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A microscopic, stochastic, minimal model for collective and cohesive motion of identical self-propelled particles
is introduced. Even though the particles interact strictly locally in a very noisy manner, we show that cohesion can
be maintained, even in the zero-density limit of an arbitrarily large flock in an infinite space. The phase diagram
spanned by the two main parameters of our model, which encode the tendencies for particles to align and to stay
together, contains non-moving “gas”, “liquid” and “solid” phases separated from their moving counterparts by
the onset of collective motion. The “gas/liquid” and “liquid/solid” are shown to be first-order phase transitions
in all cases. In the cohesive phases, we study also the diffusive properties of individuals and their relation to the
macroscopic motion and to the shape of the flock.

1. Introduction

The emergence of collective motion of self-
propelled organisms (bird flocks, fish schools,
herds, slime molds, bacteria colonies, etc.) is a
fascinating phenomenon which attracted the at-
tention of (theoretical) physicists only recently
([1,2,4,5,6]). Particularly intriguing are the sit-
uations where no “leader” with specific proper-
ties is present in the group, no mediating field
helps organizing the collective dynamics (e.g. no
chemotaxis), and interactions are short-range. In
this case, even the possibility of collective motion
may seem surprising.

However “simple” the involved organisms may
be, they are still tremendously complex for a
physicist and his inclination will often be to go
away from the detailed, intricate, as-faithful-as-
possible modeling approach usually taken by biol-
ogists, and to adopt “minimal models” hopefully
catching the crucial, universal properties which
may underlie seemingly different situations.

In this setting, the organisms can be reduced to
points which move at finite velocity and interact
with neighbors. This is in fact what Vicsek and
collaborators did when introducing their minimal
model for collective motion.

2. Vicsek’s model

Vicsek’s model [2] consists in pointwise parti-
cles labeled by i which move synchronously at
discrete timesteps ∆t by a fixed distance v0 along
a direction θi. This angle is calculated from the
current velocities of all particles j within an in-
teraction range r0, reflecting the only “force” at
play, a tendency to align with neighboring parti-
cles:

θt+1
i = arg





∑

j∼i

~vt
j



+ η ξt
i , (1)

where ~vt
i is the velocity vector of magnitude v0

along direction θi and ξt
i is a delta-correlated

white noise (ξ ∈ [−π, π]). Fixing r0 = 1, ∆t = 1,
and choosing, without loss of generality, a value
v0∆t < r0, Vicsek et al studied the behavior of
this simple model in the two dimensional param-
eter space formed by the noise strength η and
ρ, the particle density. They found, at large ρ
and/or small η, the existence of an ordered phase
characterized by:

V ≡
〈

|〈~vt
i〉i|
〉

t
> 0 , (2)

i.e. a domain of parameter space in which the
particles move collectively.

The existence of the ordered phase was later
proved analytically [7] via a continuous model for
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∆t v0 r0 ra re rc η
1.0 0.05 1.0 0.8 0.5 0.2 1.0

Table 1
Fixed-value parameters used in the simulations.

the coarse-grained particle velocity and density.
Vicsek et al devoted most of their effort to study-
ing the transition to the ordered phase [2]. They
found numerically a continuous transition charac-
terized by scaling laws and they tried to estimate
the corresponding set of critical exponents.

3. Collective and cohesive motion

Vicsek’s model accounts rather well, at least
at a qualitative level, for situations where the or-
ganisms interact at short distances but need not
stay together. This is for instance the case of
the bacterial bath recently studied by Wu and
Libchaber [9]. In this experiment, E. Coli bac-
teria are swimming freely within a fluid film of
thickness approximately equal to their size. By
seeding the system with polystyrene beads and
recording the trajectories of these passive tracers,
Wu and Libchaber showed that the bacteria per-
form superdiffusive motion crossing over to nor-
mal diffusion. We later argued that the superdif-
fusive behavior is likely to be due to the onset of
collective motion as in Vicsek’s model [10,11].

When the situation to be described involves the
overall cohesion of the population, Vicsek’s model
needs to be supplemented by a suitable feature.
Indeed, an initially cohesive flock of particles will
disperse in an open space. In other words, no col-
lective motion is possible in the zero density limit
of this model. In the following, we extend Vic-
sek’s model to account for the possible cohesion
of the population of particles.

