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Quasi-1D Bose-Einstein condensates in the dimensional crossover regime

F. Gerbier∗

Laboratoire Charles Fabry de l’Institut d’Optique†, 91403 Orsay, France

We study theoretically the crossover from a three-dimensional elongated condensate to a one-
dimensional condensate as the transverse degrees of freedom get frozen by tight confinement. We
compute analytically the radially integrated density profile at low temperatures using a local den-
sity approximation, and study the behavior of phase fluctuations with the transverse confinement.
Previous studies of phase fluctuations in trapped gases have either focused on the 3D elongated
regimes or on the 1D regime. The present approach recovers these previous results and is able to
interpolate between them. We show in particular that the spatial correlation function of the matter
wave field is insensitive to the transverse regime of confinement, pointing out an almost universal
behavior of phase fluctuations in elongated traps.

PACS numbers: 03.75.Gg

The experimental study of dilute atomic Bose gases
benefits from the tunability of neutral atom traps. In
particular, the realization of one-dimensional (1D) sys-
tems has been demonstrated in very elongated magnetic
[1, 2] or optical traps [3, 4]. In these experiments, the
interaction energy per particle ǫint is smaller than the
zero-point energy ~ω⊥ in the tightly confining (trans-
verse) directions, so that atomic motion in two tightly
confined directions is frozen to zero-point motion. The
equilibrium phase diagram of these trapped 1D gases
shows a rich behavior [5], including a strong-coupling
regime (“Tonks-Girardeau gas” [5, 6, 7]), and a mean-
field regime [5, 8, 9, 10, 11], which exhibits below a char-
acteristic temperature Tφ a continuous transition from
a “quasicondensate” with pronounced phase fluctuations
to a true condensate. It was realized in [12] that such
quasicondensates could also exist in very elongated, but
three-dimensional (3D) traps: although atomic motion is
possible in all directions, the lowest-lying excitations of
these systems, which dominate the long range decay of
the phase correlations, are 1D in character [13]. These
3D quasicondensates were observed in equilibrium [14]
and non-equilibrium samples [15]. Further experiments
have probed the phase coherence through Bragg spec-
troscopy [16, 17] or matter-wave interferometry [18], con-
firming the physical picture of phase-fluctuating conden-
sates with suppressed density fluctuations.

Currently, although the limiting 3D or 1D cases are
well understood theoretically, the kinematic crossover
from the “3D elongated” to the truly 1D regime of trans-
verse confinement have been less studied, despite being
relevant to several recent experiments with “conventional
traps” [1, 16], or to current research on the creation and
manipulation of coherent atomic ensembles on micro-
fabricated substrates [19, 20]. Refs. [21] have studied
the density profile in the crossover region through a sep-
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arability ansatz, which is correct in the 1D limit but not
in the 3D case. This limitation has been overcome in [22],
where solvable hydrodynamic models that reproduce the
3D and 1D TF limits are introduced, and in [23] by nu-
merical integration of the transverse dynamics. In the
present paper, we follow a different route and introduce
an accurate analytical approximation for the “equation
of state” of the quasi-1D gas in the mean-field regime.
In the local density approximation introduced in [23],
this allows to work out analytically the 1D (integrated
over radial degrees of freedom) density profile n1(z), from
which many properties of the quasi-1D gas can be calcu-
lated. Our results connect smoothly to the two limiting
cases, whether 3D or 1D. In a second part, we investi-
gate the influence of the transverse confinement on the
crossover from phase-fluctuating to a phase-coherent en-
semble. To this aim, we calculate the spatial correlation
function of the radially averaged atomic field operator Ψ̂,

C(1)(s) =

∫

dz 〈Ψ̂†(z + s/2)Ψ̂(z − s/2)〉, (1)

using the local density approach, which is nothing else
than a slowly-varying-envelope approximation. We show
that this turns out to be a good approximation even
if T & Tφ. More importantly, we find the remarkable
property that the spatial correlation function (or equiv-
alently the momentum distribution, which is simply the
Fourier transform of C(1)) is almost insensitive to the
precise regime of transverse confinement in the quasi-
condensate regime, pointing out the universal character
of phase fluctuations in quasi-1D gases.

