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Quasi-1D Bose-Einstein condensates in the dimensional
crossover regime

F. GERBIER(*)
Laboratoire Charles Fabry de UInstitut d’Optique(**), 91403 Orsay, France

PACS. 03.75.Hh — Static properties of condensates; thermodynamical, statistical and struc-
tural properties.
PACS. 03.75.Gg — Entanglement and decoherence in Bose-Einstein condensates .

Abstract. — We study theoretically the dimensional crossover from a three-dimensional elon-
gated condensate to a one-dimensional condensate as the transverse degrees of freedom get
frozen by tight confinement, in the limit of small density fluctuations, i.e. for a strongly degen-
erate gas. We compute analytically the radially integrated density profile at low temperatures
using a local density approximation, and study the behavior of phase fluctuations with the
transverse confinement. Previous studies of phase fluctuations in trapped gases have either
focused on the 3D elongated regimes or on the 1D regime. The present approach recovers
these previous results and is able to interpolate between them. We show in particular that
in this strongly degenerate limit the shape of the spatial correlation function is insensitive to
the transverse regime of confinement, pointing out to an almost universal behavior of phase
fluctuations in elongated traps.

In the recent years, one-dimensional (1D) ultracold atomic gases have been produced
in very elongated magnetic [ﬂ, or optical traps [E,E], with such tight confinement in two
transverse directions that the atomic motion “freezes” to radial zero-point oscillations. The
equilibrium phase diagram of these trapped 1D gases shows a rich behavior [E] at low densi-
ties the cloud behaves as a gas of impenetrable bosons (“Tonks-Girardeau gas” [f]), and for
higher densities (corresponding to most current experimental setups), the cloud is a “quasi-
condensate [ﬂ,ﬂ], characterized by suppressed density fluctuations and the same kind of local
correlations as in a true condensate, but also by the lack of long-range phase coherence due to
significant phase fluctuations. The latter die out continuously around a characteristic temper-
ature Ty, below which the quasicondensate turns into a true condensate. It was realized in [E]
that such quasicondensates could also exist in very elongated, but three-dimensional (3D)
traps: although atomic motion is possible in all directions, the lowest-lying excitations of
these systems, which dominate the long range decay of the phase correlations, are 1D in char-
acter [[J]. These 3D quasicondensates were observed in equilibrium [[L0] and non-equilibrium
samples [@], and their coherence properties studied through Bragg spectroscopy , E] or
matter-wave interferometry [[[4].
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gerbier@Quni-mainz.de
(**) UMRA 8501 du CNRS

© EDP Sciences



2 EUROPHYSICS LETTERS

Currently, although the limiting 3D or 1D cases are well understood theoretically, the
kinematic crossover from the “3D elongated” to the truly 1D regime of transverse confinement
have been less studied, despite being relevant to several recent experiments with “conventional
traps” ,@], or to ongoing research on the manipulation of coherent atomic ensembles on
micro-fabricated substrates [@,E] For the case of an infinitely long waveguide with uniform
axial density, a many-body theory has been developed in [@ to describe this crossover (see
also ) The influence of an axial trapping potential on the density profile and collective
excitations was addressed in [[§] by numerical integration of the transverse dynamics, in [[[9]
through a separability ansatz, which is correct in the 1D limit but not in the 3D case, and
in [@], where solvable hydrodynamic models that reproduce the 3D and 1D TF limits are
introduced.

In the present paper, we follow a different route and introduce an accurate analytical
approximation for the “equation of state” of the quasi-1D gas, that connects smoothly to the
3D to the 1D mean-field regimes. In the local density approximation (LDA), we are then able
to work out analytically the 1D (integrated over radial degrees of freedom) density profile
n1(z), from which many properties of the trapped quasi-1D gas can be calculated. As an
application, we investigate the influence of the transverse confinement on phase-fluctuations
in a quasi-1D geometry. Ref. [@] considers the related problem at zero temperature case in a
box geometry, and investigate the 3D to 1D crossover as the box cross-section is reduced. In
the trapped case considered in this paper, quantum fluctuations of the phase are small away
from the Tonks regime [E], so that we only consider thermal fluctuations. We calculate the
spatial correlation function of the radially averaged atomic field operator \il,

) (s) = / 0z (1(z + 5/2)B(z - 5/2)) (1)

at finite (but low) temperatures. This important quantity gives a global measure of phase
coherence across the atomic cloud, and is also the Fourier transform of the momentum distri-
bution (see for instance [RJ]). The local density approach in this context is nothing else than a
slowly-varying-envelope approximation, applied to the long-wavelength excitations responsible
for the fluctuations of the phase. We show that this turns out to be a good approximation even
it T2 Ty, provided density fluctuations are small. More importantly, we find the remarkable
property that the shape of the spatial correlation function (or equivalently the momentum
distribution) of the quasi-condensate is almost insensitive to the precise regime of transverse
confinement, pointing out to the universal character of phase fluctuations in very elongated
traps.