The above remark is by no means new. Early
models for the collective motion of “boids” (con-
traction of “birdoid”, a term used by computer
animation graphics specialists) do include a two-
body repulsive-attractive interaction [3]. More
recent works by physicists also included this in-
gredient, but they either comprised an extra
global interaction [4], or the actual interaction
range used extended over the whole flock for the

sizes considered, making it effectively global [5].
Another encountered pitfall, from our point of
view at least, is to enforce the cohesion by the
confinement to a rather small, close, space [6].

Here we want to be, in a sense, in the least-
favorable circumstances for observing collective
motion: no leader in the group, strongly noisy
environment and/or communications, strictly lo-
cal interactions, and no confinement at all.
The “minimal” model presented below is one of
the simplest possible ones satisfying these con-
straints.

4. A minimal model

In addition to the possibility of achieving cohe-
sion, we also want to confer a “physical” extent
to the particles, a feature absent from Vicsek’s
point-particles approach. Adding a Lennard-
Jones-type body force ~f acting between each pair
of particles within distance r0 from each other
offers such a possibility.

Equation (1) is then replaced by

θt+1
i = arg



α
∑

j∼i

~vt
j + β

∑

j∼i

~fij



+ η ξt
i , (3)

where α and β control the relative importance of
the two “forces”. The precise form of the depen-
dence of the body force on the distance between
the two particles involved is not important. It
is enough to ensure a hard-core repulsion at dis-
tance rc and an “equilibrium” preferred distance
re.

In the following, we use

~fij = ~eij







−∞ if rij < rc ,
1
4

rij−re

ra−re

if rc < rij < ra ,

1 if ra < rij < r0 .

(4)

with rij the distance between boids i and j, ~eij

the unit vector along the segment going from i to
j, and the numerical values rc = 0.2, re = 0.5 and
ra = 0.8.

We have also tested other types of noise term in
the model. In particular, considering the noise as
the uncertainty with which each boid “evaluates”
the force exerted on itself by the Ni neighboring
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Figure 1. Cohesive flocks of 128 particles in a square box of linear size 32 with periodic boundary
conditions (for parameters see Table 1). (a): immobile “solid” at α = 1.0 and β = 100.0 (20 timesteps
superimposed). (b): 3 snapshots, separated by 120 timesteps, of a “flying crystal” at α = 3.0 and
β = 100.0. (c): fluid droplet (α = 1.0, β = 2.0, 20 consecutive timesteps). (d): moving droplet (α = 3.0,
β = 3.0, 20 consecutive timesteps). In (b) and (d), the arrow indicates the (instantaneous) direction of
motion.
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Figure 2. Order parameters at ρ = 1/16, L = 128, α = 1.0. (a) : “gas/liquid” transition, inset: cluster
mass distribution at the coexistence point β = 1.0. (b) : “liquid/solid” transition, inset: pdf of order
parameter ∆ for the “liquid/solid” transition, β = 36 plain line (“liquid” phase), β = 48 dotted line and
β = 60 dashed line(“solid” phase). (other parameters as in Table 1).

boids leads to change Eq. (3) to:

θt+1
i = arg



α
∑

j∼i

~vt
j + β

∑

j∼i

~fij + Niη~ut
i



 (5)

where ~ut
i is a unit vector of random orientation.

There are delicate issues related to the choice of
the noise term, in particular with respect to the
critical properties of the transition to collective
motion [12]. We mostly considered, in the fol-
lowing, the noise term as prescripted above in
Eq. (5). A detailed analysis of the influence of
the nature of the noise is left for future studies,
but we are confident that the results presented
here hold generally, at least at a qualitative level.

Finally, in order to ensure that each parti-
cle only interacts with its “first layer” of neigh-
bors (within distance r0), we calculate, at each
timestep, the Voronoi tessellation of the popu-
lation [14]—this has the additional advantage of
providing a natural definition of the “cells” asso-
ciated with each particle. The interacting neigh-
bors are then retricted to be those of the particles

within distance r0 which are also neighbors in the
Voronoi sense.

