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On Cremona transformations of prime order

Arnaud BEAUVILLE

1. The result

The Cremona group Bir(P2) is the group of birational transformations of P
2
C

,

or equivalently the group of C-automorphisms of the field C(x, y) . There is an ex-

tensive classical literature about this group, in particular about its finite subgroups;

we refer to the introduction of [dF] for a list of references.

The classification of conjugacy classes of transformations of prime order p has

been given a modern treatment in [B-B] for p = 2 and in [dF] for p ≥ 3 . Let us

recall the main results. The linear transformations of given order are contained in a

unique conjugacy class. Apart from these there are 3 continuous families of conjugacy

classes of involutions (the famous de Jonquières, Bertini and Geiser involutions), and

2 continuous families of transformations of order 3. Every transformation of prime

order ≥ 7 is conjugate to a linear automorphism.

We prove in this note the following result, which completes the classification:

Theorem .− There is a unique conjugacy class of order 5 in the Cremona group

apart from the class containing linear automorphisms.

Most of the work has been done already in [dF], where it is proved that there

can be only one more conjugacy class of order 5, namely that of the transformation

γ : (x, y) 7→ (1 − y, 1 − y

x
) . What remains to be proved is that γ is conjugate to a

linear automorphism.

Fix a primitive 5-th root of unity ζ . The problem is readily translated into the

existence of a rational function F(x, y) satisfying the functional equation

F(ζx, y)F(ζ−1x, y) + F(x, y) = 1 (⋆)

and such that the rational map (x, y) 7→ (F(x, y), 1 − F(ζx, y)) is birational. At this

point Don Zagier showed to me a very simple way to construct solutions to (⋆) ;

it turns out that essentially the most economical choice satisfies indeed the second

condition and thus leads to a proof of the theorem.

2. The proof

Let us first recall why linear automorphisms of the same (finite) order are con-

jugate:

Proposition .− Let n be a positive integer. Two linear automorphisms of order n

are conjugate in Bir(P2) .
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Proof : Let T = C
∗ × C

∗ be the standard maximal torus of PGL3 . We can view T

as a Zariski open subset of P2 , so its automorphism group GL(2, Z) embeds nat-

urally in Bir(P2) : an element

(

a b
c d

)

of GL(2, Z) corresponds to the Cremona

transformation (x, y) 7→ (xayb, xcyd) . The image of GL(2, Z) in Bir(P2) normal-

izes T , and its action on T by conjugation is just the original action of GL(2, Z)

on T .

We want to prove that two elements of order n of T are conjugate under this

action. The kernel of the multiplication by n in T is (Z/n)2 ; any element of order

n in the Z/n-module (Z/n)2 is part of a basis, which implies that it is conjugate to

(1, 0) under the action of SL(2, Z/n) . Since the natural map SL(2, Z) → SL(2, Z/n)

is surjective, this proves our result.

Proof of the theorem

We want to prove that γ = h◦ℓ◦h−1 , with h ∈ Bir(P2) and ℓ ∈ PGL3 . By

the Proposition we can take for ℓ the map (x, y) 7→ (ζx, y) , where ζ is a primitive

5-th root of unity. Write h(x, y) = (F(x, y),G(x, y)) . The equality h = γ ◦h◦ℓ−1

becomes

F(x, y) = 1 − G(ζ−1x, y) G(x, y) = 1 −
G(ζ−1x, y)

F(ζ−1x, y)
·

The first equality gives G(x, y) = 1 − F(ζx, y) , and the second becomes

F(ζx, y)F(ζ−1x, y) + F(x, y) = 1 . (⋆)

Conversely, if F satisfies (⋆) and the map h : (x, y) 7→ (F(x, y), 1 − F(ζx, y)) is

birational, we have γ = h◦ℓ◦h−1 .

