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1. INTRODUCTION 

It is a real emotion to participate to this conference in commemoration of John Bell. I first 
met him in 1975, a few months after reading his famous paper1. I had been so strongly 
impressed by this paper, that I had immediately decided to do my « thèse d’état » – which 
at that time, in France, could be a really long work – on this fascinating problem. I 
definitely wanted to carry out an experiment « in which the settings are changed during the 
flight of the particles », as suggested in the paper, and I had convinced a young professor 
of the Institut d’Optique, Christian Imbert, to support my project and to act as my thesis 
advisor. But he had advised me to first go to Geneva, and to discuss my proposal with John 
Bell. I got an appointment without delay, and I showed up in John’s office at CERN, very 
impressed. While I was explaining my planned experiment, he silently listened. 
Eventually, I stopped talking, and the first question came: “Have you a permanent 
position?” After my positive answer, he started talking of physics, and he definitely 
encouraged me, making it clear that he would consider the implementation of variable 
analysers a fundamental improvement. Beyond his celebrated sense of humour, his answer 
reminds me of the general atmosphere at that time about raising questions on the 
foundations of quantum mechanics. Quite frequently it was open hostility, and in the best 
case, it would provoke an ironical reaction: “Quantum Mechanics has been vindicated by 
such a large amount of work by the smartest theorists and experimentalists, how can you 
hope to find anything with such a simple scheme, in optics, a science of the XIXth 
century?” In addition to starting the experiment, I had then to develop a line of argument to 
try to convince the physicists I met (and among them some had to give their opinion about 
funding my project). After some not so successfull tentatives of quite sophisticated pleas, I 
eventually found out that it was much more efficient to explain the very simple and naive 

                                                 
† This text was prepared for a talk at a conference in memory of John Bell, held in Vienna in December 
2000. It has been published in “Quantum [Un]speakables – From Bell to Quantum information”, edited by R. 
A. Bertlmann and A. Zeilinger, Springer (2002). 
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way in which I had understood Bell’s theorem. And to my great surprise, that simple 
presentation was very convincing even with the most theoretically inclined interlocutors. I 
was lucky enough to be able to present it in front of John Bell himself, and he apparently 
appreciated it. I am therefore going to explain now how I understood Bell’s theorem 
twenty five years ago, and I hope to be able to communicate the shock I received, that was 
so strong that I spent eight years of my life working on this problem. 

This written transcription of my presentation is partly based on a paper that was 
published two decades ago as a proceedings of a conference, not so easy to find 
nowadays2. The first part of the paper aims at explaining what are Bell’s theorem and 
Bell’s inequalities, and why I find it so important. It is followed by a rapid review of the 
first generation of experimental tests of Bell’s inequalities with pairs of entangled photons, 
carried out between 1971 and 1976. I am glad that most of the heroes of this seeding work 
are present at this meeting. I give then a more detailed description of the three experiments 
of second generation, that we performed at the Institut d’Optique d’Orsay between 1976 
and 1982, with a dramatically improved source of pairs of entangled photons, using a non 
linear two photon laser excitation of atomic radiative cascades. The last part gives an 
overview of the experiments of third generation, developped since the late 80’s, and 
carried out with pairs of entangled photons produced in non linear parametric down 
conversion: these experiments can close most of the loopholes still left open in the second 
generation experiments. I am deliberately concentrating on optics experiments, since they 
are at the present time the most convincing and the closest to the ideal 
GedankenExperiment, but the interested reader should be aware that other systems do 
exist, in other domains of physics, that may offer the possibility to perform as convincing 
experiments. 

In the first part of this presentation (sections 2 to 6), we will see that Bell's 
Inequalities provide a quantitative criterion to test « reasonable » Supplementary 
Parameters Theories versus Quantum Mechanics. Following Bell, I will first explain the 
motivations for considering supplementary parameters theories: the argument is based on 
an analysis of the famous Einstein-Podolsky-Rosen (EPR) Gedankenexperiment3. 
Introducing a reasonable Locality Condition, we will then derive Bell's theorem, which 
states: 

i. that Local Supplementary Parameters Theories are constrained by Bell's Inequalities; 

ii. that certain predictions of Quantum Mechanics violate Bell's Inequalities, and therefore 
that Quantum Mechanics is incompatible with Local Supplementary Parameters 
Theories. 

We will then point out that a fundamental assumption for this conflict is the 
Locality assumption. And we will show that in a more sophisticated version of the E.P.R. 
thought experiment (« timing experiment »), the Locality Condition may be considered a 
consequence of Einstein's Causality, preventing faster-than-light interactions.  

The purpose of this first part is to convince the reader that the formalism leading to 
Bell's Inequalities is very general and reasonable. What is surprising is that such a 
reasonable formalism conflicts with Quantum Mechanics. In fact, situations exhibiting a 
conflict are very rare, and Quantum Optics is the domain where the most significant tests 
of this conflict have been carried out (sections 7 to 11).  
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2. WHY SUPPLEMENTARY PARAMETERS ? THE EINSTEIN-PODOLSKY-
ROSEN-BOHM GEDANKENEXPERIMENT 

2.1. Experimental scheme 

Let us consider the optical variant of the Bohm’s version4 of the E.P.R. 
Gedankenexperiment (Fig. 1). A source S emits a pair of photons with different 
frequencies ν1  and ν2 , counterpropagating along Oz. Suppose that the polarization part of 
the state vector describing the pair is: 

 { }Ψ( , ) , ,ν ν1 2
1
2

= +x x y y  (1) 

where x  and y  are linear polarizations states. This state is remarkable : it cannot be 
factorized into a product of two states associated to each photon, so we cannot ascribe any 
well defined state to each photon. In particular, we cannot assign any polarization to each 
photon. Such a state describing a system of several objects that can only be thought of 
globally, is an entangled state. 

We perform linear polarization measurements on the two photons, with analysers I 
and II. The analyser I, in orientation a, is followed by two detectors, giving results + or −, 
corresponding to a linear polarization found parallel or perpendicular to a. The analyser II, 
in orientation b, acts similarly‡. 

 

Figure 1. Einstein-Podolsky-Rosen-Bohm Gedankenexperiment with photons. The two 
photons ν1  and ν 2  , emitted in the state Ψ( , )1 2  of Equation (1), are analyzed by linear 
polarizers in orientations a and b. One can measure the probabilities of single or joint 
detections in the output channels of the polarizers. 

It is easy to derive the Quantum Mechanical predictions for these measurements of 
polarization, single or in coincidence. Consider first the singles probabilities P± ( )a  of 
getting the results ±  for the photon ν1 , and similarly, the singles probabilities P± ( )b  of 
obtaining the results ± on photon ν2 . Quantum Mechanics predicts: 

                                                 
‡ There is a one-to-one correspondance with the EPR Bohm Gedankenexperiment dealing with a pair of spin 
1/2 particles, in a singlet state, analysed by two orientable Stern-Gerlach filters. 
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These results are in agreement with the remark that we cannot assign any polarization to 
each photon, so that each individual polarization measurement gives a random result. 

Let us now consider the probabilities P±± ( , )a b  of joint detections of ν1  and ν2  in 
the channels + or − of polarisers I or II, in orientations a  and b. Quantum mechanics 
predicts : 

 
P P

P P

++ −−

+− −+

= =

= =

( , ) ( , ) cos ( , )

( , ) ( , ) sin ( , )

a b a b a b

a b a b a b

1
2
1
2

2

2
 (Q.M.) (3) 

We are going to show that these quantum mechanical predictions have far reaching 
consequences. 

2.2. Correlations 

Consider first the particular situation ( , )a b = 0 , where polarisers are parallel. The 
Quantum Mechanical predictions for the the joint detection probabilities (equations 3) are : 

 
P P

P P

++ −−

+− −+

= =

= =

( ) ( )

( ) ( )

a, a a, a

a, a a, a

1
2
0

 (4) 

According to this result, and taking into account (2), we conclude that when the photon ν1 
is found in the + channel of polarizer I, ν2 is found with certainty in the + channel of II 
(and similarly for the − channels). For parallel polarizers, there is thus a total correlation 
between the individually random results of measurements of polarization on the two 
photons ν1 and ν2. 