5. Typical phases

One can easily guess the “phases” that the
above model can exhibit for a fixed noise strength
η (η = 1.0 in the following, for a summary of pa-
rameters see Table 1). We now present them in
a qualitative manner. The results presented be-
low were all obtained in the two-dimensional case,
but most of them hold in three dimensions. When
the body force is weak (small β values), the cohe-
sion of a flock cannot be maintained. In a finite
box (finite particle density ρ), one is left with a
gas-like phase (not shown). An arbitrarily large
flock in an infinite space disintegrates, eventually
leaving isolated random-walking particles.

For large enough β, we can expect the co-
hesion to be maintained. Figure 1 shows such
cohesive flocks. The internal structure of the
flocks depends also on β: for large body force,
positional quasi-order is present, and the parti-



5

1 1000 1e+06

t
1

100

<r
ij

2
>

1 1000 1e+06

t
1

100

<r
ij

2
>

(a)

(b)

0.0001 1

t/τ1

100 <r
ij

2
>

0.0001 1

t/τ1

100
<r

ij

2
>

Figure 3. Mean square distance between initially-
neighboring particles vs time for a flock of 10000
boids (L = 400, ρ = 1/16) in logarithmic scales.
(a) non-moving cohesive droplet (α = 1.0, β =
25.0, 35.0, 45.0 and 150.0 from top to bottom, the
dashed line has slope 1); (b) moving cohesive flock
(α = 3.0, β = 40.0, 55.0, 75.0 and 150.0 from top
to bottom). Asymptotic transition points were
measured at α = 1.0, βLS = 45.3 and at α = 3.0,
βLS = 76.1 (see below). Other parameters as in
Table 1. Insets: data collapse from which the
waiting time τ can be estimated.

cles locally form an hexagonal crystal (Fig. 1ab).
For intermediate values of β, no positional order
arises, and the flock behaves like a liquid droplet
(Fig. 1cd).

The influence of the alignment “force” is mani-
fested by the global motion of the flock: for large
enough α values, the flock moves (V > 0). De-
pending on β, one has then either a “moving
droplet” (Fig. 1d) or a “flying crystal” (Fig. 1b).

6. Order parameters

Order parameters have to be defined to allow
for a quantitative distinction between the phases
described above.

The limit of cohesion separating the “liquid”
phases from the “gas” can be determined by
measuring the distribution of the sizes of par-
ticles clusters, thanks to an implementation of
the Hoshen-Kopelman [15] algorithm. A cohe-
sive flock is then one for which n, the size of the
largest cluster, is of order N , the total number of
particles. Below, we use the criterion n/N = 1

2
to

define the transition. Increasing β, n/N sharply
rises to order-one values (Fig. 2a).

The “liquid/solid” transition takes place when
β is large enough so that cohesion of the pop-
ulation is ensured. To determine this onset of
positional quasi-order within a finite but arbi-
trarily large cohesive flock, we first observe that,
whether in the collective motion region or not, the
“liquid” and “solid” phases can be distinguished
by the fact that particles diffuse with respect to
each other in the “liquid”, whereas neighboring
particles always remain close to each other in
the “solid” (Fig. 3). To be more precise, in the
“liquid”, initially close-by particles remain so for
some trapping time τ (which can be defined or
used to collapse the curves of Fig. 3). Approach-
ing the “solid” phase (by increasing β), τ di-
verges. In addition, since we are not dealing with
a translation-invariant system, we should also
distinguish between the diffusion properties of
the particles depending on their relative position
within the flock. We have thus defined different
“sectors” (“core”, “head”, “tail”, “sides”) as ex-
plained in Fig. 4. If all sectors are roughly equiv-
alent in non-moving droplets (at least sufficiently



6

-20 -10 0 10 20

x
-20

-10

0

10

20
y

Figure 4. Snapshot of a moving flock of 4096
boids (coordinates centered on the position of the
center of mass (CoM)). The arrow indicates the
instantaneous direction of motion of the flock.
The solid circle, centered on the CoM, has a ra-
dius equal to the root-mean-square of all boids’
distances to the CoM. The circle with a 4 times
smaller radius defines the “core” region (filled cir-
cles near the CoM). The “head” contains all boids
outside the larger circle which are also within a
cone of opening angle π/4 centered on the direc-
tion of motion. The “tail” region is defined in an
opposite manner.