The way to solve equation (⋆) was told to me by Don Zagier; it is related to the

famous 5-term relation for the dilogarithm, see [Z]. We will use for the cross-ratio of

distinct elements x1, . . . , x4 in a field K the normalization

[x1 : . . . : x4] =
(x1 − x4)(x2 − x3)

(x1 − x3)(x2 − x4)
·

Lemma .− Let K be a field, and σ an automorphism of order 5 of K . Let t be

an element of K with σ(t) 6= t . The cross-ratio r = [σ(t) : . . . : σ4(t)] satisfies

σ(r)σ−1(r) + r = 1 .

Proof : Let t0, . . . , t4 be distinct elements of P
1(K) . The cross-ratios

ri = [ti+1 : ti+2 : ti+3 : ti+4] ,
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where the index i runs in Z/5 , satisfy

ri−1ri+1 + ri = 1 for each i ;

this is easily seen either by direct computation, or by using the PGL2 -invariance of

the cross-ratio to reduce to the case (t0, . . . , t4) = (λ, 0,∞, 1, µ) .

Coming back to the statement of the lemma we put ti = σi(t) ; then ri = σi(r) ,

hence the result.

We apply this lemma to the field C(x, y) , with the automorphism σ which

fixes y and maps x to ζx . Starting with any rational function t(x, y) with

t(x, y) 6= t(ζx, y) , the cross-ratio F(x, y) = [t(ζx, y) : . . . : t(ζ4x, y)] is a solution to

our equation (⋆) ; we want moreover the map h : (x, y) 7→ (F(x, y), 1 − F(ζx, y)) to

be birational. Observe that this excludes functions t of the form xpa(y) + xqb(y)

(and more generally transforms of such functions under PGL2 ), because for that

choice h factors through the map (x, y) 7→ xq−pb(y)a(y)−1 . This leads us to try

t(x, y) = x + x2 + x3y ; putting ω = ζ + ζ−1 we find:

F(x, y) = ω
1 − x − x2(y − 1) + 2x3y − x4y2

1 − x − ω2x2(y − 1) + ωx3y − ω2x4y2
·

We want to invert the system F(x, y) = u , 1 − F(ζx, y) = v . Together with

the functional equation (⋆) for F it implies

F(ζix, y) = ui (0 ≤ i ≤ 3), with u0 = u , u1 = 1 − v , u2 =
v

u
, u3 =

u − v

u(1 − v)
;

that is, explicitly:

x ζi(ω−1ui−1)+x2(y−1) ζ2i(ωui−1)+x3y ζ3i(2−ui)+x4y2 ζ4i(ωui−1) = ω−1ui−1 .

This gives a system of 4 linear equations in x, x2(y − 1), x3y, x4y2 . If the corre-

sponding determinant is nonzero we can express x and x3y , and thus also y , as

rational functions of (u, v) , so that h is birational.

Thus it remains to prove that the determinant of the system

det







ω−1u0 − 1 ωu0 − 1 2 − u0 ωu0 − 1
ζ(ω−1u1 − 1) ζ2(ωu1 − 1) ζ3(2 − u1) ζ4(ωu1 − 1)
ζ2(ω−1u2 − 1) ζ4(ωu2 − 1) ζ(2 − u2) ζ3(ωu2 − 1)
ζ3(ω−1u3 − 1) ζ(ωu3 − 1) ζ4(2 − u3) ζ2(ωu3 − 1)







is nonzero. It is enough to prove that it does not vanish for particular values of

u, v such that u0, . . . , u3 are finite. We choose u = ω−1 , v = −ω . This gives

u0 = u1 = ω−1 , u2 = ω − 1 , u3 = 3ω − 1 ; our determinant becomes:
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det







ω−1 0 ω2 0
ζω−1 0 ζ3ω2 0

−ζ2ω−1 −2ζ4ω ζ(3 − ω) −2ζ3ω
ζ3ω2 ζ(2 − 4ω) 3ζ4ω2 ζ2(2 − 4ω)







= −det

(

ω−1 ω2

ζω−1 ζ3ω2

)

det

(

−2ζ4ω −2ζ3ω
ζ(2 − 4ω) ζ2(2 − 4ω)

)

= 2ζ2ω2(4ω − 2)(ω2 − 4) 6= 0 ,

which proves the theorem.
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