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Classical mechanics and Time Dependent Hartree-Fock (TDHF) calculations of heavy ions collisions
are performed to study the rotation of a deformed nucleus in the Coulomb field of a collision partner.
We show that this Coulomb reorientation is independent on the charges and the relative energy of
the partners. It only depends upon the deformations and the respective masses. Furthermore this
reorientation modifies strongly the fusion cross-section around the barrier for light deformed nuclei
on heavy collision partners. For such nuclei a hindrance of the sub-barrier fusion is predicted.

Tunneling, the slow ”quantum leak” through a classi-
cal barrier, is an intriguing phenomenon in nature. In
1928, Gamow discovered this effect looking for an expla-
nation of the alpha radioactivity [1]. Hence, tunnelling
is one of the foundations of quantum mechanics. How-
ever, the tunneling of complex systems remains to be
understood. As in the Gamow times nuclear physics is
providing one of the most challenging field to understand
the tunneling phenomenon. In particular, fusion reaction
cross sections involving massive nuclei at, or below, the
Coulomb barrier are, in some cases, orders of magnitude
over expectations from one dimensional quantum tunnel-
ing predictions. Couplings between the internal degrees
of freedom and the relative motion deeply modifies the
tunneling phenomenon [2]. Neutron transfer, excitation
of low-lying vibrational and rotational states, neck for-
mation, zero-point motion and polarization of collective
surface vibration as well as static deformation have been
identified as key inputs in the understanding of this sub-
barrier fusion enhancement [3].

This enhancement may become essential when one is
using fusion to produce very rare elements such as super-
heavy nuclei. As pointed out in [4,5], for nuclei with a sig-
nificant static quadrupole deformation, the main effects
are i) on the barrier height (geometrical effect) since the
barrier is lower in the elongated direction and ii) on the
reorientation of the deformed nucleus (rotational effect)
under the torque produced by the long-range Coulomb
force.

In [6–12], fusion excitation functions were measured
for 16O (spherical) + 144−154Sm reactions around the
Coulomb barrier. 144Sm is spherical whereas 154Sm is
prolate with (β2 ≈ 0.3). The data were interpreted as
arising from the different orientations of the deformed
collision partner. An enhancement of the fusion proba-
bility is observed when the deformation axis of the pro-
late nucleus is parallel to the collision axis (”parallel
collision”); and a hindrance is seen when the two axis
are nearly perpendicular (”perpendicular collision”). In
these studies, however, the assumption of an isotropic

orientation distribution of the deformed nucleus at con-
tact was made i.e. the reorientation has been neglected.
In an other hand, authors of ref. [13] recently argued
that the Coulomb force systematically rotates the de-
formed nucleus toward the stable perpendicular config-
uration. This contradicts the classical calculations re-
ported in refs. [14,15] which show that the reorientation
is not complete.

From the quantum mechanics point of view, the reori-
entation is a consequence of the Coulomb excitation of
rotational states. Computational techniques have been
developed in the past to solve coupled channel equations
for multiple Coulomb excitation [16–20] but a good un-
derstanding of the Coulomb reorientation dynamics dur-
ing the approach phase is still required.

In this work we obtain a deeper insight in the Coulomb
reorientation by using both classical approximations,
solving analytically and numerically the equations of mo-
tion of a rigid body, and quantum approaches describing
the colliding deformed nucleus within the time depen-
dent Hartree-Fock (TDHF) approach. Then we will use
these reorientation results in a coupled channel calcula-
tion in order to discuss the induced effects on the fusion
cross-section.

Assuming first a classical treatment of nuclear orienta-
tion i.e. no interference between the various orientations,
the fusion cross section is given by the orientation average
formula [21,22]

σfus. ≈

∫ π

2

ϕ=0

σ(ϕ) sin ϕdϕ (1)

where ϕ is the angle between the deformation and the
collision axis and σ(ϕ) is the associated cross section.

However, the Coulomb force induces a torque which,
integrated over the whole history, up to the distance of
closest approach D0, rotates the initial angle ϕ∞ into ϕ0.
Because of reorientation ∆ϕ = ϕ0 − ϕ∞ 6= 0, the distri-
bution of ϕ0, lostes its isotropy. In this case the sin ϕ
term in Eq. 1 has to be replaced by another distribution
f(ϕ0).

1



To estimate ∆ϕ, we consider the classical motion
of a deformed rigid projectile in the Coulomb field of
the target nucleus. We assume that the projectile of
mass Ap presents a sharp surface at a radius R(θ) =

R0

√

α−4 cos2 θ + α2 sin2 θ where R0 = r0 Ap
1

3 , r0 =

1.2 fm, α = 1 − ε and ε =
√

5
16π β2 (the deformation

parameter).

FIG. 1. Classical calculations of the total reorientation ∆ϕ

(see text) of the deformed collision partner as function of its
initial orientation ϕ∞ for the reactions 24Mg(β2 = 0.4)+208Pb
(solid line) and 154Sm(β2 = 0.3)+16O (dashed line) at the
barrier. The initial distance between the centers of mass is
D∞ = 241 fm.