We follow the general method introduced in Ref. [5],
assuming small density fluctuations (i.e. a system far
from the Tonks regime). Then, well below the degeneracy
temperature, the equilibrium 3D density profile n0 in the
trapping potential Vtrap(r) = mω2

⊥ρ2/2+V (z) is given by
the solution of the usual Gross-Pitaevskii equation even if
the cloud is a quasi-condensate. Without loss of general-
ity, we introduce the 1D density n1(z) =

∫

d(2)ρ n0(ρ, z)
obtained by integration over the transverse plane, and
the radial mode f⊥ through n0(ρ, z) =| f⊥(ρ, z) |2 n1(z).
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Now, we assume that the axial confinement is sufficiently
shallow that the density derivatives of n1, f⊥ with respect
to z are negligible. In this limit, the GP equation reduces
to

− ~
2

2M

∆⊥f⊥
f⊥

+
1

2
Mω2

⊥ρ2 + Un1(z) | f⊥ |2= µl.e.[n1(z)],

(2)
Here, we have used cylindrical coordinates, denoting the
transverse radius as ρ and the longitudinal coordinate
as z. The 3D coupling constant U is related to the s-
wave scattering length a through U = 4π~

2a/M , where
M is the atomic mass. The local equilibrium chemical
potential µl.e. depends on z through

µl.e.[n1(z)] + V (z) = µ, (3)

with µ the global chemical potential of the cloud in the
trap. It is therefore sufficient to solve (2) locally, i.e. for
each value of n1(z), or equivalently by considering a ge-
ometry with radial harmonic trapping, but homogeneous
1d density n1 (“cylinder model”). The relation between
n1 and µl.e., that includes the effect of transverse con-
finement, can be seen as an effective “equation of state”
for the 1D gas [23].

We thus consider a system of N atoms confined by
a transverse harmonic potential, and axially constrained
to move between two boundaries at ±L (inset in Fig.
1), giving n1 = N/2L. The equation of state in this
model was found in [23] by numerical integration. Here
we follow an alternative route, and derive the equilibrium
properties by taking for f⊥[n1] a Gaussian trial wave-
function, whose width w⊥[n1] is a variational parame-
ter, and by minimizing the chemical potential µl.e.. This
simple calculation yields the optimized width w⊥[n1] =

a⊥(1 + 4an1)
1/4, where a⊥ =

√

~/Mω⊥ is the radial os-
cillator length, and the local chemical potential

µl.e.[n1] = ~ω⊥

√
1 + 4an1. (4)

The very good agreement of Eq. (4) with the available
numerical results [23], illustrated in Fig. 1a, has been
pointed out in [22] on a phenomenological basis. Here
we show that this expression follows from the condition
that µl.e. is the lowest eigenvalue of the Gross-Pitaevskii
equation. Note that this approximation does not cor-
respond to a separability ansatz, as n1 is in general a
fonction of the axial coordinate z. In this respect, the
method used here differs from the work reported in [21].

We now reintroduce the axial trapping potential,
assuming for definiteness a harmonic form, V (z) =
1
2Mω2

zz2. From the local equilibrium condition (3) and
the equation of state (4), one finds the density profile of
the trapped gas,

n1(z) =
1

16a

V (L) − V (z)

~ω⊥

[

V (L) − V (z)

~ω⊥

+ 1

]

=
α

4a
(1 − z̃2)

[

α(1 − z̃2) + 4
]

. (5)

Here we have introduced the parameter α = 2(µ/~ω⊥−1)
and z̃ = z/L. The condensate length L is defined by the
relation µl.e.[n1(L) = 0] + 1

2Mω2
zL2 = µ, and is given

explicitly by

L =
a2

z

a⊥

√
α, (6)

where az =
√

~/Mωz is the axial oscillator length. Using
∫ L

−L n1(z)dz = N , and the density profile (5), we obtain
the equation for the key quantity α,

α3(α + 5)2 = (15χ)2. (7)

The only parameter of the calculation, χ = Naa⊥/a2
z,

roughly gives the ratio of the interaction energy to the
radial zero-point energy [23]. Numerical solution of Eq.
(7) is straightforward, and obtains the static properties
of the condensate at any confinement strength. In the
limit χ ≫ 5, the mean-field interaction dominate over
the transverse confinement, and one recovers the well-
known 3D TF result, α ≈ α3D = (15χ)2/5. Conversely,
if χ ≪ 5, the transverse motion is almost frozen and one
finds α ≈ α1D = (3χ)2/3. The crossover between the two
regimes occurs approximately for α1D = α3D, giving a
cross-over value χcross = 53/2/3 ≈ 3.73. Our analytical
results are very accurate even in the crossover region, as
shown in Fig. 1b where we compare Eq. (5) to a direct
numerical solution of the GP equation.

