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We here decribe a method of removing thransitions of a weighted automaton. The existence ofatisol for this
removal depends on the existence of the star of a singlexmwehich, in turn, is based on the computation of the stars
of scalars in the ground semiring. We discuss two aspectedtar problem (by infinite sums and by equations) and
give an algorithm to suppress thdransitions and preserve the behaviour. Running comjgexare computed.

Keywords: Automata with multiplicitiesg-transitions, behaviour, star of matrices.

1 Introduction

Automata with multiplicities (or weighted automata) areeasatile class of transition systems which can
modelize as well classical (boolean), stochastic, tracedautomata and be applied to various purposes
such as image compression, speech recognition, formalifitig (and automatic treatment of natural
languages too) and probabilistic modelling. For genéeslibver automata with multiplicities see [1] and
[10], problems over identities and decidability resultsloese objects can be found in [11], [12] and [13].
A particular type of these automata are the automatassitansitions denoted by-e-automata which are
the result, for example, of the application of Thompson meétio transform a weighted regular expression
into a weighted automaton [14]. The aim of this paper is tdgtine equivalence betwedre-automata
andk-automata. Indeed, we will present here an algebraic mdthodder to compute, for a weighted
automaton withe-transitions (choosen in a suited class ) an equivalenthteiautomaton withoud-
transitions which has the same behaviour. Here, the cladfusdransitions implies the existence of the
star of transition matrix fog. Its running time complexity is deduced from that of the rixatrultiplication

in K™ In the case of well-known semirings (like boolean and tafji the closure is computed in(65)
[15]. We fit the running time complexity to the case wheis a ring.

The structure of the paper is the following. We first recall §ection 2) the notions of a semiring and
the computation of the star of matrices. After introduciimgSection 3) the notions ofleautomaton and
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k-e-automaton, we present (in Section 4 and 5) our principaillt@gich is a method of elimination of
e-transitions and show particular cases of series on whichesult can be applied. In Section 6, we give
the equivalence between the two types of automata and digsuslidity. A conclusion section ends the
paper.

2 Semirings

In the following, a semiringk, @, ®,0k, 1) is a set together with two laws and their neutrals. More
precisely(k,®,0k) is a commutative monoid with0as neutral andk, ®,1y) is a monoid with & as
neutral. The product is distributive with respect to theiidd and zero is an annihilator (& x =

X® Ok = Ok) [7]. For example all rings are semirings, wherébis+, x,0,1), the boolean semiring =
({0,1},V,A,0,1) and the tropical semirind = (R, U {c},min,+,%,0) are well-known examples of
semirings that are not rings. The star of a scalar is intrediny the following definition:

Definition 1 Let x€ k, the scalar y is a right (resp. left) star of x if and only(¥®vy) ® 1x =y (resp.
(yox)&l=y).

If y € kis a left and right star of € k, we say thay is a star forx and we writey = x®.

Remark 1 Left or right stars need not exist and need not coincide (geeples below).

Example(s) 1

1. Fork = C, any complex number# 1 has a unique star whichys= (1—x)~. In the caséx| < 1,
we observe easily thgt=1+x+ x>+ ---.

2. Letk be the ring of all linear operatof®[x] — R[x]). LetX andYy defined byX (x%) = 1, X (x") =
X" — X1 with n > 0 andYy(X") = (n+ 1)~ X" + a with a € R. ThenXYy +1= Y4 and an
infinite number of solutions exist for the right star (whishniot a left star itx £ 0).

3. Fork =T (tropical semiring), any number> 0 has a unique star= 1.

We can observe that if the oppositex of x exists then right (resp. left) stars wfare right (resp. left)
inverses of(1¢ (—x)) and conversely. Thus, if they exist, any right st& equals any left stax®' as
X =x® @ (1 (—x) @x®) = (x¥ @ (1a (—X))) @ x® = x®r. In this case, the star is unique.

If nis a positive integer then the 9&t" of square matrices with coefficientskrhas a natural semiring

structure with the usual operations (sum and product). Tight] star ofM € k™" (when it exists) is a
solution of the equatioMY + 1,.n =Y (Where %n is the identity matrix). LeM € k™" given by

a a
M — 11 Q12
g1 age

whereag; € kPP, ap, € kP*9, ap1 € k%P anday, € k979 such thatp+ g = n. Let N € k™" given by

N — Air A
A1 A
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with
A1 = (a11+ a10ap2 az1)” (1)
A2 = a11"a10A2 2
Az1 = ax*aAil 3
Ay = (ag2+ aziazr*an)” (4)

Theorem 1 If the right hand sides of the Formulas (1), (2), (3) and (4¢ defined, the matrix M admits
N as aright star.