Fig. 1 shows the evolution of the reorientation as func-
tion of the initial orientation for central collisions at the
barrier B = ZpZte

2/r0

(

A
1/3
t + A

1/3
p

)

where Zp (Ap)

and Zt (At) are the projectile and target number of pro-
tons (nucleons). The figure presents two typical asym-
metric reactions of a prolate projectile on a spherical tar-
get: 24Mg(β2 ≈ 0.4)+208Pb and 154Sm(β2 ≈ 0.3)+16O.
For symmetry reasons ∆ϕ = 0◦ for ϕ = 0◦ and 90◦.
The maximal reorientation ∆ϕmax occurs around 45◦.
For the heavy deformed projectile, 154Sm, ∆ϕmax is less
than 2◦. In the case of 24Mg, the reorientation is large,
∆ϕmax ≈ 23.3◦.

To understand this difference, an approximated expres-
sion for the maximum reorientation is derived, assuming
that ε and ∆ϕ are small and thus considering ϕ∞ = 45◦.
Computing the torque within these approximations leads
to following the equation of motion for ϕ(t)

ϕ̈(t) ≈
3ZpZte

2ε

mApD(t)3
(2)

where m is the nucleon mass and D(t) the distance be-
tween the two nuclei. Replacing the time variable by
ξ(t) = D(t)/D0 and neglecting deformation and rotation
on the dynamics of D(t), Eq. (2) becomes

∂ϕ(ξ)

∂ξ
+ 2ξ (ξ − 1)

∂2ϕ(ξ)

∂ξ2
=

3ε

ξ

At

Ap + At
. (3)

Only the factor At/(Ap + At) remains since the initial
center of mass energy E and the charges have been taken
into account in D0 = D(0) = e2ZpZt/E. The solution of
Eq. 3 is

ϕ(ξ) = ϕ∞ + 2ε
At

Ap + At
(ξ (2 − ζ) − 2 ln ζ + δ) (4)

where ζ = 1+
√

1 − 1
ξ and δ = 2 ln 2− 1/2. Solved up to

the distance of closest approach (ξ = 1), it leads to

∆ϕ = ε
At

Ap + At
(1 + 4 ln 2) . (5)

Eqs. (3) and (5) depend neither on projectile and tar-
get charges nor on the initial energy but only on the de-
formation and on the mass ratio. This counter-intuitive
result, which has been exhaustively checked numerically,
can be understood: the increase of the Coulomb inter-
action with charges (like ZpZt) is compensated by an
increase of the distance of closest approach, D0. A simi-
lar balance occurs with incident energy. An increase in E
simultaneously reduces D0 and the time to interact lead-
ing to a zero net effect on the integrated reorientation.
The strong difference between the two systems shown in
Fig. 1 is thus only due to the difference in At/ (Ap + At),
and not to the difference in the forces i.e. in the nuclei
charges.

Fig. 2 shows the evolution of the orientation as a func-
tion of the distance between the centers of mass for the
central reaction 24Mg+208Pb at the barrier. Results from
the numerical solution of the classical dynamic of a de-
formed rigid body (dotted line) and approximated an-
alytical expression Eq. 4 (dashed line) are very close.
The small difference observed at the turning point can
be attributed to the higher orders terms in ε not taken
into account in Eq. 4. The difference at large distance is
due to the fact that the numerical simulation only start
at a finite value of the initial distance D∞ (D∞ = 241
fm in the presented results) while the analytical results
integrate the effects from D∞ → ∞.

In order to take into account the quantal nature of
the nuclei and to avoid the rigid body approximation, we
have performed TDHF calculations [23–27] of the nuclear
reaction. TDHF corresponds to an independent propa-
gation of each single particle wave function in the mean
field generated by the ensemble of particles. The quan-
tal nature of the single particle dynamics is crucial at
low energy both because of shell effects and of the wave
dynamics. TDHF theory is optimized for the prediction
of the average values of one body observables and so the
deformation and the orientation should be well estimated
by TDHF.

In the TDHF approach, the evolution of the one-body
density matrix ρ =

∑N
n=1 |ϕn〉 〈ϕn| is determined by a

Liouville equation,
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ih̄
∂

∂t
ρ − [h(ρ), ρ] = 0 (6)

where h(ρ) is the mean-field Hamiltonian. We have
used the code built by P. Bonche and coworkers [28]
with an effective Skyrme mean-field [29]. Two different
parametrizations were used, SkM∗ [30] and SLy4 [31],
in order to control that the conclusions are almost in-
dependent on the force. Because of the long range na-
ture of the Coulomb interaction, the calculation must be
started much before the turning point typically for an
initial distance around 200 fm. Under these conditions a
complete calculation which takes into account both nu-
clei would require the propagation of an enormous grid.
However, since the reactions we are considering are below
the barrier we can separate the dynamics of the target
from the one of the projectile. Therefore, we have mod-
ify the TDHF code in order to compute the evolution of
the nuclei separately in their center of mass frame. We
assume that the centers of mass follow Rutherford tra-
jectories. Since we are below the barrier, the distance
of closest approach is large, and then in addition to the
self-consistent potential we have only add the Coulomb
field of the partner.

