branch. Including also the
upper branch, we get the following effective Hamiltonian
describing polariton-polariton interactions

HPP =
1

2

∑ λ2
x

A
V j1,j2,j3,j4
k,k′,q p†j1,k+qp†j2,k′−qpj3,kpj4,k′ ,

(6)

where the effective branch-dependent potential is

V j1,j2,j3,j4
k,k′,q =

{

6e2

ǫλx

M1,j1,k+qM1,j2,k′−qM1,j3,kM1,j4,k′

−
2h̄ΩR

nsatλ2
X

M2,j1,k+qM1,j2,k′−qM1,j3,kM1,j4,k′

−
2h̄ΩR

nsatλ2
X

M2,j4,k′M1,j3,kM1,j2,k′−qM1,j1,k+q

}

,(7)

Note that this Hamiltonian is for co-circularly polar-
ized polariton states. The first contribution to V j1,j2,j3,j4

k′,k′,q

is proportional to the 2D exciton binding energy Eb =
e2/(2ǫλx) and is due to the exciton-exciton interaction.
This contribution is always repulsive, because M1,j,k is
always positive. The other contribution is due to the
anharmonic exciton-photon coupling and can be either
positive or negative, depending on the branch indexes.

The regime of polariton parametric scattering takes
place when a pump laser drives coherently a single branch
at a given wave-vector. In this case, the correspond-
ing quantum destruction operator pjp,kp

can be approx-
imated by the its mean-field value 〈pjp,kp

〉, which is a
classical field. Hence, the pair interaction Hamiltonian
HPP can be approximated by the parametric Hamilto-
nian

Hpar =
∑

j1,j2

∑

k

E
j1,j2,jp

k,kp
P2

jp,kp
p†j1,kp†j2,2kp−k+h.c. , (8)

with

E
j1,j2,jp

k,kp
= (V

j1,j2,jp,jp

kp,kp,k−kp
+ V

j2,j1,jp,jp

kp,kp,k−kp
)/2 . (9)

The dimensionless pump polariton density is defined
as |Pj2,kp

|2 = |〈pjp,kp
〉|2 λ2

X/A. The other effect
is a mean-field shift of the branch-dependent energy,

namely Ẽj(k) = Ej(k) + Λ
j,jp

k,kp
|Pjp,kp

|2, where Λ
j,jp

k,kp
=

(V
j,jp,j,jp

k,kp,0 + V
jp,j,jp,j

kp,k,0 + V
jp,j,j,jp

k,kp,kp−k + V
j,jp,jp,j

kp,k,k−kp
)/2.

In this Section, we are interested in the case of pump
excitation of the upper branch (jp = 2), with the fi-
nal states belonging to two different branches (j1 6= j2).

Since E1,2,2
k,kp

= E2,1,2
k,kp

, the parametric interaction Hamil-

tonian reads

Hpar =
∑

k

E1,2,2
k,kp

P2
2,kp

(p†1,kp†2,2kp−k+p†2,kp†1,2kp−k)+h.c. .

(10)
When applied on the vacuum state |0〉, Hpar generate
pairs of polaritons with total in-plane momentum 2kp,
which are entangled with respect to the branch index.
Indeed, Eq. (10) has the paradigmatic form of Hamilto-
nian, describing the generation of EPR pairs of bosons,
which are entangled with respect to a discrete degree of
freedom. In quantum optics, the literature about the
non-classical photon properties associated to this Hamil-
tonian is impressive25. In our case, entanglement con-
cerns polaritonic particles and one peculiar polaritonic
degree of freedom, namely the branch index. The gen-
eration of branch-entangled pairs is allowed only when
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FIG. 3: (a) Contours of the dimensionless parametric in-
teraction energy E1,2,2

kr,0 /Eb versus 2h̄ΩR/Eb and the nor-

malized detuning δ = (EC(0) − EX)/(2h̄ΩR). Parameters:
EC(0) = 1.5 eV, exciton binding energy Eb = 10 meV. The
white-dashed line depicts the zero value points.

there is phase-matching for the two branch-exchanged
processes, i.e. E1(k) + E2(2kp − k) = 2E2(kp) and
E2(k) + E1(2kp − k) = 2E2(kp). For kp 6= 0, there are
only two possible signal and idler wave-vectors, which are
the intersection points in Fig. 2(b), as anticipated. When
kp = 0, branch-entanglement is achievable for every pair
of in-plane wave-vectors (k,−k) on the phase-matching
ring |k| = kr. Fig. 3 shows the contours of the inter-

action energy E1,2,2
kr,0

(units of the exciton binding energy

Eb), as a function of the polariton splitting to binding
energy ratio 2h̄ΩR/Eb and of the normalized detuning
δ = (EC(0)−EX)/(2h̄ΩR). As anticipated, Fig. 3 shows
that the effective interaction can be either positive or neg-
ative (the change of sign occurs across the white-dashed
line). The effective interaction is positive when it is dom-
inated by the exciton-exciton interaction, negative when
the anharmonic exciton-photon coupling takes over.