We follow the general method introduced in Ref. [E], assuming a weakly interacting gas well
below the degeneracy temperature (see [E] and related discussion at the end of the paper).
Then, density fluctuations are small and the equilibrium 3D density profile ng in the trapping
potential Viap(r) = mw? p?/2 + V(z) is given by the solution of the usual Gross-Pitaevskii
equation, even if the cloud is a quasi-condensate. Without loss of generality, we introduce the
1D density n1(z) = f d@p ng (p, z) obtained by integration over the transverse plane, and the
radial mode f, through ng(p, z) =| fi(p,z) |? n1(z). Assuming a sufficiently shallow axial
confinement and neglecting the density derivatives of ny, f| with respect to z obtains

2
_;L—MA;EL + %Mwin + U7”L1(Z) | fL |2: Ml-e-[nl(z)]‘ (2)

Here, we have used cylindrical coordinates, denoting the transverse radius as p and the lon-
gitudinal coordinate as z. The 3D coupling constant U is related to the s-wave scattering
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length a through U = 47wh?a/M, where M is the atomic mass. The local equilibrium chemical
potential p; depends on z through

Ml.e.[nl(z)] + V(Z) = K, (3)

with p the global chemical potential of the cloud in the trap. The relation between n; and
U1.e., that includes the effect of transverse confinement, can be seen as an effective “equation
of state” for the 1D gas [L§].

To obtain this equation of state, it is sufficient to solve (E) locally, i.e. for each value of
n1(z), or equivalently by considering a geometry with radial harmonic trapping, but homoge-
neous 1d density ny = N/2L, where 2L is the axial length of the system (“cylinder model”,
see inset in Fig. Ela). The equation of state in this model was found in [@] by numerical inte-
gration. Here we follow an alternative route, and derive the equilibrium properties by taking
for fi[ni1] a Gaussian trial wavefunction, whose width w [n;] is a variational parameter, and
by minimizing the chemical potential ... This simple calculation yields the optimized width
wy[m]=ay (14 4an1)1/4, where a; = \/h/Mw, is the radial oscillator length, and the local

chemical potential
e [n1] = Awiv/1 + dan;. (4)

The very good agreement of Eq. %With the available numerical results [@], illustrated in
Fig. a, has been pointed out in [RJ] on a phenomenological basis. Here we show that this
expression follows from the condition that p; .. is the lowest eigenvalue of the Gross-Pitaevskii
equation. Note that this approximation does not correspond to a separability ansatz, as nq is
in general a function of the axial coordinate z. In this respect, the method used here differs
from the work reported in [E]

We now reintroduce the axial trapping potential, assuming for definiteness a harmonic
form, V(z) = 1Mw?22. From the local equilibrium condition (ff) and the equation of state
(), one finds the density profile of the trapped gas,

1 V(L)-V(z) [V(L)=V(2) a 9 9
S 1=2a- 1- 4.
n(2) = e o o T = e -+ )
Here we have introduced the parameter o« = 2(u/hiw; — 1) and Z = z/L. The condensate
length L is defined by the relation ju.e.[n1(L) = 0] + 1 Mw?L? = p, and is given explicitly by

L=%a, (6)
1

where a, = \/h/Mw, is the axial oscillator length. Using ffL n1(z)dz = N, and the density
profile (E), we obtain the equation for the key quantity «,

a’(a+5)* = (15x)*. (7)

The only parameter of the calculation, x = Naa, /a2, roughly gives the ratio of the interaction
energy to the radial zero-point energy [@] Numerical solution of Eq. @) is straightforward,
and obtains the static properties of the condensate at any confinement strength. In the limit
X > 5, the mean-field interaction dominate over the transverse confinement, and one recovers
the well-known 3D TF result, a ~ aszp = (15x)%/®. Conversely, if x < 5, the transverse
motion is almost frozen and one finds o ~ ajp = (3x)2/ 3. The crossover between the two
regimes occurs approximately for ayp = asp, giving a cross-over value Ycross = 53/2 /3~ 3.73.
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Our analytical results are very accurate even in the crossover region, as shown in Fig. b
where we compare Eq. (ﬂ) to a direct numerical solution of the GP equation.