A convenient way to measure the amount of correlations between random 
quantities, is to calculate the correlation coefficient. For the polarization measurements 
considered above, it is equal to 

 E P P P P( ) ( ) , ( ) ( )a b a b a b a b a b, , , ,= + − −++ −− +− +−b g  (5) 

Using the prediction (3) of Quantum Mechanics, we find a correlation coefficient 

 EQM ( , )  cos 2 ( , ) a b a b=  (6) 

In the particular case of parallel polarizers ( (a,b) = 0 ), we find EQM ( )0 1=  : this confirms 
that the correlation is total. 
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In conclusion, the quantum mechanical calculations suggest that although each 
individual measurement gives random results, these random results are correlated, as 
expressed by equation (6). For parallel (or perpendicular) orientations of the polarizers, the 
correlation is total ( EQM = 1). 

2.3. Difficulty of an image derived from the formalism of Quantum Mechanics 

As a naive physicist, I like to raise the question of finding a simple image to understand 
these strong correlations. The most natural way to find an image may seem to follow the 
quantum mechanical calculations leading to (3). In fact, there are several ways to do this 
calculation. A very direct one is to project the state vector (1) onto the eigenvector 
corresponding to the relevant result. This gives immediately the joint probabilities (3). 
However, since this calculation bears on state vectors describing globally the two photons, 
I do not know how to build a picture in our ordinary space. 

In order to overcome this problem, and to identify separately the two measurements 
happening on both ends of the experiment, we can split the joint measurement in two steps. 
Suppose for instance that the measurement on photon ν1 takes place first, and gives the 
result + , with the polarizer I in orientation a. The + result (associated with the polarization 
state a ) has a probability of 1 2/ . To proceed with the calculation, we must then use the 
postulate of reduction of the state vector, which states that after this measurement, the new 
state vector ′Ψ ( , )ν ν1 2  describing the pair is obtained by projection of the initial state 
vector Ψ( , )ν ν1 2  (equation 1) onto the eigenspace associated to the result + : this two 

dimensional eigenspace has a basis { }, , ,x ya a . Using the corresponding projector, we 
find after a little algebra 

 1 2( , ) ,ν ν′Ψ = a a  (7) 

This means that immediately after the first measurement, photon ν1 takes the polarization 
a  : this is obvious because it has been measured with a polarizer oriented along a, and 

the result + has been found. More surprisingly, the distant photon ν2 , which has not yet 
interacted with any polarizer, has also been projected into the state a  with a well defined 
polarization, parallel to the one found for photon ν1 . This surprising conclusion however 
leads to the correct final result (3), since a straightforward application of Malus law shows 
that a subsequent measurement performed along b on photon ν2 will lead to  

 21( , ) cos ( , )
2

P++ =a b a b  (8) 

The calculation in two steps therefore gives the same result as the direct calculation. But in 
addition it suggests a picture for the two steps measurement: 
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i. Photon ν1 , which had not a well defined polarization before its measurement, takes the 
polarization associated to the obtained result, at the moment of its measurement: this is 
not surprising. 

ii. When the measurement on ν1 is done, photon ν2 , which had not a well defined 
polarization before this measurement, is projected into a state of polarization parallel to 
the result of the measurement on ν1 . This is very surprising, because this change in the 
description of ν2 happens instantaneously, whatever the distance between ν1 and ν2 at 
the moment of the first measurement. 

This picture seems in contradiction with relativity. According to Einstein, what happens in 
a given region of space-time cannot be influenced by an event happening in a region of 
space-time that is separated by a space like interval. It therefore not unreasonable to try to 
find more acceptable pictures for « understanding » the EPR correlations. It is such a 
picture that we consider now. 

2.4. Supplementary parameters 

Correlations between distant measurements on two separated systems that had previously 
interacted are common in the classical world. For instance, if a mechanical object with a 
null linear (or angular) momentum is split in two parts by some internal repulsion, the 
linear (or angular) momenta of the two separated parts remain equal and opposite in the 
case of a free evolution. In the general case where each fragment is submitted to some 
interaction, the two momenta remain correlated since they are at each moment determined 
by their initial values, which had a perfectly defined sum.  

It is tempting to use such a classical picture to render an account of the EPR 
correlations, in term of common properties of the two systems. Let us consider again the 
perfect correlation of polarization measurements in the case of parallel polarisers (a,b) = 0. 
When we find + for ν1 , we are sure to find also + for ν2. We are thus led to admit that 
there is some property (Einstein said « an element of physical reality ») pertaining to this 
particular pair, and determining the result ++. For another pair, when the results is − −, we 
can similarly invoke a common property, determining the result − −. It is then sufficient to 
admit that half the pairs are emitted with the property ++, and half with the property − −, to 
reproduce all the results of measurement in this configuration. Note however that such 
properties, differing from one pair to another one, are not taken into account by the 
Quantum Mechanical state vector Ψ( , )ν ν1 2  which is the same for all pairs. This is why 
we can conclude with Einstein that Quantum Mechanics is not complete. And this is why 
such additional properties are referred to as « supplementary parameters », or « hidden-
variables »*  

                                                 
* Einstein actually did not speak of « hidden variables » or « supplementary parameters », but rather of 
« elements of the physical reality ». Accordingly, many authors refer to « realistic theories » rather than to 
« hidden variable theories », or to « supplementary variable theories ». 
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As a conclusion, it seems possible to « understand » the EPR correlations by such a 
classical-looking picture, involving supplementary parameters differing from one pair to 
another one. It can be hoped to recover the statistical Quantum Mechanical predictions 
when averaging over the supplementary parameters. It seems that so was Einstein’s 
position5,6,7. Note that at this stage of the reasoning, a commitment to this position does not 
contradict quantum mechanics: there is no logical problem to fully accept the predictions 
of quantum mechanics, and to invoke supplementary parameters giving an acceptable 
picture of the EPR correlations. It amounts to considering Quantum Mechanics as the 
Statistical Mechanics description of a deeper level. 

3. BELL’S INEQUALITIES 

3.1. Formalism 

Three decades after the EPR paper, Bell translated into mathematics the consequences of 
the preceding discussion, and he explicitly introduced supplementary parameters, denoted 
λ. Their distribution on an ensemble of emitted pairs is specified by a probability 
distribution ρ(λ), such that 

 
ρ λ

λρ λ

b g
b g
≥

=z
0

1d
 (9) 

For a given pair, characterized by a given supplementary parameter λ, the results of 
measurements are given by the bivalued functions  

 
A

B

λ

λ

,

,

a a

b b

a f
a f

= ±

= ±

1

1

 at analyzer I (in orientation )

at analyzer II (in orientation )
 (10) 

A particular Supplementary Parameter Theory is completely defined by the explicit 
form of the function ρ(λ), A(λ,a) and B(λ,b). It is then easy to express the probabilities of 

the various results of measurements. For instance, noting that the function 1
2

1A( , )λ a +  

assumes the value +1 for the + result, and 0 otherwise (and similarly 1
2

1− B( , )λ b  

assumes the value +1 for the − result, and 0 otherwise, we can write 

 
P d

A

P d
A B

+

+−

=
+X

ZY

=
+ −X

ZY

a
a

a,b
a b

b g b g b g

b g b g b g b g
λ ρ λ

λ

λ ρ λ
λ λ

,

, ,

1
2

1
2

1
2

 (11) 

Similarly, the correlation function assumes the simple form 

 E d A Ba,b a ba f a f a f a f= z λρ λ λ λ, ,  (12) 
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3.2. A (naive) example of supplementary parameters theory 

As an example of Supplementary Parameter Theory, we present a model where each 
photon travelling along Oz is supposed to have a well defined linear polarization, 
determined by its angle λ λ1 2or b g with the x axis. In order to account for the strong 
correlation, we assume that the two photons of a same pair are emitted with the same linear 
polarization, defined by the common angle λ (figure 2). 

Figure 2 - The naive example. Each pair of photons has a « direction of polarisation », 
defined by λ, which is the supplementary parameter of the model. Polariser I makes a 
polarisation measurement along a, at an angle θ I  from the x axis. 