C. Emission of frequency-entangled photon pairs

The intra-cavity polariton parametric scattering dy-
namics is coupled to the extra-cavity field, giving rise
to parametric luminescence22. This coupling is usually
described by the quasi-mode Hamiltonian

Hext =
∑

j,k

∫

dω g(ω) |Mj,2,k|
2 α†

ω,k pj,k + h.c. , (11)

where g(ω) is the coupling energy (approximately con-

stant in the mirror spectral stop-band) and α†
ω,k is the

creation operator of an extra-cavity photon with energy
h̄ω and conserved in-plane wave-vector k. The free space
photon is emitted with an external angle θ with respect
to the vertical direction, such as k = (ω/c) sin θ. The
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FIG. 4: (a) Photon fractions of the polariton modes on the
phase-matching ring (|k| = kr) as a function of the normal-
ized detuning . Upper triangle: upper branch. Lower trian-
gle: lower branch. Thick solid line: the ratio between the
lower and upper branch photon fractions. (b) Ring emission
external angle θr (deg) versus polariton splitting (meV) for
different normalized detunings.

coupling of each branch (j ∈ {1, 2}) to the external
field is proportional to the photonic fraction |Mj,2,k|

2.
Importantly, branch-entangled pairs of polaritons can
emit frequency-entangled pairs of photons, i.e. states like

|Ψ〉 ∝ (α†
ω1,kr

α†
ω2,−kr

+ α†
ω2,kr

α†
ω1,−kr

)|0〉 , (12)

where h̄ω1 (h̄ω2) is the energy of the lower (up-
per) branch state with in-plane wave-vector kr. The
frequency-entanglement26 of photon pairs can be mea-
sured by coincidence counting in Hong-Ou-Mandel-
type interferometers27, which are also used in quantum
tomography4. In order to have a significant extra-cavity
visibility, the polariton signal and idler modes need to
have a similar coupling to the extra-cavity field. This
occurs when the cavity photon fraction of the polariton
signal and idler modes is comparable. Fig. 4(a) depicts
respectively the photon fractions |M2,2,kr

|2 and |M1,2,kr
|2

of the upper and lower branch modes on the ring, versus
the normalized detuning. The thick solid line shows the
ratio |M1,2,kr

/M2,2,kr
|2. Compared to the known intra-

branch process9 where the signal-idler coupling ratio is
typically less than 0.0521, the inter-branch process here
described enjoys a higher ratio. At zero detuning, the ra-
tio is ≃ 0.2, rising significantly in the region of negative
detuning (≃ 0.4 for δ = −1). Finally, Fig. 4(b) shows
the dependence of the phase-matching ring wave-vector
on the polariton coupling. The corresponding emission
angle θr (deg) increases with increasing polariton split-
ting. For a given polariton splitting, θr depends only on
|δ|, being minimum for zero detuning.
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FIG. 5: Contours of (E2(kr)−EX −Eb)/Eb versus 2h̄ΩR/Eb

and the normalized detuning δ = (EC(0)−EX)/(2h̄ΩR). The
white-dashed line depicts the zero value points, i.e. the upper
polariton state on the ring is resonant with the continuum
band-edge. Same parameters as in Fig. 3.

D. Losses for the polariton modes

As well known in quantum optics, the interesting quan-
tum regime is achieved when the scattering is sponta-
neous, i.e. the probability of having more than one entan-
gled pair in the same state is negligible. In other words,
the parametric scattering should be kept below the stimu-
lated parametric oscillation threshold22,28. However, the
system can not be driven too much below threshold, be-
cause other scattering mechanism can prevail, disentan-
gling the pairs created by parametric scattering. Hence,
the role of losses is crucial and needs to be carefully ad-
dressed.