As an example we consider the central collision of a
24Mg projectile on a 208Pb target at the Coulomb barrier
with the initial conditions (ϕ∞ = 45◦; D∞ = 241 fm).

FIG. 2. For the central collision of 24Mg on 208Pb at the
barrier the orientation ϕ of the 24Mg as function of the relative
distance D predicted by TDHF with the SkM∗ force (solid
line) or by classical simulation (dotted line) and its analytic
approximation (dashed line).

Fig. 2 shows that the evolution of ϕ as function of D
for classical and TDHF calculations have the same behav-
ior. The maximum reorientation predicted by this TDHF

calculation is ∆ϕ = 28.2◦ (resp. 33.6◦), with the SkM∗

(resp. SLy4) force. Both Skyrme parametrizations give
the same order of magnitude (∼ 30◦), however the clas-
sical expectation was ∆ϕ ∼ 23◦. This 30%−difference
in the reorientation indicates a smaller moment of in-
ertia in TDHF as compared to the rigid-body classical
approximation. This reduced inertia can be attributed
to a spherical core in the N-body wave-function of the
24Mg which does not participate to the rotation. This
relative increase due to difference in the moments of in-
ertia is independent of the initial orientation as we have
numerically checked.

Experimentally, the question is: what is the effect of
the reorientation on fusion cross-sections? We have used
the semi-classical coupling channel code CCDEF [32] to
estimate the effect of the modification of the orientation
distribution at the touching point on the fusion cross-
section σfus(E) for the reaction 24Mg+208Pb at various
energies E. The effect of reorientation are taken into ac-
count by introducing the barrier height computed for cen-
tral collisions. A commonly used way to present this exci-
tation function is to compute the so-called barrier distri-
butions B(E) = ∂2

E2 (σfus(E).E) [33]. Fig. 3 shows bar-
rier distributions extracted from CCDEF without shape
effect (i.e. the 1D barrier, solid line). The width of the
peak results from quantum tunneling. A prolate defor-
mation β2 = 0.4 of 24Mg with an isotropic distribution
of orientation (dashed line) flattens considerably the bar-
rier distribution with a prominent part on the high energy
tail. A low energy shoulder extending down to ∼ 5 MeV
below the 1D barrier maximum is responsible for sub-
barrier fusion enhancement (as compared to the single
barrier case). Classically, the low energy part of the bar-
rier distribution can be interpreted as coming from ”par-
allel collisions” (collision along the more elongated axis)
whereas the high energy part comes from ”perpendicular
collisions”. The high energy component dominates be-
cause a prolate nucleus has one elongated direction (low
barrier) for two short axis (high barriers).

The reorientation predicted by TDHF are plotted in
Fig. 3 as a dotted line. We see that the low energy shoul-
der is strongly reduced while the high energy peak in-
creases. This arises from that the reorientation increases
the angle between the collision and the deformation axis
and thus increases the barrier height. Consequently, the
sub-barrier fusion enhancement observed for reactions
involving a light nucleus on a deformed heavy ion like
154Sm is expected to partly disappear when the deformed
nucleus is light and its collision partner heavy.
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FIG. 3. Barrier distribution for the reaction 24Mg+208Pb
obtained from CCDEF i) assuming spherical nuclei (solid
line); ii) considering a prolate deformed 24Mg (β2 = 0.4) and
an isotropic distribution of its orientations at the touching
point (dashed line); iii) and including reorientation effects
(dotted line).

Experimentally, the effect of the reorientation should
be studied by comparing the excitation functions of reac-
tions of deformed projectiles such as 24Mg projectile on
different target. To simplify the understanding of the re-
action doubly-magic spherical targets such as 16O, 40Ca
and 208Pb might be first tested. Eq. 5 shows that the
reorientation should increase with the mass of the target
reducing the sub-barrier fusion, cross section.

To summarize, we have studied the reorientation effect
of a deformed projectile on a spherical target. Our ana-
lytical results for the classical dynamics of a rigid body,
confirmed by exact classical simulations, show that, in
contrast to a naive expectation, the Coulomb reorienta-
tion depends neither on charges of both partners nor on
their relative energy. The relevant observables are the de-
formation parameter and the masses. The reorientation
is then expected to be maximum when the deformed nu-
cleus is light and its collision partner heavy. Those con-
clusions have been extended to quantum dynamics using
TDHF. These calculations show a sizeable increase of the
reorientation as compared to classical calculations. This
increase is interpreted in terms of a smaller moment of
inertia for the quantum system as compared to the rigid
body approximation. Calculations of barrier distribu-
tions, performed with a coupled channel code, show that
sub-barrier fusion is partially hindered by the reorienta-
tion process. We finally suggest experiments to measure
the effect of the reorientation on excitation functions.
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lacco are aknowledged for fruitful discussions. M. Faure
is thanked for his programming work. We also thank P.
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