The polarisation of the various pairs is randomly distributed, according to the probability 
distribution ρ(λ) that we take rotationally invariant:  

 ρ λ
π

( ) = 1
2

 (13) 

To complete our model, we must give an explicit form for the functions A(λ,a) and B(λ,b). 
We take the following form 

 
A sign

B sign

I

II

λ θ λ

λ θ λ

, cos

, cos

a

b

a f b gm r
a f b gm r

= −

= −

2

2
 (14) 

where the angles θI  and θII indicate the orientations of the polarisers. Note that these forms 
are very reasonable: A(λ,a) assumes the value +1 when the polarisation of photon ν1  

makes an angle less than π
4

 with the direction of analysis a, and −1 for the complementary 

case (polarisation closer to the perpendicular to a). 

With this explicit model, we can use equations (11) to calculate the probabilities of 
the various measurements. We find for instance single probabilities 

 P P P P+ − + −= = = =a a b ba f a f a f a f 1
2

 (15) 

identical to the Quantum Mechanical results. The model also allows us to calculate the 
joint probabilities, or equivalently the correlation function, and we find, using (12) : 

λ θ I 
x

y Polarisation 
of a pair

a : direction of analysis  
for polariser I
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E I II

I II

a,b
a,bb g b g

= −
−

= −

− ≤ − ≤

1 4 1 4

2 2

θ θ
π π

π θ θ πfor       
 (16) 

This is a remarkable result. Note first that E(a,b) depends only on the relative angle 
(a,b), as the Quantum Mechanical prediction (6). Moreover, as shown on figure 3, the 
difference beween the predictions of the simple supplementary parameters model and the 
quantum mechanical predictions is always small, and the agreement is exact for the angles 
0 and π€/€2,  i.e. cases of total correlation. This result, obtained with an extremely simple 
supplementary parameters model, is very encouraging, and it might be hoped that a more 
sophisticated model could be able to reproduce exactly the Quantum Mechanical 
predictions. Bell’s discovery is the fact that the search for such models is hopeless, as we 
are going to show now. 

Figure 3 - Polarisation correlation coefficient, as a function of the relative 
orientation of the polarisers: (i) Dotted line : Quantum Mechanical 
prediction ; (ii) solid line : the naive model. 
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3.3. Bell’s Inequalities 

There are many different forms, and demonstrations of Bell’inequalities. We give here a 
very simple demonstration leading to a form directly applicable to the experiments**. 

Let us consider the quantity 

 
s A B A B A B A B

A B B A B B

= − + +

= − + +

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ

, . , , . , , . , , . ,

, , , , , ,

a b a b' a' b a' b'

a b b' a' b b'

a f a f a f a f a f a f a f a f
a f a f a f a f a f a f  (17) 

Remembering that the four numbers A and B take only the values ±1, a simple inspection 
of the second line of (17) shows that 

 s λ , 'a,a' ,b,bb g = ±2  (18) 

The average of s over λ is therefore comprised between + 2 and − 2 

 − ≤ ≤z2 2d sλρ λ λa f a f. , 'a, a' ,b,b  (19) 

According to (12), we can rewrite these inequalities 

 − ≤ ≤2 2S( )a, a' ,b, b'  (20) 

with 

 S E E E E( , ' , , ' )a a b b = − + +a,b a,b' a' ,b a' ,b'b g b g b g b g  (21) 

These are B.C.H.S.H. inequalities, i.e. Bell’s inequalitites as generalized by 
Clauser, Horne, Shimony, Holt8. They bear upon the combination S of the four polarization 
correlation coefficients, associated to two directions of analysis for each polarizer (a and a’ 
for polarizer I, b and b’ for polarizer II). Note that they apply to any Supplementary 
Parameter Theory of the very general form defined in section 3.1 (equations 9, 10, and 12), 
of which our naive model is only an example. 

                                                 
** It is important to distinguish between inequalities which show a mathematical contradiction with quantum 
mechanics, but without the possibility of an experimental test with (necessarily) imperfect apparatus, and 
inequalities allowing an experimental test provided that the experimental imperfections remain in certain 
limits. 



Bell Theorem naive view 18  11 / 34 Alain Aspect 

4. CONFLICT WITH QUANTUM MECHANICS 

4.1. Evidence 

We can use the predictions (6) of Quantum Mechanics for EPR pairs, to evaluate the 
quantity S( )a,a' ,b,b'  defined by equation (21). For the particular set of orientations 
shown on Figure 4.a, the result is 

 SQM = 2 2  (22) 

This quantum mechanical prediction definitely conflicts with the Bell’s inequality (20) 
which is valid for any Supplementary Parameter Theory of the general form defined in 
§3.1. 

We have thus found a situation where the quantum mechanical predictions cannot 
be reproduced (mimicked) by Supplementary Parameters Theories. This is the essence of 
Bell’s theorem: it is impossible to find a Supplementary Parameter Theory, of the general 
form defined in § 3.1, that reproduces all the predictions of quantum mechanics. This 
statement is the generalisation of what appears on Figure 3, for the particular 
supplementary parameter model considered in § 3.2: the model exactly reproduces the 
predictions of quantum mechanics for some particular angles (0, π/4 , π/2), but it 
somewhat deviates at other angles. The importance of Bell’s theorem is that it is not 
restricted to a particular supplementary parameters model, but it is general. 

Figure 4 - Orientations yielding the largest conflict between Bell’s inequalities and Quantum 
Mechanics. 

4.2. Maximum conflict 

It is interesting to look for the maximum violation of Bell’s inequalities by the quantum 
mechanical predictions. Let us take the quantum mechanical value of S : 

 ( ) ( ) ( ) ( ) ( )cos cos cos cosQMS = − + +a,b,a',b' a,b a,b' a',b a',b'  (23) 

It is a function of the three independant variables ( , )a b , ( , )b a ′ ,and ( , )′ ′a b . Note that 

a' 

a'

b’

22.5° 67.5° 

ba 

b' 

a

b
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 a,b a,b b,a' a' ,b′ = + +b g b g b g b g'  

In order to find the extremum values of SQM  , we write that the three partial derivatives are 
null, and we find 

 a,b b, a' a' ,ba f a f a f= = =' θ  (24) 

and 

 sin sinθ θ= 3  (25) 

We have plotted on Figure 5 the function SQM θb g  evaluated in the case of condition (24). It 
shows that the absolute maximum and minimum of SQM  are 

 SMQ = ±2 2 for =
8

θ π  (26) 

 SMQ = − ±2 2 for = 3
8

θ π  (27) 

These values are solutions of (25). The corresponding sets of orientations are displayed on 
Figures 4. They give the maximum violations of Bell’s inequalities. 

More generally, Figure 5 shows that there is a full range of orientations leading to a 
conflict with Bells inequalities. However, it is also clear that there are many sets of 
orientations for which there is no conflict. 

Figure 5 - S(θ) as predicted by Quantum Mechanics for EPR pairs. The conflict with Bell’s 
inequalities happens when |S| is larger than 2, and it is maximum for the sets of orientations of 
Figure 4. 

5. DISCUSSION : THE LOCALITY CONDITION 

We have now established Bell’s theorem: Quantum Mechanics conflicts with any 
Supplementary Parameter Theory as defined in § 3.1, since it violates a consequence 
(Bell’s inequalities) of any such theory. Clearly, it is interesting at this stage to look for the 
hypotheses underlying the formalism introduced in § 3.1. One may then hope to point out a 
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specific hypothesis responsible for the conflict. We therefore examine now the various 
hypotheses underlying the Supplementary Parameter Theories introduced in section 3.1. 

A first hypothesis is the existence of supplementary parameters. As we have seen, 
they have been introduced in order to render an account of the correlations at a distance. 
This hypothesis is strongly linked to a conception of the world, as expressed by Einstein, 
where the notion of separated physical realities for separated particles is meaningful. It is 
even possible to derive the existence of supplementary parameters from general statements 
about the physical reality, in the spirit of Einstein’s ideas9. An hypothesis in this spirit 
seems absolutely necessary to obtain inequalities conflicting with quantum mechanics. 

The second considered hypothesis is determinism. As a matter of fact, the 
formalism of section 3.1 is deterministic: once λ is fixed, the results A(λ,a) and B(λ,b) of 
the polarization measurements are certain. One has speculated that it may be a good reason 
for a conflict with the non-deterministic formalism of quantum mechanics. In fact, as first 
shown by Bell10, and subsequently developped11, it is easy to generalize the formalism of 
section 3.1 to Stochastic Supplementary Parameter Theories where the deterministic 
measurement functions A(λ,a) and B(λ,b’) are replaced by probabilistic functions. One 
then finds that the Bell’s inequalities still hold, and that the conflict does not disappear. It 
is therefore generally accepted that the deterministic character of the formalism is not the 
reason for the conflict12. 