a. Linear losses Losses for the polariton modes pro-
duce a branch- and wave-vector dependent polariton
broadening γj,k. In the low excitation regime at low tem-
peratures, the linear broadening γL

j,k is essentially due
to the radiative linewidth, the interaction with acous-
tic phonons29, scattering by impurities and, for the up-
per branch, mixing with the exciton continuum states30.
The radiative lifetime and the impurity concentration
are strongly sample-dependent, being determined by the
growth quality of the microcavity. Usually, the broaden-
ing due to emission of acoustic phonons is smaller with
respect to the radiative linewidth and to the impurity-
induced losses. On the other hand, the continuum of un-
bound electron-hole pairs is a major source of broadening
for the upper branch states with energy higher than the
continuum onset. In principle, the upper branch state on
the ring can form a Fano resonance with the continuum
states, with a finite probability of decaying irreversibly
into undesirable unbound electron-hole pairs. This is-
sue is addressed in Fig. 5, which shows the difference
between the upper branch final-state energy E2(kr) and
the continuum band-edge energy EX + Eb, in units of
Eb. The white-dashed line depicts the points where the
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FIG. 6: Sketch of the pair scattering processes responsible for
nonlinear losses of the polariton modes. (a) An upper branch
polariton scatter with one pump polariton (kp = 0) belonging
to the upper branch. The final states are excitons with large
momentum. (b) Analogous loss process for a lower polariton,
due to scattering with one pump polariton.

difference is 0. The encouraging fact is that there is a
wide region with negative values, implying that the up-
per polariton final-state can be protected from the free
carrier absorption. At zero detuning, this occurs for a po-
lariton splitting to exciton binding energy ratio smaller
than 0.8. The condition becomes even less stringent for
negative detunings.

b. Density-dependent losses For moderate and
higher excitation densities, nonlinear losses31,32,33,34,35

play an important role. In particular, polariton pair
scattering into the exciton reservoir can become the
leading source of broadening for the polariton modes.
Namely, fast decoherence of the pumped mode can occur
due to pump-pump scattering into the high-momentum
exciton states, while pump-signal (idler) scattering into
the exciton reservoir creates a loss mechanism for the
polariton signal (idler) mode. Panel (a) represents the
scattering of one upper polariton state with one pump
polariton with zero in-plane wave-vector. Panel (b)
represents the analogous scattering for one lower po-
lariton. Within the Born approximation, the nonlinear
broadening is given by

γNL
j,k = 2π

∑

q

N2,0

∣

∣

∣
(λ2

X/A)V 1,1,2,j
0,k,q

∣

∣

∣

2

δ(∆E) , (13)

where here δ is the Dirac function, ∆E = E2(0)+Ej(k)−
E1(q)−E1(|−q+k|) and N2,0 is the number of polaritons
in the pumped mode. If the pump mode is driven coher-
ently (the case of our interest), N2,0 ≃ |〈p2,0〉|

2. Since
the energy conservation is fulfilled for a wave-vector q
very large compared to k (see Fig.6), we can safely ap-

proximate E1(| −q+k|) ≃ E1(q) ≃ EX + h̄2q2

2M
, being M
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the exciton mass. Hence, the expression for the nonlinear
broadening becomes

γNL
j,k ≃

Mλ2
X

2h̄2 |V 1,1,2,j
0,k,q̄j

|2 (n2,0λ2
X), (14)

where q̄j is such that E2(0) + Ej(k) = 2E1(q̄j) and
n2,0 = N2,0/A is the density of pump polaritons per
unit area. Let us calculate the nonlinear broadening
for a set of realistic parameters, namely exciton mass
M = 0.3 m0, pump density n2,0 = 1

20 nsat, polariton
splitting 2h̄ΩR = 7 meV, λX = 10 nm. For this pa-
rameters, we get γNL

1,kr
= 1.1 meV, γNL

2,kr
= 0.25 meV

for normalized photon detuning δ = +1. For δ = 0,
γNL
1,kr

= 4.3 meV, γNL
2,kr

= 0.3 meV, while for δ = −0.5

γNL
1,kr

= 6.7 meV, γNL
2,kr

= 0.12 meV. Note that, under
pumping of the upper branch, the collision broadening
of the upper polariton state on the ring is smaller than
that of the companion state on the lower branch. This
occurs because the upper polariton state on the ring has
always an excitonic fraction smaller than the lower po-
lariton state with the same wave-vector.

