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Quantum calculations of Coulomb reorientation for sub-barrier fusion
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Classical mechanics and Time Dependent Hartree-Fock (TDHF) calculations of heavy ions collisions
are performed to study the rotation of a deformed nucleus in the Coulomb field of its partner. This
reorientation is shown to be independent on charges and relative energy of the partners. It only
depends upon the deformations and inertias. TDHF calculations predict an increase by 30% of
the induced rotation due to quantum effects while the nuclear contribution seems negligible. This
reorientation modifies strongly the fusion cross-section around the barrier for light deformed nuclei
on heavy collision partners. For such nuclei a hindrance of the sub-barrier fusion is predicted.

Tunneling, the slow ”quantum leak” through a classi-
cal barrier, is an intriguing phenomenon in nature. In
1928, Gamow discovered this effect looking for an expla-
nation of the α radioactivity [1]. However, the tunneling
of complex systems remains to be understood. As in the
Gamow times nuclear physics is providing one of the most
challenging field to understand tunneling. In particular,
fusion cross sections involving massive nuclei around the
Coulomb barrier can be orders of magnitude over one
dimensional quantum tunneling predictions. Couplings
between the internal degrees of freedom and the relative
motion deeply modifies tunneling [2]. Neutron transfer,
excitation of low-lying vibrational and rotational states,
neck formation, zero-point motion and polarization of
collective surface vibration as well as static deformation
have been identified as key inputs in the understanding
of this sub-barrier fusion enhancement [3].

For nuclei with a significant static quadrupole defor-
mation [4,5], the main effects are i) on the barrier height
(geometrical effect) since it is lower in the elongated di-
rection and ii) on the reorientation of the deformed nu-
cleus (rotational effect) under the torque produced by the
long-range Coulomb force. In [6–10], fusion excitation
functions were measured for 16O (spherical) + 144−154Sm
reactions. 144Sm is spherical whereas 154Sm is prolate
(β2 ≈ 0.3). The data near the barrier were interpreted
as arising from the different orientations of the prolate
nucleus. An enhancement of the fusion probability is ob-
served when the deformation axis is parallel to the colli-
sion axis (”parallel collision”) and a hindrance when the
two axis are nearly perpendicular (”perpendicular colli-
sion”). In these studies, however, the assumption of an
isotropic orientation distribution of the deformed nucleus
at contact was made. This contradicts classical calcula-
tions [11,12] which show partial reorientation. From the
quantum mechanics point of view, the reorientation is a
consequence of the excitation of rotational states, which
may affect near barrier fusion specially for light deformed
nuclei [13,14]. Computational techniques have been de-

veloped in the past to solve coupled channel (CC) equa-
tions for Coulomb excitation [15–18] but a good under-
standing of the Coulomb reorientation dynamics during
the approach phase is still required.

In this work we obtain a deeper insight in the Coulomb
reorientation revisiting the classical result, solving ana-
lytically and numerically the equations of motion of a
rigid body, and performing novel quantum approaches
describing the deformed projectile within the time depen-
dent Hartree-Fock (TDHF) theory. Then we use these
reorientation results in a calculation of the fusion cross-
sections. The induced effects give an helpful interpreta-
tion of full CC calculations.

Assuming first a classical treatment of nuclear orien-
tation (the various orientations do not interfere) and ig-
noring any reorientation effect, the fusion cross section is
given by the average orientation formula (AOF) [19,20]

σfus. ≈

∫ π

2

ϕ=0

σ(ϕ) sin ϕdϕ (1)

where ϕ is the angle between the deformation and the
collision axis and σ(ϕ) is the associated cross section.
However, the Coulomb force induces a torque which, in-
tegrated over the whole history, up to the distance of
closest approach D0, rotates the initial angle ϕ∞ into
ϕ0. Because of reorientation ∆ϕ = ϕ0 − ϕ∞ 6= 0, the
distribution of ϕ0 looses its isotropy and the sinϕ term
in Eq. 1 has to be modified.