The most important hypothesis, stressed by Bell in all his papers, is the local 
character of the formalism of section 3.1. We have indeed implicitly assumed that the 
result A( , )λ a  of the measurement at polarizer I, does not depend on the orientation b of 
the remote polarizer II, and vice-versa. Similarly, it is assumed that the probability 
distribution ρ λ( )  (i.e. the way in which pairs are emitted) does not depend on the 
orientations a and b. This locality assumption is crucial: Bell’s Inequalities would no 
longer hold without it. It is indeed clear that the demonstration of § 3.3 fails with quantities 
such as A( , , )λ a b  or ρ λ( , , )a b . 

To conclude, there are two hypothesis that seem to be necessary to obtain Bell’s 
inequalities, and consequently a conflict with quantum mechanics : 

•  distant correlations can be understood by introduction of supplementary parameters 
carried along by the separated particles, in the spirit of Einstein’s ideas that separated 
objects have separated physical realities. 

•  the quantities A(λ) , B(λ), and ρ(λ) obey the locality condition, i.e. they do not depend 
on the orientations of the distant polarizers. 

This is why one often claims that Quantum Mechanics conflicts with Local Realism. 

6. GEDANKENEXPERIMENT WITH VARIABLE ANALYZERS : THE 
LOCALITY CONDITION AS A CONSEQUENCE OF EINSTEIN’S 
CAUSALITY 

In static experiments, in which the polarizers are held fixed for the whole duration of a run, 
the Locality Condition must be stated as an assumption. Although highly reasonable, this 
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condition is not prescribed by any fundamental physical law. To quote J. Bell1 « the 
settings of the instruments are made sufficiently in advance to allow them to reach some 
mutual rapport by exchange of signals with velocity less than or equal to that of light ». In 
that case, the result A( )λ  of the measurement at polarizer I could depend on the 
orientation b of the remote polarizer II, and vice-versa. The Locality Condition would no 
longer hold, nor would Bell’s Inequalities. 

Bell thus insisted upon the importance of « experiments of the type proposed by 
Bohm and Aharonov5, in which the settings are changed during the flight of the 
particles »*. In such a timing-experiment, the locality condition would become a 
consequence of Einstein’s Causality that prevents any faster-than-light influence. 

As shown in our 1975 proposal13 , it is sufficient to switch each polarizer between 
two particular settings (a and a’ for I, b and b’ for II). It then becomes possible to test 
experimentally a large class of Supplementary Parameters Theories: those obeing 
Einstein’s Causality. In such theories, the response of polarizer I at time t, is allowed to 
depend on the orientation b (or b’) of polarizer II at times anterior to t L c− /  (L is the 
distance between the polarizers). A similar retarded dependence is considered for the 
probability distribution ρ(λ), i.e. the way in which pairs are emitted at the source. For 
random switching times, with both sides uncorrelated, the predictions of these more 
general « separable supplementary parameters theories » are constrained by generalized 
Bell’s Inequalities13, based on Einstein’s causality and not on Bell’s locality condition. 

On the other hand, one can show14 that the polarization correlations predicted by 
Quantum Mechanics depend only on the orientations a and b at the very time of the 
measurements, and do not involve any retardation terms L c/ . For a suitable choice of the 
set of orientations (a,a’,b,b’) − for instance the sets displayed on Figure 4 − the Quantum 
mechanical predictions still conflict with generalized Bell’s Inequalities. 

In an experiment with time varying polarizers, Bell’s theorem therefore states that 
Quantum Mechanics is incompatible with Supplementary Parameters theories obeying 
Einstein’s causality. Note that Einstein’s causality already played an important role in the 
discussions leading to the notion of supplementary parameters, or equivalently of an 
independant physical reality for each separated subsystem6. It therefore does not seem 
exagerate to conclude that in a scheme with time varying polarizers, Bell’s theorem 
establishes a contradiction between Quantum Mechanics and a description of the world in 
the spirit of Einstein’s ideas. Note however that Einstein did not know Bell’s theorem, and 
he could logically think that his world view was compatible with all the algebraic 
predictions of quantum mechanics. We do not know what would have been his reaction in 
front of the contradiction revealed by Bell’s theorem. 

                                                 
* The idea was already expressed in Bohm’s book4. 



Bell Theorem naive view 18  15 / 34 Alain Aspect 

7. FROM BELL’S THEOREM TO A REALISTIC EXPERIMENT 

7.1. Experimentallly testing Bell’s inequalities 

With Bell’s theorem, the debate on the possibility (or necessity) of completing quantum 
mechanics changed dramatically. It was no longer a matter of philosophical position 
(realism versus positivism...), or of personal taste. It became possible to settle the question 
by an experiment. If one can produce pairs of photons (or of spin 1/2 particles) in an EPR 
state, and measure the 4 coincidence rates N±± ( , )a b  with detectors in the output channels 
of the polarizers (or Stern-Gerlach filters), one obtains the polarization correlation 
coefficient, for polarizers in orientations a and b : 

 E N N N N
N N N N

( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

a b a b a b a b a b
a b a b a b a b

= − − +
+ + +

++ +− −+ −−

++ +− −+ −−

 (28) 

By performing four measurements of this type in orientations (a,b), (a,b’), (a’,b), and 
(a’,b’), one obtains a measured value Sexp ( , ' , , ' )a a b b  for the quantity S defined in 
equation (21). Choosing a situation where quantum mechanics predicts that this quantity 
violates Bell’s inequalities (20), we have a test allowing one to discriminate between 
quantum mechanics and any local supplementary parameter theory. If in addition we use a 
scheme with variable polarizers, we even test the more general class of « separable » (or 
causal in the relativistic sense) Supplementary Parameters Theories. 

7.2. Sensitive situations are rare 

Quantum Mechanics has been upheld in such a great variety of experiments, that Bell’s 
Theorem might just appear as a proof of the impossibility of supplementary parameters. 
However, situations in which the conflict revealed by Bell’s inequalities arises (sensitive 
situations) are so rare that, in 1965, none had been realized. 

To better appreciate this point, let us first note that Bell’s inequalities are 
compatible with the whole classical physics, namely classical (relativistic) mechanics and 
classical electrodynamics, which can be imbedded into the Supplementary Parameters 
formalism obeying Einstein’s causality. For instance, in classical mechanics, the λ‘s would 
be the initial positions and velocities of the particles, from which the future evolution can 
be derived. Similarly, in classical electrodynamics, the λ‘s would be the trajectories of the 
charges in the sources, from which one can deduce the electromagnetic fields, and their 
action on the measuring apparatus.  

Moreover, in situations usually described by quantum mechanics, it does not often 
happen that there is a conflict with Bell’s inequalities. More precisely, for situations in 
which one looks for correlations between two separated subsystems (that may have 
interacted in the past), we can point out two conditions necessary to have the possibility of 
a conflict with Bell’s inequalities : 

•  The two separated subsystems must be in an entangled state, non-factorizable, such as 
(1) (or the singlet state for two spin 1 2/  particles). 
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•  For each subsystem, it must be possible to choose the measured quantity among at least 
two non-commuting observables (such as polarization measurements along directions a 
and a’, neither parallel nor perpendicular). 

Even in such cases, we have seen that the conflict exists only for well chosen measured 
quantities (sets of orientations). But, as shown on figure 5, there are many orientations sets 
for which the quantum mechanical predictions do not violate Bell’s inequalities. 

It was realized in 1965 that there was no experimental evidence of a violation of 
Bell’s inequalities. Since these inequalities are derived from very reasonable hypothesis, 
one could consider the possibility that the violation of Bell’s inequalities indicate a 
situation where quantum mechanics fails. It was thus tempting to design a sensitive 
experiment, i.e. an experiment where the predictions of quantum mechanics for the real 
situation definitely violate Bell’s inequalities. The experiment would then give a clearcut 
result between Quantum Mechanics, and Supplementary Parameter Theories obeying 
Bell’s locality condition. 