E. Collision broadening catastrophe

The spontaneous scattering regime22 is achieved for
pump intensities well below the stimulated parametric
oscillation threshold. Since inter-branch parametric in-
teraction and pair scattering into the exciton reservoir
are due to the same microscopic mechanism, a priori it
is not clear if a stimulation threshold can be ever achieved
under pump excitation of the upper branch. In fact,
the parametric oscillation threshold is achieved when the
parametric interaction energy compensates for the total
losses of the signal-idler pair, namely

|E1,2,2
kr,0

Pthr 2
2,0 |2 = (γL

1,kr
+ γNL

1,kr
)(γL

2,kr
+ γNL

2,kr
) , (15)

which is a self-consistent equation, because γNL
j,kr

depends

on the pump density. If we define ξNL
j,k =

Mλ2

X

2h̄2 |V 1,1,2,j
0,k,q̄j

|2,

then we can rewrite the collision broadening as γNL
j,k =

ξNL
j,k n2,0λ2

X . Hence, Eq. (15) becomes

[

(E1,2,2
kr,0

)2 − ξNL
1,kr

ξNL
2,kr

]

(nthr
2,0λ2

X)2 = β nthr
2,0λ2

X+γL
1,kr

γL
2,kr

,

(16)
where β = (γL

1,kr
ξNL
2,kr

+ γL
2,kr

ξNL
1,kr

) is always positive.
For typical values of the exciton mass, the quantity
(E1,2,2

kr,0
)2 − ξNL

1,kr
ξNL
2,kr

is negative. Hence, Eq. (15) can
be never satisfied, because the left-hand side is nega-
tive, while the right-hand side is always strictly posi-
tive. In other words, the collision broadening due to
scattering into the high-momentum states acts as a pos-
itive feed-back, preventing the system to enter the stim-
ulated regime. This kind of collision catastrophe is ab-
sent when the pump excites the lower branch, because
the coupling to the high-momentum states is strongly
suppressed31,32,33,34,35.
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FIG. 7: Energy dispersion (units of 2h̄ΩR) of 1D-polaritons
as a function on the wave-vector kx (k0 units) along the direc-
tion of the photonic wire. Compared to the 2D-system, the
lower branch (j = 1) is split in a multiplet of sub-branches
(ny = 0, 1, 2, ..), as well as the upper branch (j = 2). The
arrows depict the considered inter-branch parametric scatter-
ing process, in which the pump excites the ny = 2 lower sub-
branch mode with kx = 0 . Parameters: 2h̄ΩR = 4 meV, wire
width Ly = 4 µm, EX = EC(0)+4h̄ΩR, with EC(0) = 1.5 eV
is the 2D-cavity energy.

FIG. 8: Phase-matching function for the inter-subbranch
scattering of 1D-polaritons depicted in Fig. 7, as a func-
tion of kx (k0 units) and the normalized detuning ∆ =
(EC(0) − EX)/(2h̄Ω), with EC(0) the 2D-cavity energy. (a)
kp = 0. (b) kp = 0.05 k0 x̂. . Parameters: 2h̄ΩR = 4 meV,
γ = 0.5 meV

II. 1D MICROCAVITIES

The concept of branch entanglement is quite general
and can be applied also to multi-branch systems, such as
photonic wires18. In a one-dimensional cavity, the addi-
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FIG. 9: Arrows depict the inter-sub-branch scattering, with
all states belonging to the lower many-fold. Parameters:
2h̄ΩR = 4 meV, wire width Ly = 4µm, EX = EC(0) +
3.5 h̄ΩR, with EC(0) = 1.5 eV is the 2D-cavity energy. Hori-
zontal and vertical axis as in Fig. 7.

tional confinement along the y-direction produces a series
of cavity photon sub-branches, whose energy dispersion

E
(ny)
C (kx) is given by

(

E
(ny)
C (kx)

)2

= (EC(kx))
2
+

(h̄c)2

ǫ

(

π(ny + 1)

Ly

)2

(17)

where EC(kx) is the energy of the planar cavity with
k = kx, Ly is the wire width and ny is the sub-branch
index (positive or equal to zero). Strong coupling to the
exciton resonance produces a many-fold of lower polari-

ton sub-branches with energy E
(ny)
1 (kx) and upper po-

lariton sub-branches with energy E
(ny)
2 (kx). Each cav-

ity sub-band couples to an exciton mode with the same
symmetry36. The polariton splitting 2h̄ΩR is approxi-
mately independent36 of the branch index ny for small
values of ny. As experimentally demonstrated in the ex-
periments by Dasbach al.18, there are many new para-
metric scattering channels available. In particular, it
is possible to have inter-branch scattering by pumping
one lower sub-branch18. The momentum conservation
along the y-direction is lifted, being replaced by the less
stringent parity selection rule18,37. This selection rule for
pair scattering of 1D-polaritons imposes that the sum
of ny for signal and idler must be even. The inter-
branch parametric scattering process has an efficiency38,
which is comparable to the intra-branch scattering in
planar microcavities. In Fig.7, we propose a scatter-
ing process, in which the pump excites the lower sub-
branch with ny = 2 and kx = 0. For a proper exciton-
photon detuning, there is a phase-matched process, in
which the final states are two polariton modes with op-
posite and finite wave-vectors, one belonging to the lower
ny = 0 sub-branch and the other to the upper ny = 0