Equations (5,6,7) are the key results of this paper. The
calculation of the density profile for any strength of the
confinement in the transverse direction allows to deduce
a number of interesting quantities. As an example, we fo-
cus in the remainder of the paper on phase fluctuations,
a key phenomenon to understand the physics of 1D gases.
In general, phase fluctuations originate from the very
large population of the 1D excited states of the system,
i.e. those in the low-energy energy range ~ωz < ǫ < ~ω⊥

(in the following, these excitations will be referred to as
“excitations from the axial branch”).

Keeping with the local density approach, we analyze
first these excitations in a sample with harmonic radial
confinement, but without the axial potential. The ax-
ial branch corresponds to excitations characterized by
an axial wavenumber k, and no radial nodes [13]. Fol-

lowing [12], we introduce the operators φ̂ and δn̂ de-
scribing fluctuations of the phase and of the density,
and their expansion on the set of axial plane waves,

δn̂(z) =
∑

k δnkAk(ρ)eikz b̂k/
√

2n1L + h.c., and φ̂(z) =

−i
∑

k φkeikz b̂k/
√

2n1L + h.c.. The function Ak(ρ) de-
scribes the radial dependance of density fluctuations, and

the operators b̂k b̂†k destroy and create one quasi-particle
with wavevector k.

Ref. [5] has shown that the elementary excita-
tions of the phase-fluctuating ensemble obey the same
Bogoliubov-De Gennes equations than in the usual co-
herent ensemble. In terms of the Fourier components of
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φ̂ and δn̂, they read

~ωB
k δnkAk(ρ) =

~k2

M
n0(ρ)φk, (8)

~ωB
k φkn0(ρ) =

(

~
2k2

4M
+ Un0(ρ)

)

δnkAk(ρ) (9)

−~
2δnk

4M
∇⊥

[

n0(ρ)∇⊥

( A(ρ)

n0(ρ)

)]

.

The terms involving the radial envelope remain small
whatever the transverse confinement for the axial branch
of interest. Indeed, the transverse envelope changes con-
tinuously from a flat profile in the 3D regime to the radial
ground state in the 1D regime. In any case, the quan-
tity Ak/n0 is almost flat, and the corresponding spatial
derivatives in (9) are very small, being of order (~ω⊥)2/µ
in the 3D regime, and going to zero in the 1D limit. We
thus neglect their contribution, and average over trans-
verse degrees of freedom to get rid of the remaining radial
dependance [13]. The equations obtained in this way are
of the usual Bogoliubov form. The excitation spectrum
is ωB

k =
√

ω2
k + c2

1Dk2, where the 1D speed of sound is

c2
1D(k) = Un0Ak/M , and where the free particle kinetic

energy is ωk = ~k2/2M . The density and phase am-

plitudes are δnk

n1

= (ωk/ωB
k )1/2, φk = (ωB

k /4ωk)1/2. In
general, the speed of sound may depend on k through
n0Ak =

∫

d(2)ρ n0Ak. This originates from the radial
dependance of density fluctuations, which is important
in 3D gases for k ∼ R−1: this has been suggested in
[24] as a possible mechanism contributing to the decrease
of the critical velocity. In this paper, we are interested
in phase fluctuations only, which are dominated by the
lowest-energy modes, k ≪ R−1. We can therefore safely
assume that the radial envelope Ak is k-independent in
the following.

We now include the effect of the trapping potential by
introducing a local density profile n1(z) according to (3)
and (5). From the above expressions, one deduces the
fluctuating phase profile by replacing the local chemical
potential and density envelope everywhere (see [17] for

further details). Using 〈b̂†k b̂k〉 ≈ kBT/~ωB
k , the variance

of phase fluctuations then reads

∆φ2(z, s) = 〈[φ̂(z) − φ̂(z′)]2〉 ≈ T

Tφ

n1(0)

n1(z)

| s |
L

, (10)

with the relative distance s = z − z′ and the mean coor-
dinate z = (z + z′)/2. The variance of phase fluctuations
depends only on the density profile n1(z)/n1(0), and of
the phase temperature, kBTφ = ~

2n1(0)/ML. Together
with the density envelope (5), the expression (10) is suf-

ficient to find the spatial correlation function [5],

C(1)
( s

L

)

=
1

N

∫ L

−L

dz
√

n1(z + s/2)n1(z − s/2)

exp(−1

2
∆φ2(z, s)). (11)

This expression differs slightly from the one used in [17]
in the treatment of the overlap term, defined here as
√

n1(z + s/2)n1(z − s/2). The way we write it here
yields better agreement with the numerical calculation
of the correlation function in the 3D case (see Fig.2b).