7.3. Production of pairs of photons in an EPR state 

As pointed out by C.H.S.H.8, pairs of photons emitted in suitable atomic radiative cascades 
are good candidates for a sensitive test. Consider for instance a J J J= → = → =0 1 0 
atomic cascade (Figure 6). Suppose that we select, with the use of wavelengths filters and 
collimators, two plane waves of frequencies ν1 and ν2 propagating in opposite directions 
along the z axis (Figure 7). 

 
Figure 6 - Radiative cascade emitting pairs of 

photons correlated in polarization. 
Figure 7 - Ideal configuration 
(infinitely small solid angles). 

 

It is easy to show, by invoking parity and angular momentum conservation, that the 
polarization part of the state vector describing the pair ( , )ν ν1 2  can be written : 

 Ψ( , ) , ,ν ν1 2
1
2

= 〉 + 〉R R L L  (29) 

where R  and L  are circularly polarized states. By expressing R  and L  on a linear 
polarization basis, we obtain the state (1) 

1S0 

1S0 

1P1

ν1 

ν2 

z x

y

ν1 ν2 

S
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 { }Ψ( , ) , ,ν ν1 2
1
2

= +x x y y   

With this entangled EPR state, one can envisage a sensitive experiment. 

7.4. Realistic experiment 

A real experiment differs from the ideal one in several respects. For instance, the light 
should be collected in finite angles 2u, as large as possible (Figure 8). In this situation, one 
can show15 that the contrast of the correlation function decreases, since (6) is replaced by : 

 E F uQM a b a, ,b g b g= ( ).cos2 b  (30) 

where F u( ) ≤ 1 . Figure 9 displays F(u) for a J J J= → = → =0 1 0 cascade. Fortunately, 
one can use large angles without great harm. For u = °32 (our experiments), one has 
F u( ) .= 0 984 . 

All experimental inefficiencies (polarizers defects, accidental birefringences etc...) 
will similarly lead to a decrease of the correlation function E(a,b). The function SMQ ( )θ  
(Figure 5) is then multiplied by a factor less than 1, and the conflict with Bell’s 
Inequalities decreases, and even may vanish. Therefore, an actual experiment must be 
carefully designed and every auxiliary effect must be evaluated. All relevant parameters 
must be perfectly controlled, since a forgotten effect could similarly lead to a decrease of 
the conflict. For instance, an hyperfine structure dramatically decreases F(u), so that only 
even isotopes should be used15. 

 

 

 

 
Figure 8 - Realistic configuration, with 

finite solide angles. 
Figure 9 - Reduction factor F(u) for a 

J J J= → = → =0 1 0  cascade 

7.5. Timing conditions 

As we have seen in section 6, Bell’s Locality Condition may be considered a consequence 
of Einstein’s Causality, if the experiment fulfils requirements, that can be split in two 
conditions : 

i. The distant measurements on the two subsystems must be space-like separated. 

ii. The choices of the quantities measured on the two separated subsystems must be made 
at random, and must be space-like separated. 

The second condition is obviously more difficult to fulfil. 

ν1 ν2

S 2u 2u 
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8. FIRST GENERATION EXPERIMENTS 

The C.H.S.H. paper8, published in 1969, had shown the possibility of realistic sensitive 
experiments with correlated photons produced in certain atomic cascades. Two groups 
started an experiment, one in Berkeley, one in Harvard. After their conflicting results, a 
third experiment was carried out in College Station (Texas). All the three experiments used 
a simplified experimental scheme, somewhat different from the ideal one since it involved 
one-channel polarizers. 

8.1. Experiments with one channel polarizer 

In this simplified experimental scheme, one uses polarizers that transmit light polarized 
parallel to a (or b), but blocks the orthogonal one. Compared to the scheme of Figure 1, 
one can thus only detect the + results, and the coincidence measurements only yield the 
coincidence rates N++( , )a b  between the + channels. In order to recover the missing  − 
data, auxiliary runs are performed with one or both polarizers removed (the « orientation » 
of a removed polarizer is conventionally denoted ∞). We can then write relations between 
the measured coincidence rates N++( , )a b , N++ ∞( , )a , and N++ ∞( , )b  and coincidence 
rates which are not measured: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

,

, , , , ,

, ,

, ,

N N N N N

N N N

N N N

++ ++ +− −+ −−

++ ++ +−

++ ++ −+

∞ ∞ = + + +

∞ = +

∞ = +

a a b

b a b

a b a b a b a b

a b

a b

 (31) 

By substitution into the expression (28) of the polarisation correlation coefficient, and into 
inequalities (21), one can eliminate all the quantities which are not measured, and obtain 
new B.C.H.S.H. inequalities 

 − ≤ ′ ≤1 0S  (32) 

where the quantity S’ 

 ′ =
− + + − ∞ − ∞

∞ ∞
S

N N N N N N
N

a b a b' a' b a' b' a' b, , , ,b g b g b g b g b g( ) , ,
( , )

 (33) 

is expressed as a function of measured coincidence rates only (we have omitted the 
implicit subscripts ++ in the expression above). 

For the orientation sets shown on Figure 4, the Quantum Mechanical predictions 
violate the Bell’s inequalities (32) : 

 
′ = − =

′ = − − =

S

S
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It is therefore possible to make a sensitive test with one channel polarizers also.  

Note however that the derivation of the Bell’s inequalities (32) requires a 
supplementary assumption. Since the detection efficiencies are low (due to small collection 
angle and low photomultipliers efficiencies), the probabilities involved in the expression of 
E( , )a b  must be redefined on the ensemble of pairs that would be detected with polarizers 
removed. This procedure is valid only if one assumes a reasonable hypothesis about the 
detectors. The C.H.S.H. assumption8 states that, « given that a pair of photons emerges 
from the polarizers, the probability of their joint detection is independent of the polarizer 
orientations » (or of their removal). Clauser and Horne11 have exhibited another 
assumption, leading to the same inequalities. The status of these assumptions has been 
thoroughly discussed in reference 16.  

8.2. Results 

In the Berkeley experiment17, Clauser and Freedman built a source where calcium atoms 
were excited to highly lying states by ultraviolet radiation. The atom would then decay, 
and among the various desexcitation routes, it had some probability to emit a couple of 
green and violet correlated photons ( 4 4 4 42 1

0
1

1
2 1

0p S s p P s S→ →  radiative cascade). 
Since the signal was weak, and spurious cascades occurred, it took more than 200 hours of 
measurement for a significant result. The results were found in agreement with Quantum 
Mechanics, and a violation of the relevant Bell’s inequalities (32) was observed (by 5 
standard deviations). 

At the same time, in Harvard, Holt and Pipkin18 found a result in disagreement with 
Quantum Mechanics, and in agreement with Bell’s Inequalities. Their source was based on 
the 1 3 3

1 1 09 7 6P P P→ →  cascade of Mercury (isotope 200), excited by electron 
bombardment. The data accumulation lasted 150 hours. Clauser subsequently repeated 
their experiment, but with Mercury 202. He found an agreement with Quantum Mechanics, 
and a significant violation of Bell’s Inequalities19. 

In 1976, in Houston, Fry and Thompson20 built a much improved source of 
correlated photons, emitted in the 7 6 63

1
3

1
3

0S P S→ →  cascade in Mercury 200. This is a 
1 1 0J J J= → = → =  cascade, a priori not as favorable as a 0 1 0J J J= → = → =  

cascade, but they could selectively excite the upper level of the cascade, by use of a C.W. 
single line tunable laser (a quite rare instrument at that time). The signal was several order 
of magnitude larger than in previous experiments, allowing them to collect the relevant 
data in a period of 80 minutes. Their result was in excellent agreement with Quantum 
Mechanics, and they found a violation, by 4 standard deviations, of the Bell’s inequalities 
(32) specific of single channel polarizers experiments. 
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9. ORSAY EXPERIMENTS (1980-1982)14 

9.1. The source 

From the beginning of our programme, our goal was to implement more sophisticated 
experimental schemes13, so we devoted a lot of efforts to develop a high-efficiency, stable, 
and well controlled source of entangled photons. This was achieved (Figure 10) by a two 
photon selective excitation21 of the 4 4 4 42 1

0
1

1
2 1

0p S s p P s S→ →  cascade of calcium 
already used by Clauser and Freedman. This cascade is very well suited to coincidence 
experiments, since the lifetime τ r  of the intermediate level is rather short (5 ns). If one can 
reach an excitation rate of about 1/ τ r , then an optimum signal-to-noise ratio for 
coincidence measurements with this cascade is reached. 