Equations (E,E,ﬂ) are the key results of this paper. The calculation of the density profile
for any strength of the confinement in the transverse direction allows to deduce a number
of interesting quantities. As an example, we focus in the remainder of the paper on phase
fluctuations, a key phenomenon to understand the physics of 1D gases. In general, phase
fluctuations originate from the very large population of the 1D excited states of the system,
i.e. those in the low-energy energy range fiw, < € < min{u, hiw, } (referred to in the following
as the “axial branch” of excitations). Keeping with the local density approach, we analyze
first these excitations in the cylinder geometry. The axial branch corresponds to excitations
characterized by an axial wavenumber k, and no radial nodes [H] Well below the degeneracy
temperature [@], the elementary excitations of the phase-fluctuating ensemble obey the same
Bogoliubov-De Gennes equations than in the usual coherent ensemble [E] We introduce
the operators qAﬁ and dn describing fluctuations of the phase and of the density, and their
expansion on the set of axial plane waves, dn(z) = >, SnpAi(p)e*<by/v/2nL + h.c., and
B(z) = =i Y, pre* by /v/2n L + h.c.. The function Ag(p) describes the radial dependance
of density fluctuations, and the operators bk, b destroy and create one quasi-particle with
wavevector k. The Fourier components of qb and on read

hk?

hwp dng Ag(p) = =7 0ok, (8)
hoPdno(p) = (Z]’; +Uno<p)) S Ar(p) — th”k v. [m(pm (%)] 9)

For the axial branch of interest, the transverse envelope changes continuously from a flat
profile in the 3D regime to the radial ground state in the 1D regime [E] In any case, the
quantity Ay /ng is almost flat; The corresponding spatial derivatives in (E) are strictly zero
in the 1D limit, and of order (hw, /u)? < 1 compared to the first term of the right hand
side of (E) in the 3D limit. We thus neglect their contribution, and average over transverse
degrees of freedom to get rid of the remaining radial dependance [E] The equations obtained
in this way are of the usual Bogoliubov form, with an excitation spectrum given by spectrum
wP = /(hk2/2M)? + 2 k2, and the amplitudes dny, = ni(wi/wP)Y/? and ¢p, = (W2 /4w )!/2.
The longitudinal speed of sound is c¢2p(k) = UngAx/M, and may depend on k through
noAr = [d®p ngAy, for wP < w,. This has been suggested in [24] as a possible mechanism
contributing to the decrease of the critical velocity in 3D elongated gases. The phase coherence
properties are however not affected, since they are determined the phonon-like, lowest-energy
modes with energy < (T/Ty)"/*hw, < hw, [{,H], for which Ay, is k-independent regardless of
the transverse regime

We now include the effect of the trapping potential by introducing a local density profile
n1(z) according to () and (). In the above expressions, one than has to replace everywhere
the chemical potential and density by their local values (see [[[J] for further details). Using
(Z;LIA);Q ~ kT /hwp, the variance of phase fluctuations then reads

AG?(z.5) = ([3(:) — b)) ~ - i Ll = g (10)

~

~—

with the relative distance s = z — 2’ and the mean coordinate Z = (z + z’)/2. The phase tem-
perature in ([I0) is kpTy = h?n1(0)/ML < N(fw,)?/u [[l,Hl, and the phase coherence length
is dy = LTy/T = h?ny(0)/MkgT. Together with the density envelope (), the expression ([L(])
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is sufficient to find the long wavelength behavior of the spatial correlation function [E],

L
e (%) - %[Ldz \/n1(§+s/2)n1(§fs/2)exp(f%A¢2(E, 5). (11)

This expression differs slightly from the one used in @] in the treatment of the overlap term,
defined here as \/n1(Z + s/2)n1(Z — s/2). The way we write it here yields better agreement
with the numerical calculation of the correlation function in the 3D case (see Fig.ﬁb).