Proof. We have to show thal is a solution of the equatiody + 1,.n = y. By computation, one has
a1 ap Al Agp loxp Opxq
MN+1=
+ < a1 a2 > ( A1 Az >+< Ogxp  1gxq

_ [ atAntazAor+1lpcp anArz+ahz
ap1A11 + axPo1 a1A12 + A22A22 + 1gxq

where Q. is the zero matrix irkP*9. We verify the relations (1), (2), (3) and (4) by:

attArr+aAor+lpp = artAnr+ ardyaiAtr+ lpxp =
Arr(arr+aa a) +1pxp = Anr
artAro+aAr, = anair aAs+afor =
(a1 + DagoPo2 = anr" &Aoo = An2
a21A11+apfr1 =  ax1Ar1+azax aziAll =
(1+agpa™)aiA11 = ax'aziAir = Aor
ag1A12+ a2+ lgxg = a1’ aisAo+axAo+ lgxg =
(appaz1an1"al2)Aoo+1gxqg = Az

Remark 2 i) Similar formulas can be stated in the case of the left Stae matrix N is the left star of M
with

A1 = (a11+ a10ap2"az1)”

A12 = Aqiagoa07"

Az1 = Azaziags”

Agy = (ag2+ aziar1"ain)”
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i) In [8] and [16], analog formulas are expressed for the cpuatation of the inverse of matrices when k
is a division ring (it can be extended to the case of rings).

iii) The formulas described above are valid with matricesany size with any block partitionning. Ma-

trices of even size are often, in practice, partitionnea istjuare blocks but, for matrices with odd di-
mensions, the approach called dynamic peeling is applieateMpecifically, let Me k™" a matrix given

by
M — ailr ae
a1 axp
where ne 2N + 1. The dynamic peeling [9] consists of cutting out the maimitie following way: a; is
a(n—1) x (n—1) matrix, aizis a(n— 1) x 1 matrix, g1 is al x (n— 1) matrix and a2 is a scalar.

Theorem 2 Let k be a semiring. The right (resp. left) star of a matrixiagesne N can be computed in
O(n“) operations with:

e w< 3ifkisnotaring,
e < 2808ifkisaring,
e W< 2.376ifkis afield.

Proof. Forn=2"eN, letT;, T,X andT; denote the number of operatiogs ® and® in k that the
addition, the multiplication and the star of matrix respesty perform with an input of size. Then

=1 5)
Th=2T1  +8Tx  +4T" ;

by Theorem 1. For arbitrary semiring, one fgs ; = 22(m-1) |f kis a ring, using Strassen’s algorithm

for the matrix multiplication [19], it is known that at mogP%(”) operations are necessaryklis a field,
using Coppersmith and Winograd’s algorithm [3], it is knotliat at mosh?376 operations are necessary.
Suppose that ; = 2(m-D@_The solution of the recurrence relation (5) is

m (6+2‘°*1)+8-2m‘”
2904 20-4

1
44+ §(m+ 1)4

where the leading term is". O

The running time complexity for the computation of the rigtesp. left) star of a matrix depends @8,
Te andTg, but it depends also on the representation of coefficientsdnhine. In the case= Z for
example, the multiplication of two integers is computed img(m)log(log(m))), using FFT ifm bits
are necessary [18].
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Theorem 3 The space complexity of the right (resp. left) star of a matfisize ne N is O(n?log(n)).

Proof. Forn=2"e N andk a semiring, leE}, denote the space complexity of operatiothat the star
of matrix perform with an input of size. Then

E;=1
Ejn=12.22"1paE" | ©

The solution of the recurrence relation (6) is

—5-4™+ (6m+6)4™

where the leading term iw- 4™. O

The running of the algorithm needs the reservation of merapages for the resulting matrix (the star of
the input matrix) and for intermediate results stored ingenary locations.

Let k((Z)) be the set of noncommutative formal series witlas alphabet (i.e. functions on the free
monoidX* with values ink). It is a semiring equipped with- the sum and the Cauchy product. We
denote bya (?) and(?)a the left and right external product respectively. The é2af of a formal series
is well-defined if and only if the star of the constant ternséx{10, 1]. The set RATY) is the closure of
the alphabek by the sum, the Cauchy product and the star.