We were able to obtain this optimum rate with the use of a Krypton ion laser 
( λ K nm= 406 ) and a tunable dye laser ( λ D nm= 581 ) tuned to resonance for the two-
photon process. Both lasers were single-mode operated. They were focused onto a Calcium 
atomic beam (laser beam waists about 50 µm). Two feedback loops provided the required 
stability of the source (better than 0.5 % for several hours): the first loop controlled the 
wavelength of the tunable laser to ensure the maximum fluorescence signal; a second loop 
controlled the angle between the lasers polarisations, and compensated all the fluctuations 
of the cascade rate. With a few tens of milliwatts from each laser, the cascade rate was 
about N s= × −4 107 1 . An increase beyond this rate would not have significantly improved 
the signal-to-noise ratio for coincidence counting, since the accidental coincidence rate 
increases as N 2 , while the true coincidence rate increases as N. At this cascade rate, the 
coincidence rate with parallel polarizers was about 102 s−1 , several orders of magnitude 
larger than in the first experiments. A statistical accuracy of 1% could then be achieved in 
each individual run of duration 100 s. 

 

Figure 10 - Two-photon selective excitation of the 4p2  1S0 state of Calcium with a Krypton ion 
laser and a tunable dye laser. From this state, the atom radiative decay can only deliver the 
pair of entangled photons (ν1,ν2). 
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4s2  1S0 

4s4p 1P1 

ν1 
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ν2 
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9.2. Detection - Coincidence counting 

The fluorescence light was collected by two large-aperture aspherical lenses ( u = °32 , as 
defined on figure 8), followed in each leg by an interference filter (respectively at 
551.3 nm and 422.7 nm), a transport optical system, a polarizer, and a photomuliplier tube. 
The photomultipliers fed the coincidence-counting electronics, that included a time-to-
amplitude converter and a multichannel analyzer, yielding the time-delay spectrum of the 
two-photon detections (Figure 11). This spectrum first shows a flat background due to 
accidental coincidences (between photons emitted by different atoms). The true 
coincidences (between photons emitted by the same atom) are displayed in the peak rising 
at the null-delay, and exponentially decaying with a time constant 5r nsτ =  (lifetime of 
the intermediate state of the cascade). The measured coincidence signal is thus the area of 
the peak. 

Figure 11 - Time-delay spectrum. Number of detected pairs as a function of the delay between 
the detections of two photons. The flat background corresponds to accidental coincidences 
between uncorrelated photons emitted by different atoms, and scales as the square N2 of the 
cascade rate. The peak, whose area scales as N, corresponds to correlated photons, and gives 
the coincidence rate to be measured. 

Additionally, a standard coincidence circuit with a 19 ns coincidence window 
monitored the rate of coincidences around null delay, while a delayed-coincidence channel 
monitored the accidental rate. It was then possible to check that the true coincidence rate 
obtained by substraction was equal to the signal in the peak of the time-delay spectrum. 

In the second and third experiments, we used a fourfold coincidence system, 
involving a fourfold multichannel analyzer and four double-coincidence circuits. The data 
were automatically gathered and processed by a computer. 

9.3. Experiment with one-channel polarizers22 

Our first experiment was carried out using one channel pile of plates polarizers, made of 
ten optical grade glass plates at Brewster angle, ensuring an excellent rotational invariance. 
For a fully polarized light, the maximum and minimum transmission were 0.975 ± 0.005 
and 0.030 ± 0.005 respectively. 

Thanks to our high-efficiency source, allowing us to achieve an excellent statistical 
accuracy in 100 s runs, we could perform various statistical checks, as well as physical 
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checks, for instance on the rotational invariance of the signals (for all these measurements, 
the long term stability of the source, at the level of 0.5%, was found crucial). 

A direct test of the Bell’s inequalities for single channel polarizers (32) has been 
performed. We have found for the quantity S’ (equation 33) 

 ′ = ±Sexp . .0126 0 014 (35) 

violating inequalities (32) by 9 standard deviations, and in good agreement with the 
Quantum Mechanical predictions for our polarizers efficiencies and lenses aperture 
angles : 

 ′ = ±SQM 0118 0 005. .  (36) 

The uncertainty in the theoretical value ′SQM  accounts for the uncertainty in the 
measurements of the polarizers efficiencies. 

The agreement between the experimental data and the Quantum Mechanical predictions 
has been checked in a full 360 ° range of orientations (Figure 12). 

We have repeated these measurements with the polarizers moved at 6.5 m from the 
source. At such a distance (four coherence-lengths of the wave packet associated with the 
lifetime τr) the detection events were space-like separated, and we therefore fulfilled the 
first time condition of section 7.5. No modification of the experimental results was 
observed, and the Bell’s inequality was violated by the same amount. 

 

 

Figure 12 - Experiment with one channel polarizers. Normalized coincidence rate as a 
function of the relative polarizers orientation. Indicated errors ± 1 standard deviation. The 
solid curve is not a fit to the data but the prediction by Quantum Mechanics for the actual 
experiment. 

9.4. Experiment with two-channel analyzers23,24,25 

With single-channel polarizers, the measurements of polarization are inherently 
incomplete. When a pair has been emitted, if no count is obtained at one of the 
photomultipliers, there is no way to know if « it has been missed » by the detector or if it 
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has been blocked by the polarizer (only the later case corresponds to a − result for the 
measurement). This is why one had to resort to auxiliary experiments, and indirect 
reasoning using supplementary assumptions, in order to test Bell’s inequalities. 

With the use of two-channel polarizers, we have performed an experiment 
following much more closely the ideal scheme of Figure 1. Our polarizers were polarizing 
cubes with dielectric layers transmitting one polarization and reflecting the orthogonal 
one††. Such a polarization splitter, and the two corresponding photomultipliers, are fixed 
on a rotatable mount. This device (polarimeter) yields the + and − results for a linear 
polarization measurement. It is an optical analog of a Stern-Gerlach filter for a spin 1/2 
particle. 

With polarimeters I and II in orientations a and b, and a fourfold coincidence 
counting system, we are able to measure in a single run the four coincidence rates 
N±± ( , )a b , and to obtain directly the polarization correlation coefficient E a b,b g  by 
plugging the numbers into equation (28). It is then sufficient to repeat the same measument 
for a sensitive set of four orientations, and the ideal Bell’s inequality (20) can be directly 
tested. 

This experimental scheme being much closer to the ideal scheme of figure 1 than 
previous experiments with one channel polarizers, we do not need the strong 
supplementary assumption on the detectors. However, the detection efficiency in each 
channel is well below unity, first because of the limited solid angle of collection, and 
second because of the efficiency of the photomultiplier. An advocate of hidden variable 
theories could then argue that we are not sure that the sample on which the measurement 
bears, remains the same when the orientations of the polarimeters are changed. In order to 
be logically allowed to compare our measurements to Bell’s inequalities, we therefore also 
need a supplementary assumption: we must assume that the ensemble of actually detected 
pairs is independent of the orientations of the polarimeters. This assumption is very 
reasonable with our symmetrical scheme, where the two orthogonal output channels of a 
polarizer are treated in the same way (the detection efficiencies in both channels of a 
polarimeter are equal). Moreover, we have experimentally checked that the sum of the four 
coincidence rates N±±(a,b) remains constant when the orientations change, although each 
coincidence rate is 100% modulated. This shows that the size of the selected sample of 
pairs is constant. Of course, it is not a proof of the validity of the assumption, but at least it 
is consistent with it. Note that it is possible to use a stronger assumption, the « fair 
sampling assumption », in which one assumes that the ensemble of detected pais is a fair 
sample of the ensemble of all emitted pairs. The assumption above is a logical 
consequence of the fair sampling assumption, which is stronger. On the other hand, the fair 
sampling assumption is very reasonable, and easy to express. 

The experiment has been done at the sensitive set of orientations of Figure 4a, for 
which a maximum conflict is predicted. We have found  

                                                 
†† A similar experiment, using calcite two channel polarizers, had been considered at the University of 
Catania26. 
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 Sexp . .= ±2 697 0 015 (37) 

violating the inequalities (21) S ≤ 2b g by more than 40 standard deviations! Note that this 
result is in excellent agreement with the predictions of Quantum Mechanics for our 
polarizers efficiencies and lenses apertures : 

 SQM = ±2 70 0 05. .  (38) 

The uncertainty indicated for SQM  accounts for a slight lack of symmetry of the two 
channels of a polarizer (± 1%). The effect of these dissymetries has been computed and 
cannot create a variation of SQM  greater than 2 %. 