To estimate ∆ϕ, we first consider the classical mo-
tion of a deformed rigid projectile in the Coulomb
field of the target. We assume that the projectile of
mass Ap presents a sharp surface at a radius R(θ) =

R0

√

α−4 cos2 θ + α2 sin2 θ where R0=r0Ap
1

3 , r0 =1.2 fm,

α=1−ε and ε=
√

5/16πβ2, the deformation parameter.
Fig. 1 shows the reorientation as function of the ini-

tial orientation for central collisions at the barrier B=
ZpZte

2/r0

(

A
1/3
t +A

1/3
p

)

where Zp (Ap) and Zt (At) are

the projectile and target number of protons (nucleons).
The figure presents two typical asymmetric reactions of
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a prolate projectile on a spherical target: 24Mg(β2 ≈
0.4)+208Pb and 154Sm(β2≈0.3)+16O. For symmetry rea-
sons ∆ϕ=0◦ for ϕ∞=0◦ and 90◦. The maximal reorien-
tation ∆ϕmax occurs around 45◦. For the heavy deformed
projectile, 154Sm, ∆ϕmax is less than 2◦ whereas for 24Mg
it is large (∼23◦).

FIG. 1. Classical calculations (started at D∞ = 241 fm) of
the reorientation ∆ϕ of the projectile as function of its initial
orientation ϕ∞ for the reactions 24Mg+208Pb (solid line) and
154Sm+16O (dashed line) at the barrier.

To understand this difference, an analytical expression
for the reorientation can be derived following the ap-
proximations of ref. [21] i.e. assuming that ε and ∆ϕ
are small. Computing the torque leads to following the
equation of motion for ϕ(t)

ϕ̈(t) ≈
9ZpZte

2ε

2mApD(t)3
sin(2ϕ(t)) (2)

where m is the nucleon mass and D(t) the distance be-
tween the two nuclei. Replacing the time variable by
ξ(t) = D(t)/D0 and neglecting deformation and rotation
on the dynamics of D(t), Eq. 2 becomes

∂ϕ(ξ)

∂ξ
+ 2ξ (ξ − 1)

∂2ϕ(ξ)

∂ξ2
=

9ε

2ξ

At

Ap + At
sin(2ϕ∞) (3)

where sin(2ϕ(t)) have been replaced by sin(2ϕ∞) treating
the reorientation perturbatively (see [21]). Only the fac-
tor At/(Ap + At) remains since the initial center of mass
energy E and the charges have been taken into account
in D0 = e2ZpZt/E. The solution of Eq. 3 is

ϕ(ξ) = ϕ∞+
3εAt

Ap + At
sin(2ϕ∞)(ξ (2−ζ)−lnζ+δ) (4)

where ζ = 1 +
√

1 − ξ−1 and δ = ln 2 − 1/2. Solved up
to the distance of closest approach (ξ = 1), it leads to

∆ϕ = 3ε
At

Ap + At
sin(2ϕ∞)

(

1

2
+ ln 2

)

. (5)

It can be shown by performing the time integral in-
troduced in ref. [22] that Eq. 5 is equivalent to the one
reported in ref. [22]. It should be noticed that Eq. 5 can
be transformed in order to explicitly introduce the pro-
jectile moment of inertia I or equivalently the rotational

excitation energy of the first excited state E2 = 6h̄2/2I.
This clearly shows that in addition to a non zero defor-
mation, a finite I (i.e. a non-zero E2) is needed to get a
reorientation, i.e. a deviation from the AOF.

Eq. 5 shows that the reorientation depends neither on
projectile and target charges nor on the relative energy
but only on the deformation and the mass ratio which
is nothing but an inertia factor. This counter-intuitive
result, which has been exhaustively checked numerically,
can be understood: the increase of the Coulomb inter-
action with charges (like ZpZt) is compensated by an
increase of D0. A similar balance occurs with incident
energy. An increase in E reduces D0 and the time to
interact leading to a zero net effect on the integrated re-
orientation. The strong difference between the two sys-
tems shown in Fig. 1 is thus only due to the difference in
At/(Ap + At), and not to the Coulomb forces.

FIG. 2. For the central collision of 24Mg on 208Pb at the
barrier the orientation ϕ of the 24Mg as function of the relative
distance D predicted by TDHF with the SkM∗ force (solid
line) or by classical simulation (dotted line) and its analytic
approximation (dashed line).

