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Abstract 

 

Total Gaseous Mercury (TGM) has been monitored at Champ sur Drac, a suburban site of 

Grenoble in southern east France. TGM measurements have been made over 4 periods of about 10 

days throughout 1999-2000 using cold vapour atomic fluorescence absorption technique. The first 

monitoring campaign was initiated on November 4, 1999, followed by three other campaigns 

respectively on January 12, 2000, April 10, 2000 and July 17, 2000. Concurrent monitoring of O3, 

NO, NO2, SO2 and of meteorological parameters have also been performed. The mean TGM 

concentration was 3.4 ng
 
m

-3
 with maximum hourly mean concentration of 37.1 ng

 
m

-3
. Although 

mean TGM concentration was not greatly different from those previously measured in the 
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troposphere, the greater TGM variability as well as the occurrence of high TGM concentration 

linked to particular wind conditions suggested the strong influence of anthropogenic sources. The 

chlor-alkali plant located nearby, the others chemical industries using fuel combustion and the 

municipal waste incinerator were thought to contribute to mercury pollution events. 

 

Keywords: Total Gaseous Mercury; Atmosphere; Variability; France; Anthropogenic sources 

 

1. Introduction 

 

Since the pollution prevention concept emerged many years ago (Pacyna, 1986), there has been a 

growing concern about air quality in urban areas. To improve urban air quality, environmental 

policy makers expressed widespread interest in controlling and regulating major gaseous pollutants 

such as O3, CO, NO, NO2, SO2 and VOC (Volatile Organic Compounds). However gaseous 

mercury supervision is only from time to time included in urban pollution monitoring whereas the 

knowledge of its distribution and transport pathways are of critical importance. Enlarging air 

pollution monitoring program to atmospheric gaseous mercury survey can only ensure this. 

Gaseous elemental mercury (Hg°) is the dominant form (~ 98% e.g. Poissant, 2000) of mercury 

in the atmosphere. Elemental mercury is very insoluble, unreactive (Schroeder and Munthe, 1998, 

Tokos et al., 1998) and thus has a residence time in the atmosphere of about 0.5-2 years (Lindqvist 

and Rodhe, 1985; Slemr et al., 1985; Munthe and McElroy, 1992). Therefore Hg° is well mixed 

atmospherically and Total Gaseous Mercury (TGM) concentration is in the range 1-5 ng
 
m

-3
 in the 

troposphere (Lee et al., 1998; Ebinghaus and Slemr, 2000; Urba et al., 2000). 

Mercury is emitted into the atmosphere from a variety of natural and anthropogenic sources. The 

natural sources include volcanoes, crustal degassing, forests, lakes and oceans (Lindqvist and 

Rodhe, 1985, Mason et al., 1994), while fossil-fuel combustions, incineration, metallurgical 

processes and chlor-alkali plants constitute the largest part of anthropogenic Hg emissions (Pirrone 
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et al., 1996). In French urban areas, waste incineration is the major source of Hg (CITEPA, 2000). 

The other contributions are coal combustion followed by chlor-alkali plants, wood combustion and 

metallurgic processes. Once emitted, mercury is involved in many physical and chemical 

transformations (Schroeder and Munthe, 1998; Lin and Pehkonen, 1999) and can be deposited by 

wet and dry processes to environmental surfaces. These deposition processes are more efficient if 

mercury is in the +II oxidation state (Lindberg and Stratton, 1998). 

Since information on background concentrations and anthropogenic sources are still lacking for 

many places in Europe, we present here the first automated long-term, high time resolution 

measurements of TGM concentration in France. To our knowledge, this report constitutes the first 

presentation of extended atmospheric mercury data from a site in France. We attempted to compare 

these data with other pollutants (O3, NO, NO2, SO2) concentrations and meteorological parameters 

(wind speed, wind direction, atmospheric pressure, temperature, solar irradiation and precipitation 

intensity). An assessment of potential anthropogenic mercury sources and their influence on our 

measurement site are also provided. 

 

2. Material and methods 

 

2.1 Site characteristics 

 

TGM concentrations were determined in the vicinity of Grenoble in the south east of France 

(Fig. 1). The measurement station is located at Champ sur Drac (45.080° N, 5.730° E, 267 meters 

a.s.l.) which is a suburban site of Grenoble, characterized by an industrial zone in the north and 

particularly a chlor-alkali plant (Fig. 2) using mercury cell process. Grenoble (~400,000 

inhabitants) is ~10 km north from the site and has one of the largest municipal waste incinerator in 

the area. 