3 Automata with multiplicities

Let X be a finite alphabet aridbe a semiring. A weighted automaton (or linear represemtatif dimen-
sionn on X with multiplicities ink is a triplet(A, p,y) where:

e A € k™" (the input vector),
e W:Z — k™" (the transition function),
e ye k™1 (the output vector).

Such automaton is usually drawn as a directed valued grageh Rigure 1). A transitiorii,a, j) €
{1,...,n} x Zx {1,...,n} connects the statewith the statej. Its weight isp(a)i;. The weight of the
initial (final) statei is A; (respectivelyy;). The mappingtinduces a morphism of monoid fro&f to k™",
The behaviour of the weighted automatarbelongs tk((Z)). It is defined by:

behavioufa) = g*()\u(u)y)u.

More precisely, the weighbehaviouf4 ), u) of the wordu in the formal series behavidur) is the weight
of ufor thek-automatom (this is an accordance with the scalar product denotdshr) := S(u) for any
functionS: z* — k[2]).
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al3 all

b|1 b|4
all

3 1

Figure 1: A N-automaton

Figure 2: A N-g-automaton

Example(s) 2 The behaviour of the automatenof Figure 1 is

behavioufs ) = 3Ulat14lVlbyay
uvez*

Letu=aba Then, its weight in7 is:

AH(U)y = Au(a)u(b)u(a)y
3 1 10 3 1 0
=(3 O)<o 1)(0 4><o 1><1>21'

The set REE(X) is known to be equal to the set of series which are the behawefak-automaton. We
recall the well-known result of Schiltzenberger [17]:

REG(Z) = RAT(Z).

A k-g-automatong, is ak-automaton over the alphabEf = ZUE€ (see Figure 2). We must keep the
reader aware thdtis considered here as a new letter and that there exists ay aop for = = (ZUE)*
denoted here by. The transition matrix of is denotedl.

Example(s) 3 In Figure 2, the behaviour of the automatanis

behavioufa,) = 16 (l%zi (aé)i> & = 188(2aE)"¢.
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4  Algebraic elimination
Let ® be the morphism fronx; to Z* induced by

It is classical that the morphism can be uniquely extended to the polynomial&(¥) as a morphism
of algebrak(Z¢) — k(X) by, for P a polynomial,

PP)=(H (Pluyu)= > ( (Pv))u @)
UZ* UZ* tb(%:u
as, in this case, the sum
> (Plv) (8)
P(v)=u

is a finite-supported sum and then well defined. But, we rerterkthe set of preimages of
u=aiay...anbydis
{v| (V) =u} =Ea€'ay---E ane" 9)

This shows that, in this case, all preimages are infinite amavill discuss on the convergence of the sum
z¢(v):u<P|V>-
In the sequel, we will extend formula (7) in two ways:

1. Tothe series for which the sum (8) remains with finite supftbis set is larger than the polynomials
and include also the behavioursssdutomata with an acyclitransition matrix). We will call them
®-finite series EF series).

2. Having supposed the semiring endowed with a topologyatdeast, an “infinite sums” function)
we define the set of series for which the sum (8) converge dfinition covers the behaviour of
classical booleas-automata). We will call therd-convergent series=C series).

After these extensions, we will prove that the behaviouhefautomaton obtained by algebraic elimina-
tion is the image by (the erasure of) of the behaviour (irk((Z¢))) of the initial automaton.

5 FF and FC series

5.1 FF (®-finite) series

Let Se k({Z¢)) be a formal series, we recall that the suppors&f given by:
SUPHS) = {ve 2 1 (SV) # 0}

We will call (FF) the following condition:

(FF) For anyu € *, the set sup{®) N (®~1(u)) is finite.

If the formal seriesS satisfies FF), we say that it isb-finite. The set of-finite series ink((Z¢)) is
denotec(k<<zs)))¢_ﬁnne.
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Theorem 4 The setk((Z¢)))a-finite iS closed unde#-, -, a(?) and(?)a.
Proof. AssupgSi+ ) C supdSi) U supgS), supgaS;) C supgSy) and suppSia) C supdS;) for

S1,S € k{(Zg)) anda € k, the stability is shown for-, a(?) and(?)a.
Now, for the Cauchy product, one can check that :

SUPASIS) N® H(u) € |J (SuprSL) N® ™ (un))(SuppS) N~ H(u2)) (10)
which is a finite set i5, S € (K((Z¢))) d-finite- O

Remark 3
e Every polynomial igb-finite.

e The starS* need not be&b-finite even ifSis ®-finite. The simplest example is provided By &.