Fig. 2 shows the evolution of ϕ(D) for the central reac-
tion 24Mg+208Pb at the barrier with ϕ∞ = 45◦. Results
from the numerical solution of the classical dynamic of
a deformed rigid body (dotted line) and approximated
analytical expression Eq. 4 (dashed line) are very close.
The small difference observed at the turning point can be
attributed to the higher orders terms in ε. The difference
at large distance is due to the finiteness of D∞ (here
D∞ = 241 fm) in the numerical simulation while the
analytical result integrates the effects from D∞ → ∞.

To take into account the quantal nature of the nu-
clei and to avoid the rigid body approximation, we have
performed TDHF calculations [23–27] of this nuclear re-
action. TDHF is optimized for the prediction of the av-
erage values of one body observables like deformation
and orientation. The evolution of the one-body density
matrix ρ =

∑N
n=1 |ϕn〉 〈ϕn| is determined by a Liouville

equation, ih̄∂tρ = [h(ρ), ρ] where h(ρ) is the mean-field

2



Hamiltonian. We use the code built by P. Bonche and
coworkers [28] with an effective Skyrme mean-field [29].
This code, which does not include pairing, computes the
evolution of a Slater determinant in a 3 dimensional box.
The step size of the network is 0.8 fm and the step time
0.45 fm/c. Two different parametrizations were used,
SkM∗ [30] and SLy4 [31], in order to control that the con-
clusions are almost independent on the force. Because of
the long range nature of the Coulomb interaction, the cal-
culation must be started much before the turning point
typically for D∞ around 200 fm. However, for reactions
below the barrier we can separate the dynamics of the
target from the one of the projectile. Therefore, we have
modified the TDHF code in order to compute the evolu-
tion of the nuclei separately in their center of mass frame.
The chosen box for 24Mg is a cube of side size 16 fm. We
assume that the centers of mass follow Rutherford tra-
jectories and we add the Coulomb field of the partner.

The fluctuations of ε(t) do not exceed 7% and then the
possible excitation of vibrational modes is small and does
not affect the analysis. Fig. 2 shows that the evolutions of
ϕ(D) for classical and TDHF calculations have the same
behavior. The maximum reorientation predicted by this
TDHF calculation is ∆ϕ = 28.2◦ (33.6◦), with the SkM∗

(SLy4) force. Both parametrizations give the same order
of magnitude (∼ 30◦), however the classical expectation
was ∆ϕ ∼ 23◦. This 30%−difference, which is indepen-
dent on the initial orientation as we have numerically
checked, indicates a smaller moment of inertia in TDHF
as compared to the rigid-body classical approximation.
This reduced inertia can be attributed to a spherical core
in the N-body wave-function of the 24Mg which does not
participate to the rotation.

Experimentally, the question is: what is the effect of
the reorientation on fusion cross-sections? A first qual-
itative investigation has been performed using the code
CCDEF [32] to estimate the fusion cross-section σfus(E)
for the reaction 24Mg+208Pb. CCDEF takes into account
the shape of the nucleus on the basis of the AOF. We then
go beyond this assumption by including in CCDEF the
reorientation obtained with TDHF. A commonly used
way to present this excitation function is to compute the
so-called barrier distribution B(E) = ∂2

E2 (σfus(E).E)
[33]. Fig. 3-a shows barrier distributions extracted from
CCDEF without shape effect (i.e. the 1D barrier, solid
line). The width of the peak results from quantum tun-
neling. A prolate deformation β2 = 0.4 of 24Mg with
an isotropic distribution of orientation (dashed line) flat-
tens considerably the barrier distribution with a promi-
nent part on the high energy tail. A low energy shoulder
extending down to ∼ 5 MeV below the 1D barrier max-
imum is responsible for sub-barrier fusion enhancement
(as compared to the single barrier case). Classically, the
low energy part of the barrier distribution can be inter-
preted as coming from ”parallel collisions” whereas the
high energy part comes from ”perpendicular collisions”.

The high energy component dominates because a prolate
nucleus has one elongated direction (low barrier) for two
short axis (high barriers).

FIG. 3. Barrier distribution for the reaction 24Mg+208Pb
a) i- assuming spherical nuclei (solid line); ii- considering a
prolately deformed 24Mg (β2 = 0.4) and the AOF (dashed
line); iii- and including reorientation with (dotted-dashed
line) and without the rotational energy (dotted line); b) CC-
FULL results without (solid line) and with Coulomb coupling
up to a distance of 241 fm (dashed line).