 



 4

2.2 Sampling and analysis 

 

TGM measurements were performed during four ~10-days campaigns. The first campaign was 

initiated on November 4, 1999. Others measurements followed respectively on January 12, 2000, 

April 10, 2000 and July 17, 2000.  

Air samples were automatically collected outside with a Teflon line at 3 meters above the 

ground. We initiated routine measurements with an automated Gardis 1A+ analyser (Ekoservis, 

Lithuania) using the double amalgamation technique followed by Cold Vapour Atomic Absorption 

Spectrometry (C.V.A.A.S.). During each campaign TGM concentrations were measured every 15 

minutes, 24 hours a day. The analyser, housed in air-conditioned shelter, was programmed to 

sample air at a flow rate of 1 l
 
min

-1
. Particulate matter was removed by 25-mm diameter Teflon 

filter (0.5 µm). The performances of the Gardis analyser for TGM monitoring have already been 

verified successfully through atmospheric measurements (Urba et al., 1995; Tan et al., 2000; Urba 

et al., 2000) and international intercomparison exercises (Ebinghaus et al., 1999; Munthe et al., 

2001). Full details concerning accuracy and precision of our instrument can be found elsewhere 

(Ferrari et al., 2000) and calibration procedures and curves are given in Ferrari et al. (2001). A 

detection limit of about 0.1 ng m
-3

 was achieved. 

Moreover concurrent monitoring, recorded every 15 minutes, of meteorological parameters 

(wind speed, wind direction, atmospheric pressure, temperature, solar irradiation and precipitation 

intensity) and of O3, NO, NO2, SO2 facilitates the interpretation of Hg data. 

 

3. Results and discussion. 

 

3.1 Annual, seasonal and diurnal variability of TGM  
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A statistical summary of TGM data subdivided into their respective seasons is presented in Table 

1. The mean seasonal TGM concentration varies throughout the year from 1.9 ng
 
m

-3
 to 4.8 ng

 
m

-3
. 

The mean TGM concentration (plus 1 SD) calculated over the year is 3.4 ± 3.6 ng
 
m

-3
 (N = 3596). 

Maximum TGM concentration was recorded in July (45.9 ng
 

m
-3

) with an hourly mean 

concentration of 37.1 ng
 
m

-3
 for this event.  

Ozone mean concentrations are ranging from ~7 ppbv for winter data to ~30 ppbv for summer 

data with peaks up to ~70 ppbv. In southern Quebec, Poissant (1997) observed some evidence of 

chemical oxidation of TGM by ozone under high water vapour mixing ratio and ozone 

concentration higher than 30 ppbv. In Champ sur Drac, no significant correlation was noticed 

between TGM and ozone values. One cannot conclude that there is no oxidation of Hg° by ozone. It 

rather confirms that this reaction is slow and that reactions in urban atmosphere are various and 

complex.  

The average TGM concentration for each season as well as for the entire set of data are 

comparable to those typically measured in the troposphere (i.e. in the range 1-5 ng
 
m

-3
, e.g. Lee et 

al., 1998; Ebinghaus and Slemr, 2000; Urba et al., 2000). Nevertheless, as regarding the temporal 

variability of 15 min TGM data (Fig. 3), one can notice that under particular wind conditions a 

strong influence of anthropogenic sources of Champ sur Drac and Grenoble is observed. Although 

low TGM concentrations (around 2 ng
 
m

-3
) are the most recurrent, there are many peaks above 10 

ng
 
m

-3
 in each campaign (approximately 10 % of fall and summer data). 

There are limited published data in France with which to compare our measurements. It is thus 

difficult to address a precise comparison regarding the Hg levels in French cities. Nonetheless, Hg° 

has already been determined in a few air samples in Bordeaux (Pécheyran et al., 2000) using a 

different technique. They found mean Hg° concentrations of 2.7 ng
 
m

-3
 and 4.0 ng

 
m

-3
 in open urban 

area and suburban sites respectively. However, the number of samples collected was limited and 

inadequate to discuss on TGM variability.  
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On the other hand, several atmospheric TGM monitoring campaigns have been already achieved 

in the rest of the world. Measurements made in clean atmosphere have shown relatively similar 

pattern with concentration of the order of 1.5 ng
 
m

-3
 and with a variability of low amplitude. Indeed, 

in the atmosphere over the southern Baltic Sea coast, Urba et al. (2000) reported mean TGM 

concentration of 1.37 ng
 
m

-3
 and 1.94 ng

 
m

-3
 (in the range 0.68-2.20 ng

 
m

-3
 and 0.98-3.81 ng

 
m

-3
 

respectively). Schroeder et al. (1995), during the first winter cruise of the ”Polarstern” from 

Germany to the Nordic Seas recorded a mean concentration of 1.47 ng
 
m

-3
 (0.67-2.82 ng

 
m

-3
). 