Several comments can be made on this expression.
First, already for T = 4Tφ, the LDA expression (11)
agrees well with the numerical calculation of the corre-
lation function based on Refs. [5, 12]. This is shown
in Fig.2a for the 3D case, and Fig.2b for the 1D case.
Second, the expression (11), which depends on the di-
mensionless space variable s/L, is a universal function
completely determined by two dimensionless parameters,
χ, which controls the regime of transverse confinement
and the functional form of the density profile, and T/Tφ,
which controls the magnitude of phase fluctuations. The
third and most important conclusion is that the resulting
correlation function is insensitive to a large extent to the
transverse regime of confinement (in other words, to the
value of χ). This is illustrated in Fig.2b, where we plot
the correlation function for T = 4Tφ and χ = 100 (dot-
ted), χ = 1 (solid) and χ = 10−2 (dashed). Despite the
dissimilar transverse profiles, the axial correlation func-
tion are almost identical. This very weak dependance
on χ points out the almost universal nature of thermal
phase fluctuations in elongated trapped gases.

In conclusion, we have investigated in this paper the
crossover from a very elongated, 3D Bose gas to a 1D
situation where transverse motion is frozen. By relying
on a local density approximation, we have been able to
compute the radially integrated density profile for any
transverse confinement; we believe these results are sim-
ple enough to prove useful for the analysis of time of flight
images of very elongated samples, with ǫint ∼ ~ω⊥. We
have applied the method to the problem of phase fluctua-
tions arising in such geometry at finite temperatures, and
have found the correlation function to be quite insensi-
tive to the regime of transverse confinement. This points
out the almost “universal” behavior of quasicondensates
in an elongated geometry, related to the essentially clas-
sical nature of thermal phase fluctuations.

It is a pleasure to thank Simon Richard, Isabelle Bou-
choule, Joseph Thywissen and Gora Shlyapnikov for in-
terestng discussions and comments on the manuscript.
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FIG. 1: Accuracy of the local density approximation. (a)
Local chemical potential in the cylinder geometry near the
3D-1D crossover, as a function of the local 1D density n1.
The circles show the results of a numerical calculation [23],
undistinguishable at the scale of the figure from Eq. (4)
[solid line]. The dotted and dashed lines show the 3D and
1D Thomas-Fermi limiting cases. (b) Integrated density pro-
files taking the (harmonic) axial trapping potential into ac-
count. To highlight the crossover between shallow and tight
transverse confinement, the parameter χ = 1 has been chosen
(corresponding to µ ≈ 1.85~ω⊥). The circles results from a
numerical solution of the Gross-Pitaevskii equation, and are
almost indistinguishable from the LDA result (solid line) at
the scale of the figure. The dotted and dashed lines give the
3D and 1D Thomas-Fermi profiles, extrapolated to χ = 1 for
comparison.

FIG. 2: Spatial correlation function of an elongated, phase-
fluctuating condensate for various confinement regimes. In
(a), the spatial correlation function is drawn in the 3D case
as a function of the reduced distance s/L, for T = Tφ (upper
curve) and for T = 4Tφ (lower curve). The solid line follows
from a numerical calculation based on the results in [12], and
the dashed line is the LDA. Figure (b) shows the correspond-
ing curves for the 1D case [5]. In (c), the correlation function
of an elongated condensate is plotted for T = 4Tφ and dif-
ferent regimes of transverse confinement: χ = 100 (3D case,
dotted), χ = 1(intermediate case, solid) and χ = 10−2 (1D
case, dashed). Despite 4 orders of magnitude of variations
in χ, the spatial correlation function is largely unchanged,
pointing out to an universal behavior of phase fluctuations in
elongated traps.