Next we show tha® : k(Z¢) — k(Z) can be extended &((2¢)) -finite @S @ polymorphism.
Theorem 5 For any ST € (k{(Z¢)))o-finite,

P(S+T)=D(S+P(T), ®(ST) =P(SP(T)
®(0S) =ad(S), P(Sa) = P(S)a

and, if S is ®-finite, ONE has

®(S) = (P(9)"

Proof. Forthe sum and the Cauchy product, we obtain the result biptlosving relations:

(S+T,v) = (Sv)& (T.v)
ved)Z‘(u) ved)Z‘(u) ved)Z\(u)

(STV) = ( (Sv® (T.v)
VGCDZ‘(U) U:%UZ ved)Z(ul) VGCDZ(UZ)

Then®(S") is a solution of the equation = e+ ®(S)Y asS' = £+ SS, andP(S") = P(9)". O

A ®-finite series may be not rational.

Example(s) 4 The series ilN((X))

S= ; u.
|ula=]ulz

is not rational and howevep-finite.
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We recall that a matrisl € k™" is nilpotent if there exists a positive integér> n such thaMN = 0.

Proposition 1 Let S be a rational series in(k%¢)) with (A, y) a linear representation of S.
i) If wis nilpotent then S i®-finite.
i) Conversely, if S isb-finite, k a field andA, 1, y) is of minimal dimension then p is nilpotent.

Proof. i) With the notations of the theorem, suppose that there istegerN such thapi(&)N = Op.p.
Then, foru= ajay---ax one has

SoSv= Y (SECmEMaE®-akk) =
(D(V):U Ng, N1, ---NKeEN

AU(E)Op(ag )u(E) ™ u(az)U(E)"™ - - - p(ak) H(E) vy =

no, Ny, ---NkeN

AM(E)p(ag )M(E) ™ u(az) (E)™ - - - h(ak) M(E) ™y

ng, N1, ---NK<N

which is obviously finite.
i) If (A,p,y) is of minimal dimensiom, then there exists wordsli)1<i<n, (Vj)1<j<n in Z¢ such that the
n x n matrices

L=| . [andG=(u(vi)y H(v2)y -+ H(Vn)y) (11)

AH(un)

are regularl( is a block matrix o lines of size Ix nandG is a block matrix ofn columns of sizen x 1;
indeed andG aren x n square matrices.) [1].
Now, for 1 <i, j < nthe family

((SIUE"Vj) )n=0 = (AR(U ) H(ET)H(V})Y)n=0 (12)
as a subfamily o(<S|v))¢<v):¢<uivj) must be with finite support. This implies th@tp(E")G)n>o is with
finite support. A4 andG are invertible u(€) must be nilpotent. O

5.2 FC (d-convergent) series

If we want to go further in the extension df (and so doing to cover the - boolean - classical case), we
must extend the domain of computability of the sums (8) ton@pcountable families.

Many approaches exist in the literature [10], mainly by fopgg, ordered structure or “sum” function.
Here, we adopt the last option with a minimal axiomatizatdiapted to our goal.

The semiringk will be supposed endowed with a sum functiarm taking some (at most) countable
families (& )i (called summable) and computing an elemenk denotedsumic; &. This function is
subjected to the following axioms:

CS1 —If (&)ie is finite, then it is summable and

SuUMj¢c| @& = aj (13)
ic ;
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CS2 — If (&)ic; and(by)ic) are summable, so i®; + bj)ic; and
sumie| & + b = (sumic &) + (sumie by) (14)
CS3 — If (a&)ier and(bj)jes are summable, so (saibj)(i’j)axj and
SUMj el Abj = (sumic) &)(sumjeg by) (15)

CS4 — If (a&)ier is summable antl= LiycaJ), is partitionned in finite subsets. TheRjc; aj)en is
summable and
sumjel & = sumyen ( Z aj) (16)
=Y\

CS5 — If | = Lixeadr with A finite and eaclta) ) e, is summable. Then so {8 )ic; and

SUMic| & = ) sumjcy, (7)
AeN

CS6. — If (&)iel is summable ang: J — | is one-to-one the(atp(j))j@ is summable and
SUMjg| & = SUMjey Ag(j) (18)

Definition 2 A semiring withsum function (as above) which fulfil8S1..6will be called a CS-semiring.