Measurements performed at the summit of Wank mountain in Germany (Slemr and Scheel, 1998) 

showed data ranging from 1.80 ng
 
m

-3
 to 3.77 ng

 
m

-3
 with an annual mean of 1.82 ng

 
m

-3
 for the 

year 1996. More recently a coordinated study in Europe showed mean TGM concentration in the 

range of 1.6-2.4 ng
 
m

-3
 in the Northern Europe and the Mediterranean area (Wängberg et al., 2001).  

However Lee et al. (1998) mentioned a greater variability for measurements made closer to 

sources. It is well illustrated by measurements reported by Poissant (2000) around Montreal that 

show low TGM mean concentration with highly variable concentration. Although our mean TGM 

concentration is obviously higher owing to the proximity of strong Hg sources, our measurements 

reveal a similar pattern, since the variability and the amplitude of TGM concentrations are 

important. Nevertheless, we could expect a greater influence of anthropogenic sources with a higher 

mean TGM concentration. Indeed as we mentioned previously our measurement site is close to a 

chlor-alkali plant (less than 4 km). Earlier studies conducted near chlor-alkali complex using 

LIDAR technique (Ferrara et al., 1992) or air collection on gold traps (Maserti and Ferrara, 1991) 

exhibited that the mercury levels measured in the atmosphere decrease rapidly a few hundreds 

meters from the plant. It appears also that background values around 3-5 ng
 
m

-3
 are reached in the 

vicinity (1~2 km) of the plant. Hence, it appears that high TGM values were recorded from time to 

time reflecting the influence of local anthropogenic sources. However, as regarding the entire set of 

data, our measurement site seems not to be heavily polluted in comparison with previous studies in 

urban areas showing higher mean TGM values (e.g. mean TGM~10 ng
 
m

-3
, Fukuzaki et al., 1986; 
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Kim and Kim, 2000; Tan et al., 2000). Moreover, since the spring campaign was hardly influenced 

by local anthropogenic sources (see discussion in paragraph 3.2), the mean TGM value of 1.9 ng
 
m

-3
 

is in very good agreement with values measured during the MOE/MAMCS campaign performed in 

1998-1999 (Wängberg et al., 2001). 

 

As regarding short-term variability, we tried to give a careful interpretation of this data. First, 

due to the limitation of our seasonal database and because of the strong variability of these data due 

to the influence of local anthropogenic sources, it is difficult to address a precise analysis. Then, 

trends presented here may reflect the temporal variations of meteorological parameters and also 

temporal variation in emissions. Indeed there are periods clearly identified (see paragraph 3.2) when 

an exceptional windy period is affecting significantly TGM data. Concerning the temporal 

variations in emissions, we established that the main sources around this site were the waste 

incinerator and the chlor-alkali plant. The other sources were considered as minor sources. Then, 

sources suspected to be highly variable in emission (such as heating for residential facilities) were 

supposed not to influence the short-term trends as a result of their minor importance in emission. 

According to the activity of the chlor-alkali plant and the waste incinerator, we were convinced that 

their productions remain constant during periods longer than one day. However, a diurnal variation 

of emission from the chlor-alkali plant may happen and will be discuss after. 

According to the mean seasonal TGM concentration, TGM is significantly higher in fall than 

respectively in summer and winter whereas the mean concentration is lower in spring. Many 

authors reported various pattern in TGM concentration seasonal variation. Higher concentrations 

were often observed in winter (Lindqvist, 1991; Kim and Kim, 2000; Poissant, 2000). Our data do 

not show such a trend suggesting that heating for residential facilities may not represent a 

significant source of mercury in Champ sur Drac. Influence of such a source may also be hidden by 

another stronger anthropogenic contribution. Nevertheless, as our data are recorded on about 10 
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days campaigns in each season, they cannot be significant as a real seasonal trend. Particular 

meteorological condition and especially atmospheric vertical distribution may influence them. 