Several comments can be made on this expression. First, already for T' = 4Ty, the LDA
expression ([L1)) agrees well with the numerical calculation of the correlation function based
on Refs. [E, |. This is shown in Fig.Ea for the 3D case, and Fig.Eb for the 1D case. Second,
the expression (@), which depends on the dimensionless space variable s/L, is a universal
function completely determined by two dimensionless parameters, x, which controls the regime
of transverse confinement and the functional form of the density profile, and T'/T,, which
controls the magnitude of phase fluctuations. The third and most important conclusion is that
the resulting correlation function is insensitive to a large extent to the transverse regime of
confinement (in other words, to the value of ). This is illustrated in Fig.Eb, where we plot the
correlation function for T = 4T, and y = 100 (dotted), x = 1 (solid) and y = 1072 (dashed).
Despite the dissimilar transverse profiles, which correspond to very different experimental
systems (see Table I), the axial correlation function are almost identical, showing almost
exponential decay on a 1/e length scale ~ 1.54dg. This very weak dependance on x points
out to the almost universal nature of thermal phase fluctuations in ultracold, very elongated
trapped gases. Modifications of the functional profile n1(%z)/n1(0), explicitly present in Eq.
(E), are not significant. Rather, the effects of transverse confinement are almost entirely
contained in the scaling variable dg o n1(0).

The approximate scaling identified here relies on the zero-temperature equation of state,
Eq. (). Its validity requires that (i) axial density fluctuations are negligible, and (ii) that when
going to the 3D regime, the presence of a normal cloud, mostly composed of 3D excited states
with energy > hw,, do not modify significantly the density profile of the quasicondensate.
For (i) to be true, one requires that T' <« Ty, where Ty = Nhw, is the 1D degeneracy
temperature [B,§]. Note this is always the case in the 3D case since Ty > T3P BJ. To
check point (ii), we note that although the quasicondensate is significantly depopulated for
temperature 7' 2> 0.5 TC(3D), the mechanical effect on the density profile is only noticeable for
T 2038 TC(P’D) [@] Coherence properties of the strongly degenerate part of the cloud are still
described by Eq. (@), and provided the correction to n1(0) are taken into account, we expect
that the scaling behavior still holds to a good approximation, since the correlation function is
largely insensitive to the precise functional form of n;(z).

In conclusion, we have investigated in this paper the crossover from a very elongated,
3D Bose gas to a 1D situation where transverse motion is frozen in the limit of vanishing
density fluctuations, i.e. for a gas strongly in the degenerate regime. By relying on a local
density approximation, we have been able to compute the radially integrated density profile
for any transverse confinement; we believe these results are simple enough to prove useful
for the analysis of time of flight images of very elongated samples, with €, ~ Aw;. We
have applied the method to the problem of phase fluctuations arising in such geometry at
finite temperatures, and have found an almost “universal” behavior of quasicondensates in an
elongated geometry, related to the essentially classical nature of thermal phase fluctuations.

X K K



6 EUROPHYSICS LETTERS

We acknowledge stimulating discussions with the members of the Atom Optics group
at Institut d’Optique, in particular with Simon Richard and Isabelle Bouchoule, and thank
Joseph H. Thywissen and Gora Shlyapnikov for critical comments on this manuscript.

REFERENCES

=

A. GORLITZ et al., Phys. Rev. Lett., 87 (130402) 2001.

F. SCHRECK et al., Phys. Rev. Lett., 87 (080403) 2001.

M. GREINER, 1. BLocH, O. MANDEL, T. W. HAENSCH, T. ESSLINGER, Phys. Rev. Lett., 87
(160405) 2001.

H. MoriTz, T. STOFERLE, M. KOHL, T. ESSLINGER, Phys. Rev. Lett., 91 (250402) 2003.

D. S. PETROV, G. V. SHLYAPNIKOV, J. T. M. WALRAVEN, Phys. Rev. Lett., 85 (3745) 2000.
M. OLSHANII, Phys. Rev. Lett., 81 (938) 1998; M. D. GIRARDEAU, E. W. WRIGHT, Phys. Rev.
Lett., 84 (5239) 2000.

[7] J. O. ANDERSEN, U. AL-KHawaJa, H. T. C. STOOF, Phys. Rev. Lett., 88 (070407) 2002; U.
AL-KHAwAJA, J. O. ANDERSEN, N. P. PRoUKAKIS, H. T. C. STOOF, Phys. Rev. A, 66 (013615)
2002; C. MoRA, Y. CASTIN, Phys. Rev. A, 67 (053615) 2003; D. LUxXAT, A. GRIFFIN, Phys.
Rev. A, 67 (043603) 2003; N. M. BOGOLIUBOV et al.,Phys. Rev. A, 69 (023619) 2004.

w

ENEE

[8] D. S. PETROV, G. V. SHLYAPNIKOV, J. T. M. WALRAVEN, Phys. Rev. Lett., 87 (050404) 2001.
[9] S. STRINGARI, Phys. Rev. A, 58 (2385) 1998.

[10] S. DETTMER et al., Phys. Rev. Lett., 87 (160406) 2001.