The barrier distributions including the reorientation
predicted by TDHF are plotted in Fig. 3-a both neglect-
ing (dotted line) and taking into account the rotational
energy in the trajectory (dotted-dashed line) which is
a second order correction in ε and then increases only
slightly the barrier. Compared to the AOF prediction
the TDHF results exhibit reduced low energy shoulder
and increased high energy peak. This arises from that
the Coulomb reorientation increases ϕ and thus increases
the barrier height.

This phenomenon is implicitly taken into account in
CC codes like CCFULL [34] when one uses big enough
network to include long range Coulomb couplings (>∼ 200
fm). Fig. 3-b shows CCFULL results including nuclear
(solid line) and nuclear+Coulomb (dashed line) couplings
to the five first excited states of the 24Mg rotational band
with a long range (241 fm). Marked variations appear in
the barrier distribution due to the fact that only the low-
est part of the rotational band is effectively excited [33]
(2+ − 6+ in the present case). We observe, like in Fig.
3-a a decrease of the low-energy component compensated
by an increase of the high energy part of the barrier dis-
tribution. The previous TDHF+CCDEF results allow us
to interpret these variations as an effect of the Coulomb
reorientation.

Consequently, the sub-barrier fusion enhancement ob-
served for reactions involving a light nucleus on a de-
formed heavy ion like 154Sm is expected to be reduced
when the deformed nucleus is light and its collision part-
ner heavy. Experimentally, the effect of the reorientation
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should then be studied by comparing the excitation func-
tions of reactions with deformed projectiles such as 24Mg
on different targets. To simplify the understanding of
the reaction doubly-magic spherical targets such as 16O,
40Ca and 208Pb might be first tested. Eq. 5 shows that
the reorientation should increase with the mass of the
target reducing the sub-barrier fusion cross section.

Finally one may worry about the effect of the nu-
clear reorientation (implicitly included in CCFULL).
We have simulated the fusion of two nuclei in TDHF.
Since TDHF does not allow directly tunneling, we have
studied the modulation of the threshold energy B of fu-
sion reaction as a function of the initial orientation ϕ:
∆B(ϕ) = B(ϕ)−B(0). The deformed nucleus is again
24Mg. To focus on the nuclear contribution we choose a
light spherical target, the 16O, and we start the reaction
at short distance. The observed variation of B appears
to follow, within the numerical error due to the consid-
ered energy step, the sin2 ϕ modulation expected for a
quadrupole deformed projectile in absence of reorienta-
tion. Indeed, we get ∆B(45◦)/∆B(90◦) = 0.45(5) i.e.
an almost negligible deviation from the sin2 law which
predicts 1/2. Inverting the problem to extract the re-
orientation leads to ∆ϕ(45◦) ∼ −3◦. Considering the
short range nature of the nuclear force this effect is ex-
pected to not vary much with the target. Compared with
Coulomb effect this nuclear reorientation appears to be
negligible. This can be related to the range of the forces.
Indeed, the Coulomb interaction is a long range force so
the induced torque has time to rotate the nucleus and
to produce a large reorientation which is proportional to
an average angular velocity times the average time it is
rotating. Conversely, the nuclear field acts over a very
short time so that even if it contributes to the excitation
of rotational states, the nucleus has hardly enough time
to actually rotate.

To summarize, we have studied the reorientation effect
of a deformed projectile on a spherical target. Analytical
results for the classical dynamics of a rigid body, con-
firmed by exact simulations, show that, in contrast to
a naive expectation, the Coulomb reorientation depends
neither on charges nor on relative energy. The relevant
observables are the deformation parameter and the in-
ertias. Those conclusions have been extended to quan-
tum dynamics using TDHF. These calculations show that
the nuclear contribution are negligible and they exhibit
a sizeable increase of the reorientation as compared to
classical calculations, interpreted in terms of a smaller
moment of inertia for the quantum system as compared
to the rigid body approximation. The reorientation is
expected to be maximum when the deformed nucleus is
light and its collision partner heavy. For these systems,
long range Coulomb couplings have to be included in CC
calculations of barrier distributions which show that
sub-barrier fusion is partially hindered by the reorienta-
tion process. We also suggest experiments to measure

the effect of the reorientation on excitation functions.
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