To elucidate any diurnal pattern within the data, we divided the data both seasonally and 

diurnally. The diurnal variability is displayed on a ratio scale, calculated as deviation from the mean 

concentration in figure 4. We are aware of the difficulty to reveal a clear diurnal pattern for a site 

under obvious anthropogenic disturbance. However some phenomenon may be worthwhile to be 

discuss. In fall, winter and summer, an increase of TGM with the sunset seems to occur. We noticed 

that in this particular case TGM correlated better with the increase of temperature than with solar 

irradiation. This fact is clearly illustrated in summer when the TGM concentration increases rapidly 

concurrently with the first hot hours of the day. We speculated that it could be an illustration of both 

emission and reemission processes. On one hand it could reflect the volatility of many Hg species 

(mostly elemental mercury) emitted from natural areas around our site (Lindberg et al., 1991). On 

the other hand reemission of Hg species previously deposited is likely to occur. Therefore, 

temperature and solar irradiation could be two parameters affecting these processes. An increasing 

temperature and solar irradiation could activate and dissociate divalent mercury complexes through 

photoreduction reactions (Lindqvist, 1991). Then, emission processes could be accelerated as the 

temperature increases. However this is not consistent with midday measurements that should show 

highest values. Undoubtedly, emission and reemission processes provide a part of the TGM signal, 

however a clear identification is not achievable owing to the proximity of anthropogenic sources. 

We sometimes observed high Hg concentration during the night time. It may represent an 

influence of nocturnal boundary layers form (Lee et al., 1998), trapping TGM near the surface. As 

focusing more in detail on night time data, during these events low wind speed and declining air 

temperature were observed. As Schmolke (1999) suggests, TGM concentration may increase as a 

result of low air-mass exchange and mixing. Thus it may indicate a local source for atmospheric 

mercury. Therefore, we cannot exclude the hypothesis of higher mercury emission from the chlor-

alkali plant during the night. Because of the lower cost of electricity during the night, the chlor-
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alkali plant may increase its chlorine production and in this way the amount of Hg released. A 

previous study performed in a European chlor-alkali complex has also pointed out this phenomenon 

(Ferrara et al., 1992). However, this interpretation of seasonal and diurnal TGM variability may be 

misleading as the hourly mean have been calculated for a modest number of values (roughly 40 

values for each hourly mean). Therefore, as a result of the high amplitude of TGM values on a 10-

days period, the confidence interval for mean is sometimes too large in order to deal with a 

significant interpretation.  

 

3.2 Influence of anthropogenic sources 

 

Primary, we attempted to give an assessment of potential mercury sources in the area of 

Champ/Drac. First, we had to deal with the chlor-alkali plant located in the vicinity of our 

measurement site. 155,000 t of chlorine are produced yearly in this plant. According to several 

authors, mercury emission factors for chlor-alkali plants are in the range 1.4-5.3 g t
-1

of chlorine 

(Pacyna and Münch, 1991; Ferrara et al., 1992; US EPA, 1997; Mukherjee et al., 2000). Adopting 

an emission factor of ~4 g t
-1

, reported by Ferrara et al. (1992) for a similar plant, this chlor-alkali 

plant may release about ~620 kg y
-1

 of Hg into the atmosphere. Taking into account emission 

factors available in the literature and mentioned above, the range of emission would be 220-820 kg 

y
-1

. Concerning the municipal waste incinerator in Grenoble, we calculated that ~280 kg of Hg may 

be injected per year in the atmosphere. This estimation is based on an emission factor of 2 g t 
-1

 of 

waste burned (Bouscaren and Houllier, 1986) and a total mass of 140,000 t of waste burned in 1999. 

As the chemical composition of municipal refuse and the emission control technique vary from an 

incinerator to another, it is difficult to adopt a global emission factor. We have chosen an emission 

factor, which is thought to correspond better to this incinerator. This emission factor is in agreement 

with those reported in the literature, i.e. in the range 0.3-9 g t 
-1

 (Pacyna and Münch, 1991; Hester, 

1994; Pirrone et al., 1996; US EPA, 1997) leading to a wide range of emission between 40 and 
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1,260 kg y
-1

. Nevertheless, mercury emissions are probably underestimated while medical wastes 

are also burned in this incinerator. Indeed the Hg concentrations in medical wastes may be 10 to 50 

fold higher (Pirrone et al., 1996) than that for municipal wastes. The heating company of Grenoble 

uses coal, oil, natural gas, wastes and wood as fuels. We estimated that this boiler may emit ~11 kg 

y 
-1

 of mercury. We had access to information concerning the crematorium of Grenoble. With an 

emission factor of ~3 g/body (OSPAR, 2000), its contribution was found to be approximately 6 kg 

per year. 