far from the “liquid/solid” transition), some dif-
ferences are observed within moving droplets: the
outer regions and in particular the head are more
active, whereas cohesion is stronger in the core
(Fig. 5). Thus, in principle, different trapping
times τ can be defined for the different regions
of a (moving) flock. But the depth of the outer,
“more liquid”, layer does not depend on the flock
size (if it is big enough), so that, in large flocks,
most of the population behaves as the core. Con-
sequently, the relative diffusion averaged over the
whole flock suffers from finite-size effects, but
they disappear in the large-size limit (see below).
To sum up, the trapping time τ (measured on
all particles of the flock) is a good quantity to
track the “liquid/solid” transition. However, in-
stead of directly estimating of τ , we measured ∆,
the relative diffusion over some large time T of
initially-neighboring particles:

∆ ≡

〈

1

ni

∑

j∼i

(

1 −
r2
ij(t)

r2
ij(t + T )

)〉

i,t

, (6)

where the ni particles j are the neighbors of parti-
cle i at time t. Time T is taken to be proportional
to the volume of the system, which ensures that
∆ records, in the large-size limit, an asymptotic
property of the system (because T ≫ τ). Clearly,
∆ ∼ 1 in the “liquid” phase for a large enough
system, while ∆ ∼ 0 in the “solid” phase. In-
deed, increasing β, ∆ falls off sharply (Fig. 2b).
The transition point is chosen to be at ∆ = 1

2
.

Finally, we must be able to distinguish the
regimes for which collective motion arises. To
this aim, we use the average velocity V , as de-
fined in (2). Increasing α, V reaches order-one
values. The onset of collective motion is chosen
to be at V = v0/2. In the gas phase, one ex-
pects V = 0 independently of the strengh of the
alignment force. Nevertheless, this phase is rather
sharply divided in two when studying the model
at finite particle density. The largest cluster size
may then be small (n ≪ N), but it is (almost)
always larger than one. At any given time, thus,
n > 1, and the collective motion order parame-
ter V can be defined restricted to the particles
belonging to the largest cluster. (Since clusters
merge and break, the particles involved generally
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Figure 5. Growth of the mean square distance
between initially-neighboring particles depending
on their position within a cohesive “liquid” flock
of 10000 boids (ρ = 1/16, β = 40). (a) α = 1.0,
cohesive non-moving droplet; (b) α = 3.0, moving
droplet. Solid line: all boids in flock. Dotted
line: core region, dashed line: head region, dash-
dotted line: tail region (as defined in Fig. 4) Insets
: diffusion within flock head in linear scales, the
solid line is just a guide to the eye.

change along time.)

7. Phase diagram

After a brief discussion of the nature of the
transitions involved, we first present the phase
diagram of our model for a finite density of par-
ticles in a large and fixed box size. Then we esti-
mate finite-size effects on the location of the phase
boundaries. Finally, we argue that the phase dia-
gram can also be defined in the zero-density limit
where an arbitrarily large flock wanders in an in-
finite space.

7.1. Nature of the transitions

As expected in usual phase transitions, we
found that in our model the “gas/liquid” and “liq-
uid/solid” transitions are first-order. In insets of
Fig. 2a and b, we show the evolution of the prob-
ability distribution function of the order param-
eter as one crosses these transition lines. The
bimodal character of these pdf at the transition
is typical of first-order phase transitions, indicat-
ing the coexistence of two metastable states. At
the “gas/liquid” transition point, dispersed and
aggregated boids coexist and there are exchanges
between the two phases along time. At the “liq-
uid/solid” transition point, cohesion is ensured
and one observes the quasi-frozen regions in an
otherwise more “liquid” flock. The quasi-solid
parts are often located in the core of the flock.
(Fig. 6).

The nature of the transition for the onset of
collective motion is a delicate issue in our model.
Whereas its second-order character is rather well-
established for Vicsek’s core model, we recently
discovered that, in fact, the implementation of
the noise term may change the nature of the tran-
sition. The detailed investigation of this, in par-
ticular in presence of the cohesive force, will be
presented in a future publication [12].