We have also performed measurements of the polarization correlation coefficient 
E(a,b) in various orientations, for a direct comparison with the predictions of Quantum 
Mechanics (Figure 13). The agreement is clearly excellent. 

Figure 13 - Experiment with two-channels polarizers. Polarization correlation of as a 
function of the relative angle of the polarimeters. The indicated errors are ± 2 standard 
deviations. The dashed curve is not a fit to the data, but Quantum Mechanical predictions for 
the actual experiment. For an ideal experiment, the curve would exactly reach the values ± 1. 

These measurements can be presented in a different way, to emphasize the 
relevance to the test of Bell’s inequalities. On figure 14, we show the measured quantity 
S(θ), as defined in section 4.2. The violation of Bell’s inequalities is clear around 22.5° 
(which corresponds to the result (37)) and 67.5°, but one also sees, as already emphasized, 
that there are many situations where there is no conflict with Bell’s inequalities. 
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Figure 14 - Experiment with two-channels polarizers. Quantity S(θ), to be tested 
by Bell’s inequalities (−2 ≤ S ≤ +2), as a function of the relative angle of the polarimeters. 
The indicated errors are ± 2 standard deviations. The dashed curve is not a fit to the data, 
but Quantum Mechanical predictions for the actual experiment. For an ideal experiment, 
the curve would exactly reach the values ± 2.828. 

9.5. Timing experiment27 

As stressed in sections 6 and 7.5, an ideal test of Bell’s inequalities would involve the 
possibility of switching at random times the orientation of each polarizer13, since the 
locality condition would become a consequence of Einstein’s causality. We have done a 
step towards such an ideal experiment by using the modified scheme shown on Figure 15. 

In that scheme13, each (single-channel) polarizer is replaced by a setup involving a 
switching device followed by two polarizers in two different orientations : a and a’ on side 
I, b and b’ on side II. The optical switch C1 is able to rapidly redirect the incident light 
either to the polarizer in orientation a, or to the polarizer in orientation a’. This setup is 
thus equivalent to a variable polarizer switched between the two orientations a and a’. A 
similar set up is implemented on the other side, and is equivalent to a polarizer switched 
between the two orientations b and b’. In our experiment, the distance L between the two 
switches was 13 m, and L c/  has a value of 43 ns. 

The switching of the light was effected by home built devices, based on the 
acousto-optical interaction of the light with an ultrasonic standing wave in water. The 
incidence angle (Bragg angle) and the acoustic power, were adjusted for a complete 
switching between the 0th and 1st order of diffraction. The switching function was then of 

the form sin ( cos )2

2
π Ωat , with the acoustic frequency Ωa / 2π  of the order of 25 MHz. 
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The change of orientation of the equivalent variable polarizer then occurred after inequal 
intervals of 6.7 ns and 13.3 ns. Since these intervals as well as the delay between the 
emissions of the two photons of a pair (average value of τ r ns= 5 ), were small compared 
to L c/  (43 ns), a detection event on one side and the corresponding change of orientation 
on the other side were separated by a space-like interval. The first time condition was 
clearly fulfilled. The second time-condition was almost fulfilled, except for the fact that the 
switching was not truly random, but rather quasiperiodic (we discuss this point below). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 - Timing-experiment with optical switches (C1 and C2). The switch C1 followed by the two 
polarizers in orientations a and a’ is equivalent to a single polarizer switched between the orientations a and 
a’. A switching occurs approximatively each 10 ns. A similar setup, independently driven, is implemented on 
the second side.In our experiment, the distance L between the switches was large enough (13 m) that the 
time of travel of a signal between the switches at the velocity of light (43 ns) was significantly larger than the 
delay between two switchings (about 10 ns ) and the delay between the emission between the two photons (5 
ns average). 

The experiment was far from ideal on other points. First, in order to match the 
photon beams to the aperture of the switches, we had to reduce their size by a factor of 3, 
entailing a reduction of the coincidence rates by one order of magnitude. As a 
consequence, to achieve a significant statistical accuracy, the duration of data 
accumulation was much longer than in previous experiments, and we had to face problems 
of drifts. It was then necessary to average out the various measured quantities. Second, for 
not infinitely small beams, the commutation by the switches is incomplete, because the 
incidence angle is not exactly the Bragg angle for all rays. In our experiment, the minimum 
of the light intensity in each channel was 20%, so that not all photons were submitted to 
forced switching. Third, in this experiment, we used single channel polarizers, which 
allowed us to do it with the same fourfold coincidence system as in the the static 
experiment of section 9.4.  

Our test of Bell’s Inequalities involved a total of 8000 s of data accumulation with 
the 4 polarizers in the orientations of Figure 4.a. A total of 16000 s was devoted to the 
measurements with half or all the polarizers removed. In order to compensate the effects of 
systematic drifts, the data accumulation was alternated between the various configurations 
each 400 s, and the data were averaged out. We finally obtained 

 ′ = ±Sexp . .0101 0 020  (39) 
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violating the upper limit of the Bell’s inequality (32) by 5 standard deviations, and in good 
agreement with the Quantum Mechanics predictions 

 ′ = ±SQM 0113 0 005. .  (40) 

Other measurements of the coincidence rates were carried out, for a comparison 
with Quantum Mechanics at different angles. As shown on Figure 16, the results were in 
good agreement with the predictions of Quantum Mechanics. 

Figure 16 - Timing experiment: average normalized coincidence rate as a function of the 
relative orientation of the polarizers. Indicated errors are ± 1 standard deviation. The dashed 
curve is not a fit to the data but the predictions by Quantum Mechanics for the actual 
experiment. 

According to these results, Supplementary-Parameters Theories obeying Einstein’s 
Causality seem to be untenable. However, as indicated earlier, our experiment was not 
ideal, from several points of view, and several loopholes were left open for a strict 
advocate of hidden variable theories. First, because we used single channel polarizers, the 
experiment is significant only if one accepts a strong version of the « fair sampling » 
assumption. Adressing more specifically the timing aspect of this experiment, an advocate 
of hidden variable theories might argue that the switching was not complete, and that only 
the pairs undergoing forced switching must obey Bell’s inequalities. But since these pairs 
represent a large fraction of the total number, it is hard to believe that we would not have 
observed a significant discrepancy between our results and the Quantum Mechanical 
predictions. 

The most important point to discuss is the fact that the switches were not truly 
random, since the acousto-optical devices were driven by periodic generators. Note 
however that the two generators on the two sides were functionning in a completely 
uncorrelated way, since they were operated by different RF generators at different 
frequencies (23.1 MHz and 24.2 MHz), with uncorrelated frequency drifts. Moreover, 
another random feature is provided by the random delay between the two photons of a pair 
(exponentially decaying distribution of constant τ r ns= 5 , as shown on figure 11) which 
are distributed on an interval larger than the time between two successive switchings.  
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In conclusion, this experiment, which was until 1998 the only one involving forced 
fast changes of the settings of the analysers, had enough imperfections to leave open the 
possibility of ad hoc supplementary parameter models fulfilling Einstein’s causality. 
However, several models that we have tried are eliminated by our experimental results, 
which are constituted not only by the measured value (39) of S’, but also by the time 
delays spectra without any accident observable on the exponential decay, and with areas in 
good agreement with quantum mechanics as shown on figure 15. We think that these data 
should be taken into account by any advocate of local hidden variable theories trying to 
build a model compatible with experimental observations. 