[11] 1. SCHVARCHUCK el al., Phys. Rev. Lett., 89 (270404) 2002.

[12] S. RICHARD et al., Phys. Rev. Lett., 91 (010405) 2003.

[13] F. GERBIER et al., Phys. Rev. A, 67 (051602(R)) 2003.

[14] D. HELLWEG et al., Phys. Rev. Lett., 91 (010406) 2003; L. CACCIAPUOTI et al., Phys. Rev. A,

69 (023619) 2003.
[15] W. HANSEL, P. HOMMELHOFF, T. W. HANSCH , J. REICHEL, Nature, 413 (498) 2001.
[16] H. OTT, J. FORTAGH, G. SCHLOTTERBECK, A. GROSSMANN, C. ZIMMERMANN, Phys. Rev.
Lett., 87 (230401) 2001.

] K. K. Das, M. D. GIRARDEAU, E. M. WRIGHT , Phys. Rev. Lett., 89 (110402) 2002.

| C. MENOTTI, S. STRINGARI, Phys. Rev. A, 66 (043610) 2002.

] K. K. Das,Phys. Rev. A, 66 (053612) 2002.

| J.-N. Fucnus, X. LEYRONAS, R. COMBESCOT, Phys. Rev. A, 68 (043610) 2003.

] U. AL KHAwAJA, N. P. PrROUKAKIS, J. O. ANDERSEN, M. W. J. RoMANs, AND H. T. C.

STOOF, Phys. Rev. A, 68 (043603) 2003.

[22] C. CoHEN-TANNOUDJI, C. ROBILLIARD, C. R. Acad. Sci. Paris, t.2, série 1V,4452001.

[23] The degeneracy temperature in the 3D case is just the critical temperature, TEP) ~ 0.94hwN/3,
where the mean trapping frequency is w = (o.uwz)l/?’. In 1D, it is given instead by Tq = Nhw..
The parameter n = Nw. /w, fixes the ratio Tc/hwi ~ 771/3 and TC(SD)/Td ~ 77_2/3.

[24] P. O. FEDICHEV, G. V. SHLYAPNIKOV, Phys. Rev. A, 63 (045601) 2001.

[25] F. GERBIER et al., to appear in Phys. Rev. A, 2004 (.)



F. GERBIER: QUASI-1D BOSE-EINSTEIN CONDENSATES IN THE DIMENSIONAL CROSSOVER REGIMET

TABLE I — Realistic experimental parameters illustrating the various regimes considered in the paper.
Notations are explained in the text.

Atom number w, /27  w./27 X Ty 75P) Ta
3D regime: 10° 1kHz 20 Hz 90 120 nK 1.2 puK 1 mK
23Na, optical trap
Crossover regime: 5 x 10* 760 Hz 5 Hz 3 35 nK 250 nK 120 pK
87Rb, magnetic trap @]
1D regime: 200 20 kHz 50 Hz 0.02 4 nK 720 nK 480 nK

87Rb, 2D optical lattice [H]

Hielh o ]

z [az2/a;]

Fig. 1 — Accuracy of the local density approximation. (a) Local chemical potential near the 3D-
1D crossover, as a function of the local 1D density ni. The circles show the results of a numerical
calculation [@], undistinguishable at the scale of the figure from Eq. @) [solid line]. The dotted and
dashed lines show the 3D and 1D Thomas-Fermi limiting cases. (b) Integrated density profiles taking
the (harmonic) axial trapping potential into account. To highlight the crossover, the parameter x = 1
has been chosen (corresponding to p & 1.85w ). The circles, resulting from a numerical solution of
the Gross-Pitaevskii equation, are indistinguishable from the LDA result (solid line) at the scale of
the figure. The dotted and dashed lines give the 3D and 1D Thomas-Fermi profiles, extrapolated to
x = 1 for comparison.
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Fig. 2 — Spatial gorrelation function of an elongated, phase—au/clfuating condensate for various con-
finement regimes. In (a), the spatial correlation function is drawn in the 3D case as a function of
the reduced distance s/L, for T = T, (upper curve) and for T" = 4T, (lower curve). The solid line
follows from a numerical calculation based on the results in [E], and the dashed line is the LDA.
Figure (b) shows the corresponding curves for the 1D case [E] In (c), the correlation function of an
elongated condensate is plotted for T = 4T} and different regimes of transverse confinement: x = 100
(3D case, dotted), x = 1(intermediate case, solid) and x = 1072 (1D case, dashed). Despite 4 or-
ders of magnitude of variations in x, the functional form of the spatial correlation function is almost
unchanged.