7.2. Fixed population and fixed box size

A systematic scan of the (α, β) parameter plane
was performed for a flock of N = 2025 particles
living on a square surface of linear size L = 180
(ρ = 1/16) with periodic boundary conditions.
Using the criteria defined above, we obtained the
phase diagram presented in Fig. 7.
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Figure 6. Short-time trajectories of freezing
droplets of N = 512 boids (5000 timesteps are
shown, the motion of the center of mass and the
solid rotation around it have been substracted).
(a): in the moving phase α = 3.0, β = 70: the
inner part appears more solid, while the head is
clearly more liquid (the arrow indicates the in-
stantaneous direction of motion). (b): in the non-
moving phase α = 1.0, β = 50: one can distin-
guish an outer liquid layer from the almost solid
core.

For each parameter value, we used an initially-
aggregated flock. We let the system evolve during
a time τ ∝ Ld, and then we recorded each or-
der parameter and its histogram along time. The
transition points were determined by dichotomy,
the precision of which is reflected in the error
bars.

The basic expected features are found: the
horizontal “gas/liquid” and “liquid/solid” tran-
sitions are crossed by the vertical “moving/non-
moving” line. Near this line, however, one ob-
serves a strong deformation of the “gas/liquid”
and “liquid/solid” boundaries. This cannot be
understood without a careful study of the collec-
tive motion transition [12].

Note also that the “gas” phase itself is crossed
by the line marking the onset of collective motion,
using, as explained above, the average velocity V
of the n particles of the largest cluster as the order
parameter.

7.3. Finite size and saturated vapour ef-

fects

We are ultimately interested in the possi-
bility of collective and cohesive motion for an
arbitrarily-large flock in an infinite space. The
phase diagram of Fig. 7 was obtained at a fixed
system size and constant density. Thus both lim-
its of infinite-size and zero-density have to be
taken to reach the asymptotic regime of interest.
Of course this is mostly relevant to the onset of
cohesion (the “gas/liquid” transition). Here we
first study each limit separately, i.e. we inves-
tigate finite-size effects at fixed particle density
and expansion at fixed particle number. Then we
discuss the double-limit regime of interest.

Performing such a task for the whole parameter
plane far exceeds our available computer power.
We restricted ourselves to three typical cases: in
the non-moving phase (α = 1.0), in the moving
phase (α = 3.0) and near the transition to collec-
tive motion (α = 1.75 for the “gas/liquid” tran-
sition and α = 2.1 for the “liquid/solid” transi-
tion).

In simulations performed at ρ = 1/16, vary-
ing N and L, the transition points βρ

GL(N) and

βρ
LS(N) converge exponentially as L =

√

N/ρ
increases. In Fig. 8, we show this for both the
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Figure 7. Phase diagram at ρ = 1/16, L = 180
(other parameters as in Table 1). S : solid, MS :
moving solid, L : liquid, ML : moving liquid, G :
gas, MG : moving gas. Dashed line : transition
line of collective motion.

“gas/liquid” (a) and the “liquid/solid” (b) tran-
sitions for α = 3 (moving phases). This al-
lows to determine asymptotic transition points.
Note that exponentially-decreasing finite-size ef-
fects are typical of first order phase transition at
equilibrium [16]. In the two other cases (non-
moving phase, and onset of motion), the results
are similar, with the asymptotic values being
quickly reached in the non-moving phase (α = 1)
[13].

In simulations performed at fixed N varying
L, we study instead the expansion of the system.
The (finite) spatial extent induces a confinement
effect which increases the pressure at the coexis-
tence point. We thus expect a displacement of the
transition point. We find that βGL(ρ) also con-
verges exponentially, and thus transition points
βGL(N) are well-defined. In Fig. 8c, we show this
only for the “gas/liquid” transition at the α val-
ues used in Fig. 8a, since the “liquid/solid” tran-
sitions points were observed to be independent of
the box size.

7.4. Zero-density limit

The above results provide evidence that our
model possesses well-defined, asymptotic phase
diagrams at either fixed particle density or at
fixed number of particles. The double limit men-
tioned above can be approached in essentially
three different ways.