If k is a CS-semiring, the semiring of square matrik®s" will be equipped with the followingum

function:

A family (MM)i¢, of square matrices will be saglimmabléff it is so componentwise i.e. the families

(M,(V'S))i@ (for 1 <r,s < n) are summable. In this case, the sum of the family is the mhtsuch that, for
1<r,s<n, Lig = sumjg M,@ (i.e. the sum is computed componentwise). It can be easégladd that,
with this sum functionk™" is a CS-semiring.

Remark 4 Let k be a topological semiring (i.e. k is endowed with someddarff topologyr such that
the two binary operations - sum and product - are continuoappmgs kx k — k). We recall that a
family (a)ic) is said summable with sum s iff it satisfies the following prop whereb(s) is a basis of
neighbourhoods of s.

(W € B(9) (3F Crinite 1) (VF') (F CF' Crinte | = Y & €V). (19)

ieF’

In this case the axiomS8S12456are automatically satisfied for the preceding (usual) notid summa-
bility.

Example(s) 5 Below some examples of CS-semirings which are metric segnifii.e. the notion of
summability and the sum function are given as in Remark (4)).

1. Thefield€), R, C with their usual metric.

2. Any semiring with the discrete topology, given by the imélix,y) = 1 if x # y and dx,x) = 0.
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3. The extended intege(® U {4}, +, x) with the Frechet topology given by the metrigndn) =

1 _1land d+o,n)=1.

4. The(min, plus) closed half-ray( [0, +e0]z, min, +) with the metric transported by the rational homo-

morphism x— %5 from [0, 4|z to [0, 1]z i.e. with dX,y) = | | and with 225 [x= o0 = 1.

x_ _ ¥
x+1 x+1  y+1

Let Se k({Z¢)) be a formal series, we will calRC) the following condition:
(FC) Foranyu € z*, the (countable) family(Sv)) -1y is finite.

If the formal seriesS satisfies FC), we say that it isb-convergent. The set ab-convergent series in
k((Z¢)) is denotek((Z¢) ) d-conv-

It is straightforward that &-finite series isp-convergent. We have now a theorem similar to theorem (6)
fOI’ k<<Zg>>®_Conv.
Theorem 6 The set K(Z¢))p-conviS closed unde#-, -, a(?) and (?)a.

Proof. Stability by+, a(?) and(?)a is straightforward using the axion®S123 Let us give the details
of the proof for the Cauchy product, we have to prove thatef@ryS T € k({(Z¢))¢-convandu € =*, the
(countable) family

(<ST|V>)VG<D*1(U) = (<ST|V>)CD(V):LI (20)

is summable.
From the definition of the Cauchy product we have the finitessum

(STlv) = Z (Shva)(T|vz2)
Vviv2=v
and, from CS4, the summability would be a consequence obftthe family

((Sva)(T[v2)) oo=u = ((Sv1)(T V2))>(vyv,-u)

V=V1Vp

(with the same sum). This family can be partitionned in adisitm of families (with the same sum)

|—|U1U2:U(<S|Vl> <T|V2>)vle®*1(ul) (21)

v2ed~L(up)

each of which, byCS3 is summable. Thus, b@S6, the family (21) is summable and hence summability
of (20) (with the same sum) follows. O
Next, we show tha® : (K((Z¢)))d-conv — K((Z)) is a polymorphism.

Theorem 7 Forany ST € (K{(Z¢))) d-conw

P(S+T)=D(S +D(T), O(ST) = P(SD(T)
®(0S) =ad(S), P(Sa) = P(S)a

and, if Sis CD—conv,
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Proof. The proof is similar to that of theorem (5), using the axiorh€8-semirings. O

Remark 5 i) In the sequel, as in the classical case, the summabilitu@)" ) ner Will play a central role.
We will then callclosablea square matrix Me k™" such that the familyM™),cr is summable. Note that,
in this case, the susum,cy M" is a two-sided (we could say “topological”) star of M.

i) For example, with the boolean semiring endowed with tiserdte topology, every M B"*" is closable
(i.e. the sequenca\S= R MK is stationnary).

We have the following theorem, very similar to (1).

Proposition 2 Let S be a rational series in(kZ¢)) (k a CS semiring) witliA, 1, y) a linear representation
of S.

i) If (L(E)")nen is summable then S @-convergent.

ii) Conversely, if S isP-convergent, k=R, C and (A, 1, y) minimal then(p(€)")nen is summable .