10. THIRD GENERATION : EXPERIMENTS WITH PAIRS OF PHOTONS 
PRODUCED IN PARAMETRIC DOWN CONVERSION 

As we have already noted, the calcium radiative cascade that was used in our experiments 
was excited to an optimum rate, beyond which there is not much possibility of gain in 
signal to noise ratio. Since the life time of the intermediate stage is quite short (5 ns) the 
situation is very favourable for coincidence counting, and there was not much room left for 
improvement with sources based on atomic radiative cascades28: 

In the late 80’s, new sources of pairs of correlated photons have been developed 
simultaneously by two groups29,30. In these sources, a pair of red photons is produced by 
parametric down conversion of a U.V. photon. Because of the phase matching condition in 
the non linear crystal used for this process, there is a strong correlation between the 
directions of emission of the two photons of a pair, so that, by spatial selection with two 
diaphragms positionned in conjugate positions, one can in principle be sure to get the two 
photons of a pair. This is in contrast with the atomic radiative cascades which produce 
photons only weakly correlated in direction15 : since each photon is collected in a solid 
angle Ω small compared to 4π, the probability to get the second photon of a pair, once a 
first one is detected, is of the order of Ω/4π , so that the sample of detected pairs is smaller 
by this factor, than the sample of selected pairs. The new scheme with photons correlated 
in direction allows one to get rid of this reduction factor, and this has far reaching 
consequences, both practical and fundamental. On the practical side, it allows larger 
coincidence rates to be obtained, for similar cascade rates: in the most favourable case31 
the coincidence rate may be more than one order of magnitude larger than in our best 
experiments (section 9). Moreover, such large coincidence rates can be obtained with 
narrow photon beams (with a small Fresnel number). Such beams can easily be matched 
into small optical components, or even optical fibers, which opens many new possibilities. 

These new sources can produce pairs or photons correlated in polarisation29,30,31,32, 
in states analogous to (1). But they can also produce entangled states exhibiting EPR type 
correlations between observables other than polarization. An interesting case33 considers 
pairs of photons where each photon is emitted « at two different times ». Here, the relevant 
observable is the time of emission of the two photons of the pair, and the conjugate one is 
the energy (wavelength). Corresponding experiments have been carried out34,35,36. Note 
that this scheme, where polarization is not the relevant observable, is specially interesting 
for experiments with optical fibers, in which polarization control may be a crucial issue. 
Another interesting scheme considers the directions of emission as observables37 : each 
photon of an entangled pair involves two different directions of emissions, strongly 
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correlated to two directions of emission for the second photon. An experiment of this type 
has also been carried out38.  

As emphasised in reference [37] , all these new schemes can be embedded in the 
general framework of « two particles interferences »: indeed, the joint measurements 
probabilities are the square of a sum of two amplitudes (each involving the two photons), 
with a relative phase that can be controlled experimentally. Although it was not pointed 
out by the authors of ref. [37], the original EPRB scheme is a very clear example of this 
situation. For instance, for the polarization entangled state of section 2, the state (1) can 
also be rewriten (see equation 29) as the superposition of a state L L,  where both photons 
have a left handed helicity, and a state R R,  with two right handed helicities. For each of 
these two states, the amplitude for being detected in any couple of output channels behind 
the linear polarizers (see figure 1) has a value of 1 2/  times a phase factor which depends 
on the orientation of the polarizers (Figure 1). The addition of the amplitudes associated to 
L L,  and R R,  thus leads to an interference term responsible for the sinusoidal 

variations of the joint probabilities (3) when the orientations change14. 

These new sources and schemes have lead to a series of tests of Bell’s inequalities, 
which have all confirmed quantum mechanics. Clear violations of Bell’s inequalities have 
been found, under the assumption that the « fair sampling hypothesis » holds. Among 
these, it is worth pointing out a violation of Bell’s inequalities by 100 standard deviations 
in a few minuts only31. Note also an experiment35 where a clear violation of Bell’s 
inequalities has been observed with one leg of the apparatus made of 4 kilometers of 
optical fiber. More recently, EPR correlations have been observed with photons 
propagating in several tens of kilometers of commercial telecommunication fibers39. 

These experiments of third generation should ultimately lead to an ultimate 
experiment where there would be no remaining loophole left open. First, the perfect 
correlation between the directions of emission offers the possibility to close the loophole 
related to the low detection efficiency11, when photon detectors with quantum efficiency 
close to unity are available40. 

The second class of fundamental improvements is related to the « timing 
experiments » (section 7.5, and 9.5). Ideally13, one needs polarizers that can be 
independently reorientated at random times, with a reorientation autocorrelation time 
shorter than the space separation L c/  between the polarizers. Our third experiment 
(section 9.5), which was the first attempt in this direction, was basically limited by the 
wide size of the beams carrying the correlated photons: this prevented us to use small size 
electrooptic devices suitable for random switching of polarization. With the new schemes 
using optical fibers, it becomes possible to work with small integrated electrooptical 
devices.Moreover, with use of optical fibers, the detectors can be kilometers apart. At such 
separations (several microseconds), the time conditions become less stringent, and truly 
random active operation of the polarizers become possible at this time scale41. An 
experiment of this type has been completed in the group of Anton Zeilinger42. From the 
point of view of the timing condition, one can say that this experiment meets all the criteria 
of an ideal experiment43. 
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11. CONCLUSION  

We have nowadays an impressive amount of sensitive experiments where Bell’s 
inequalities have been clearly violated. Moreover, the results are in excellent agreement 
with the quantum mechanical predictions including all the known features of the real 
experiment. Each of the remaining loophole has been separately closed 40,42, and although 
yet more ideal experiments are still desirable44, it is legitimate to discuss the consequences 
of the rejection of supplementary parameter theories obeying Einstein’s causality. 

It may be concluded that quantum mechanics has some non-locality in it, and that 
this non-local caracter is vindicated by experiments45. It is very important however to note 
that such a non-locality has a very subtle nature, and in particular that it cannot be used for 
faster than light telegraphy. It is indeed simple to show46 that in a scheme where one tries 
to use EPR correlations to send a message, it is necessary to send a complementary 
information (about the orientation of a polarizer) via a normal channel, which of course 
does not violate causality. This is similar to the teleportation schemes47 where a quantum 
state can be teleported via a non-local process, provided that one also transmits classical 
information via a classical channel. In fact, there is certainly a lot to understand about the 
exact nature of non-locality, by a careful analysis of such schemes48. 

Figure 17. Ideal timing experiment. Each polarizer is randomly reoriented during the propagation of 
photons between the source and the polarizers. On each side, one records the orientation of the polarizer as 
well as the results of polarization measurements as a function of time. When a run is completed, the two data 
sets from the two sides are brought together, and one can determine the value of the correlation as a 
function of the relative orientation at the moment of the measurement. 

When realizing that this quantum non locality does not allow one to send any useful 
information, one might be tempted to conclude that in fact there is no real problem, and 
that all these discussions and experimental efforts are pointless. Before rushing to this 
conclusion, I would suggest to consider an ideal experiment done with the scheme of 
figure 17. On each side of the experiment of Fig. 1, done with variable analysers, there is a 
monitoring system, that registers the detection events in channels + or – with their exact 
dates. We also suppose that the orientation of each polarizer is changed at random times, 
also monitored by the system of the corresponding side. It is only when the experiment is 
completed that the two sets of data, separately collected on each side, are brought together, 
in order to extract the correlations. Then, looking into the data that were collected 
previously, and that correspond to paired events that were space like separated when they 
happened, one can see that indeed the correlation did change at the very moment when the 
relative orientation of the polarizers changed.  
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So when one takes the point of view of a delocalized observer, which is certainly 
not inconsistent when looking into the past, it must be acknowledged that there is a non 
local behaviour, in the EPR correlations. Entanglement is definitely a feature going beyond 
any spacetime description à la Einstein: a pair of entangled photons must be considered a 
single global object, that we cannot consider as made of individual objects separated in 
spacetime with well defined properties. 

For many years, I have been quoting the scheme of Figure 17 as a 
GedankenExperiment useful for the sake of the discussion. Nowadays, we are lucky that 
this experiment has been done in the real world: the experiment of Zeilinger and Weihs42, 
sketched on Figure 18, exactly follows43 the scheme of Figure 17. Once again, the EPR 
problem has switched from fundamental discussions bearing on GedankenExperiment, to 
real experiments. We must be grateful to John Bell for having shown us that philosophical 
questions about the nature of reality could be translated into a problem for physicists, 
where naive experimentalists can contribute. 

Fig. 18. The timing experiment of Weihs et al. This experiment follows closely the ideal scheme of Figure 
17, since the two ends of the experiment are totally independent. It is only after completion of a run that the 
data from the two sides are compared, in order to extract the correlation coefficient. Note also that the 
orientations of the polarizers are changed randomly during the photon propagation from the source to the 
polarizers. 
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