In order to examine the influence of anthropogenic sources on our measurement site, we sorted 

in figure 5 TGM concentration above 10 ng
 
m

-3
 related to wind direction. We have chosen to keep 

wind direction values that wind vector component should be at least 1 m s 
-1

. Most of the TGM 

peaks occurred under north-northwest or north wind condition. This wind direction corresponds to 

air masses travelling over industries located at the north of our site and also over the city of 

Grenoble. Thus mercury is probably generated by local point sources in Champ sur Drac such as the 

chlor-alkali plant and others chemical industries using fuel combustion and also by Grenoble 

sources included waste incinerator and heating company.  

As discussed earlier the TGM concentration was lower in spring than in all other season. It 

appears clearly that the spring monitoring period was quite unusual (Fig. 6). We identified 3 windy 

periods (period 1,2 and 3, see Fig 6) lasting approximately one day. As a result of a continuous 

wind, the accumulation of trace gases emitted by local sources as SO2, NO and TGM in the 

atmosphere was less efficient. Between these periods the wind speed was weak and we recorded 

high TGM values attributed to local anthropogenic sources. Indeed during the windy periods, the 

site was exposed to air masses coming mainly from the South. This area is a mountainous region 

where no important sources of mercury were identified. Consequently air parcels from the south are 

thought to be clean in mercury. Hence, the impact of local anthropogenic sources seems to be a 

factor affecting significantly TGM concentration in the air of Champ sur Drac.  
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As we focused more in details on TGM and SO2 data, we observed the existence of similar 

variation between TGM and SO2 concentration. These similarities between TGM and SO2 peaks are 

especially well illustrated during the summer campaign (Fig. 7). The correlation coefficient for this 

period is R² = 0.35 (N = 150). It might suggest that some fuel combustions contribute to TGM 

signal. However this relationship is weak and combustion sources cannot be discriminated because 

there are events when TGM follows the concentration of SO2 quite similarly in time, but it also 

exists SO2 concentration peaks without corresponding increase of TGM. Combustions around 

Champ sur Drac may provide a part of atmospheric mercury signal. Nevertheless, wind direction 

dependence of some high TGM values and occurrence of TGM peaks that cannot be explained by 

closest combustion sources, indicate a mixture of pollution from the chlor alkali plant and the waste 

incinerator. 

 

4. Conclusions 

 

The high variability of TGM values is the first clear evidence of the influence of local 

anthropogenic sources. We estimated that the main local anthropogenic sources were the chlor-

alkali plant and the waste incinerator (we speculated a total amount of~900 kg Hg emitted per year).  

A similarity between SO2 and TGM concentrations profiles was sometimes observed that may 

indicate common sources. 

Relationship between emission sources north of the site and wind direction was clearly 

identified. Most of high TGM values were observed concurrently with a north wind. Moreover 

during the spring measurement campaign, when the wind was stronger and/or from the south 

(where no Hg sources were identified), mean TGM concentration reached background values of 1.9 

ng m
-3

. 
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For the first time, an extended TGM database has been constituted in France. Since these data 

are scarce in France, and in order to develop for instance atmospheric transport models in Europe, 

such database are clearly needed. 
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Figure captions 

 

Figure 1: Map of Grenoble area located in the south east of France. 

Figure 2: Sampling site location. 

Figure 3: Temporal variability of TGM (15 minutes data) at Champ sur Drac in 1999-2000. 

Figure 4: Diurnal variability of TGM, (a) in fall, (b) in winter, (c) in spring, (d) in summer, 

presented on a ratio scale, calculated as deviation from the mean.  

Figure 5: Gaseous mercury concentration vs. wind direction. Concentration scale starts from 10 ng
 

m
-3

. 

Figure 6: TGM concentration and wind speed measured from 10 to 20 April 2000 (Spring 

campaign)  

Figure 7: Variations of TGM and SO2 concentrations during summer 2000 (hourly mean). 
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Table 1: Statistical summary of TGM data at Champ sur Drac in 1999-2000. 

 

Season TGM (ng
 
m

-3
) 

 Period Mean S.D. Min. 25% 

percentile 
Median 75% 

percentile 
Max. 

Fall 11/04/99-11/16/99 4,8 4,0 0,5 2,1 3,1 6,3 26,9 

Winter 01/12/00-01/24/00 3,1 2,4 0,1 1,3 2,8 4,6 16,1 

Spring 04/10/00-04/20/00 1,9 2,3 0,2 0,6 1,0 2,3 17,3 

Summer 07/17/00-07/31/00 3,7 4,7 0,1 1,0 2,1 4,5 37,1 

Overall  3,4 3,6 0,1 1,1 2,3 4,4 37,1 
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FIGURE 4 
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Figure 7
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