Proof. The proof (i) is similar to that of theorem (1). The first contgiion of (i) is similar, but, to
conclude, we use the property (which holdsRirand C) that a family is summable iff it is absolutely
summable (because of CS6) and then subfamilies of sumnehiéds are summable. O

6 Equivalence

We now deal with an algebraic method to eliminate t¢kteansitions from a weightegrautomatonas.
The result is a weighted automaton with behavid(behaviouf4e)).

Theorem 8 Let k be a CS semiring ang = (A, 4, y) be a weighted-automaton with weights in k. We
suppose thaty(€)")new is summable. Then

i) the series behavioynr,) is ®-convergent.

i) there exists a weighted automatan= (A, ,y) such that

behavioufa ) = ®(behavioufae)).

Proof. The point i) is a reformulation of proposition (2). Remarlkathif (L(€)")ner is sSummable its
sum is a (two sided) star @) that, for convenience, we will denotgg)*.
Let B be the behaviour ofi¢ one has

= = }\
o@)= 5 (5 @u=5 (5 N

®(v)=u
Let, nowu=ajay---an € 2*, one has
AUy = A( 2. u(E)Fop(an) () - p(an)u(E) )y =
d(V)=u KoKy, -kn€N

A(E) H(@1)H(E)" -~ - H(@n)H(E)"Y = A((E) (@) (K(E) "K(@2)) - - - (U(E) "M(an) ) ((E)Y)
the conclusion follows taking, for adl € 2,

(N K (@),Y) = (A WE) W(@), uE)"Y).

Theorem 2 gives the lower bounds if the set of coefficientssisrairing (resp. ring, field).
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Figure 3: A B-g-automaton

Proposition 3 Let k be a semiring. The elimination &transitions is computed in @|Z| + 1) x n®) if n
is the dimension of the weighteehutomaton.

Proof.  First we compute the matripf. Then set\’ = A, Y = |gy and |/ (a) = piu(a) for each letter
acz O

Remark 6 One could also with the same result 3ét= ALg, [ (a) = p(a)pt for each lettera € X and

Y =Y.

In the following, we have an example of a boolean automatdin sviransition.
Example(s) 6 The linear representation of Figure 3 is:

A=(1 0 0 0) = (@) =

[cNeoNeoNe)
OO O
[eNeN e}
O, OO
(ol e NN
[oNeNel
[cNeoNeoNe)
= O OO
[cNeoNeoNe)
[cNeN T Ne)
OO Rr Pk
= ORFr O

andy=

PR OO
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Figure 4: A B-automaton

1
Figure 5: A Q-e-automaton
By computation:
1111 110 1
0111 N 0 0 01
K=| 0901 0 N=(L0O0O0)v@=ku@=|7, 4 g ol
0 001 0 001
01 11 1
IR 10111 o1
Hb)=gub)=1 o o o o |aMdY=KY=| 7 |
0 0 01 1

The resulting boolean automaton is presented in Figure 4dtatidear representation {3/, |/, Y).

In the next example, our algebraic method is applied Qisautomaton.

Example(s) 7 The linear representation of Figure 5 is:
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Figure 6: A Q-automaton

0000 0 3 00 0040
001l o 0000 0 000
A=(1 00 0)e=| g 1 o [HA=| g o1 | HI=| g1 g 0]
00 00 0000 00 00
0
andyzg
1
By computation:
1000 0 ;00
|0 3f 10 = (@) = —| 0005
k=g % 5 o M=(1 00 0)W@=pua=| g g o7 |
05 01 0 00O
00110 0
e | O 2 00 _wv—| 9
Hb)=iub) = | o § o o [andY=ty=| g
0000 1

The resulting automaton is presented in Figure 6 and itafingpresentation i&\', |/, y).

7 Conclusion

Algebraic elimination fore-automata has been presented. The problem of removing-tifasitions

is originated from generie-removal algorithm for weighted automata [15] using Fldjdsshall and
generic single-source shortest distance algorithms. ,ierdéave the same objective but the methods and
algorithms are different. In [15], the principal chara&tcs of semirings used by the algorithm as well
as the complexity of different algorithms used for each siefne elimination are detailed. The case of
acyclic and non acyclic automata are analysed differe@lyr algorithm here works with any semiring
(supposing only thau(€) is closable) and the complexity is unique for the case of lazpc non acyclic
automata. This algorithm is even more efficient when theidensd semiring is a ring.
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