FIG. 10: Phase-matching function for the inter-subbranch
scattering of 1D-polaritons depicted in Fig. 9, as a func-
tion of kx (k0 units) and the normalized detuning ∆ =
(EC(0) − EX)/(2h̄Ω), with EC(0) the 2D-cavity energy. (a)
kp = 0. (b) kp = 0.05 k0 x̂. . Parameters: 2h̄ΩR = 4 meV,
γ = 0.4 meV

sub-branch. The phase-matching function for this inter-
branch scattering channel is depicted in Fig. 8, as a func-
tion of the wave-vector kx and the normalized detuning
∆ = (EC(0)−EX)/(2h̄Ω), where EC(0) is the 2D cavity
energy and 2h̄ΩR is the polariton splitting. As in Fig.
2, the phase-matching function is equal to 2, when there
are two branch-exchanged processes, which are exactly
phase-matched (the condition for branch-entanglement).
For zero pump wave-vector kp (see Fig.8(a)), this prop-
erty is achieved in a broad, but finite range of negative
detuning ∆. In contrast to the 2D-case, for kp 6= 0, the
phase-matching function is equal to 2 only at the pump
wave-vector, as shown in Fig.8(b). But this does not cor-
respond to pure polariton branch-entanglement, because
signal and idler have the same wave-vector.

Importantly, in a photonic wire it is possible to have
inter-sub-branch scattering processes restricted to the
lower many-fold only. One parity-conserving process is
shown in Fig. 9, where the pump excites the ny = 2
sub-branch at kx = 0 and the signal and idler modes
belong to the ny = 1 and ny = 3 sub-branches. The
phase-matching properties of this processes are reported
in Fig.10 as a function of the signal wave-vector along
the wire direction and of the normalized detuning ∆.

The interest of photonic wires does not rely only in
the possibility of having new scattering channels. One
advantage is to provide a much better protection from
the exciton reservoir. In fact, in contrast to pumping
of the upper branch , the inter-branch process shown in
Fig.7 suffers much weaker nonlinear losses due to pair
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scattering into the high-momentum exciton states. As
already studied theoretically and experimentally, under
excitation of the lower branch, pump-pump scattering
into the exciton reservoir is strongly suppressed due to
lack of energy-momentum conservation32,33,35. The same
is true for pump-signal and pump-idler scattering. The
only allowed channel is the signal-signal (or idler-idler)
scattering, in which the signal (idler) mode belong to the
upper branch. But this is not a crucial process especially
below or near threshold, when the signal (idler) popula-
tion is much smaller than the pump one.

III. CONCLUSIONS

In conclusion, we have proposed and analyzed a scheme
for the generation of branch-entangled polariton pairs in
semiconductor microcavities through spontaneous inter-
branch parametric scattering. Branch-entanglement of
polariton pairs leads to emission of frequency-entangled
pairs of extra-cavity photons, which have been recently
attracting considerable attention in the field of quantum
tomography4. This kind of non-classical states can not
be achieved by intra-branch polariton pair scattering9,
being a peculiarity of inter-branch processes. In planar
microcavities, the phase-matching conditions are satis-
fied by pumping the upper polariton branch for an ar-
bitrary pump in-plane wave-vector kp. We have stud-
ied the phase-matching properties and the efficiency of

the process as a function of exciton-photon detuning,
polariton splitting and exciton binding energy. While
the phase-matching properties for the 2D inter-branch
process are very flexible, the nonlinear losses due to po-
lariton pair scattering into the high-momentum exciton
states is a reason of concern, being a significant source of
decoherence. The lack of protection of pump polaritons
in the upper branch can be naturally overcome in pho-
tonic wires, thanks to the existence of a many-fold of sub-
branches. In this paper, we have shown that there are
parity-conserving inter-branch scattering processes (for-
bidden in planar microcavities), in which the pump ex-
cites a lower polariton sub-branch mode with kx = 0,
providing branch-entanglement of the signal-idler polari-
ton pair. These processes enjoy much better protection
from the high-momentum exciton states, making one-
dimensional microcavities a strong candidate to demon-
strate and exploit the quantum effects here proposed. We
hope that the ideas presented in this paper will stimu-
late experimental and theoretical research in a field at the
frontier between condensed matter physics and quantum
optics. Indeed, one intriguing goal would be the devel-
opment of polariton micro-sources of non-classical states
with controllable properties.
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