One can take one limit after the other one, re-
peating either the calculations of Fig. 8a at lower
and lower densities, or those of Fig. 8d at larger
and larger flock size. However, this straightfor-
ward program involves very heavy numerical sim-
ulations. Therefore, we only considered two cases
(α = 1.75 and α = 3.0). As expected, the tran-
sition points converge (exponentially) indepen-
dently of the order with which the two limits are
taken, yielding estimates of the zero-density limit
(Fig. 9). These estimates are compatible with
each other. There are three different sources of
error: statistical and systematic errors when eval-
uating the order parameters of each system, and
then fitting errors when determinating βGL(N)
and βGL(ρ). For α = 1.75, we find a 9% difference
in the estimated asymptotic values whose origin is
probably the statistical errors on the larger flocks
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Figure 8. Finite size effects on transitions at a fixed density or at fixed number of particles at α = 3.0
(moving phases). The dashed lines are the asymptotic values determined by exponential fits (solid
lines). (a) variation of the “gas/liquid” transition point βGL at ρ = 1/16 vs linear size. (b) variation
of the “liquid/solid” transition point βLS at ρ = 1/16 vs linear size. (c) βGL vs inverse density 1/ρ for
N = 4096.

simulations.

7.5. Evaporation of a flock

There exists a third manner of approaching the
zero-density limit of the “gas/liquid” transition.
It consists in quenching a cohesive flock observed
at large-enough β to a lower β value. If the flock
is quenched below the “gas/liquid” line, it will
“evaporate”. The largest cluster will progres-
sively lose particles before finally equilibrating in
the gas phase. This transient can be expected to
be governed by an effective surface tension γ and
the boundary of the largest cluster should then be
governed by some Allen-Cahn law [17]: vn = γκ
where vn is the (local) normal velocity and κ the
local curvature. Assuming that the mass and the
surface of the main cluster remain proportional,
in the two-dimensional problem: n = ρlocπR2,
we can integrate this equation, and we obtain the
relation :

n = N − λt with λ = πρlocγ

where ρloc is the local density: the size of a circu-
lar flock should decrease linearly in time, with the
proportionality constant providing an estimate of

λ.
This is indeed what can be observed in our

model (Fig. 10a and b). In these experiments, an
initially large cohesive flock is prepared at some
β value above the transition. The system size
is taken so as be close to the zero-density limit
(ρ = 1/256 in Fig. 10). We measured Tev, the
time taken by the largest cluster to reach a given
normalized mass n/N , as well as its surface at the
same mass/time. We thus checked the propor-
tionality between mass and surface and between
mass and time, after transients and before the
system approaches the equilibrium (Fig. 10a and
b). Note that due to the abrupt change of pa-
rameters the flock actually first expands after the
quench before setting in the “true” evaporation
regime (Fig. 10b). This experiment can, at first
sight, be thought of being free of confinement ef-
fects, and the Allen-Cahn law is expected to be
satisfied at all times.

Figure 10c shows the dependence of λ on β: λ
quickly decays and reaches very small values for
β ∼ 0.8. On a logarithmic scale (Fig. 10d), we
can distinguish two exponential regimes, on each
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Figure 9. Zero-density limit of the cohesion tran-
sition for (a) α = 1.75 and (b) α = 3.00 (other
parameters as in Table 1). Transition points at
zero-density for different system sizes N (circles),
and at infinite-size for different (inverse) densities
ρ−1 (squares). The solid lines are exponential fits.
At α = 1.75, βGL(N) → 11.7 and βGL(ρ) → 12.7
; at α = 3.0, βGL(Norρ) → 5.6.

side of this value, which corresponds roughly to
the finite-size threshold βGL(L) determined above
(and is rather far from the asymptotic threshold
determined above to be around 1.5) A simple ar-
gument can account for this behavior: Consider
a flock of N boids and suppose there is no short-
time expansion (such as seen in Fig. 10b). The
mass of the largest cluster n(t), from then on, de-
creases linearly with time until it reaches, at time
T∞, the equilibrium value neq. At every time t,
we have:

N − n(t) =
t

T∞

(N − neq) = λt . (7)

From the theory of first order phase transitions
of systems at equilibrium (see for instance [16]),
we expect the order parameter neq/N to behave
like

neq

N
∼

1

2

[

1 + tanh
(

K1L
d(β − βGL)

)]

,

in the vicinity of the transition, where K1 is a
constant. Moreover, we expect that T∞ depends
linearly on N (see Fig. 10a, where results for two
different system sizes have been superimposed).

From a mean-field point of view, T∞/N can be
interpreted as the mean time required for a parti-
cle to escape from the interaction of another boid.
Given the interaction we use (see Eq. (4)), we can
assume that the potential is harmonic, so that the
escape time is proportional to the exponential of
the potential depth β. Finally, we get

λ =
N

T∞

(

1 −
neq

N

)

, or

λ ∝ exp (−K2β)
[

1 − tanh
[

K1L
d (β − βGL(L))

]]

Approximating tanh by (−1+exp) and (1− exp)
sufficiently far below and above β = βGL(L),
we find the two exponential regimes mentioned
above. More precisely, for β < βGL(L), the sur-
face tension should be almost independent on sys-
tem size, whereas for β > βGL(L), λ is governed
by the finite size effects and its slope increases
like Ld. Quantitative agreements with the above
approximation would require too large numeri-
cal calculations, but our partial data is consistent
with the above predictions.
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Figure 10. Evaporation at ρ = 1/256, α = 1.0 (other parameters as in Table 1). (a) : time vs normalized
cluster mass, L = 512, and 1024, β = 0.2. (b) : surface vs normalized cluster mass, L = 512, β = 0.2. (c)
surface tension vs β, in linear scale, (d) same as (c) in log-lin. scales. The dashed lines are only a guide
to the eye.
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Figure 11. Mean-square displacement of the cen-
ter of mass vs time for a cohesive droplet (solid
lines) and for a crystal (dashed lines), N = 32,
ρ = 1/64, logaritimic scales. (a): in the non-
moving phase, α = 1, β = 40 (“liquid”) and
65 (“solid”). (b): in the moving phase, α = 3,
β = 40 (“liquid”) and 95 (“solid”). The straight
lines have slope 1 or 2.

A concluding remark to this investigation of
the effective surface tension governing the evapo-
ration of a flock is that, contrary to naive argu-
ments, this method does not offer much advan-
tage over the double-limit procedure presented
in Section 7.4. Indeed, as shown above, it only
allows a rather easy determination of βGL(L),
while the finite-size effects remain hard to esti-
mate quantitatively.

8. Micro vs macro motion

The existence of cohesive phases being now
well-established, a natural question is that of the
properties of the trajectories of cohesive flocks
(the “macroscopic” motion) and it is interest-
ing to compare those to the trajectories of the
individuals composing the flock (“microscopic”
motion). Postponing again the account of what
happens in this respect near the onset of col-
lective motion to a further publication [12], we
studied, for the four possible cohesive phases, the
mean square displacement 〈∆r2(t)〉 of the center
of mass, as well as of individual boids.

Our model being essentially stochastic, it is
no surprise that, at large times, we observe that
〈∆r2(t)〉 ∼ t, i.e. the flock performs Brownian
motion, in all cases (Fig. 11 and 12). When in
a moving phase (either “liquid” or “solid”), this
random walk may consist of ballistic flights sepa-
rated by less coherent intervals during which the
flock often changes direction. This is testified by
the ballistic part (〈∆r2(t)〉 ∼ t2) of the plots in
Fig. 11b and by the trajectories itselves 12. The
moving and non-moving phases can also be dis-
tinguished by opposite finite-size effects: in the
non-moving phases, the diffusion constant of the
macroscopic random walk decreases with system
size (like 1/N), whereas the ballistic flights’ du-
ration increases with system size in the moving
phases (Fig. 13).

Comparing the macroscopic motion of “liquid”
and “solid” flocks is not well defined since, in the
phase diagram, the line marking the onset of col-
lective motion is not straight. Nevertheless, at
comparable distances from this line, one notices
that ballistic flights tend to be longer for flying
crystals than for moving droplets. Similarly, the
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Figure 12. Trajectories of the center of mass in the non-moving phase ((a) : α = 1) and in the moving
phase ((b) : α = 3). Flock of N = 32 boids, ρ = 1/256, β = 40.0. At long times (a,b) 105 timesteps. At
short times (insets): 1000 timesteps shown.

diffusion constant of “solid”, non-moving flocks is
smaller than that of non-moving droplets.

Finally, even though we have already con-
sidered the mutual dispersion of initially-
neighboring boids (see Fig. 3), we also studied
the diffusive properties of individual boids within
cohesive flocks, substracting out the translation
motion of the center of mass. In “solid” flocks,
one can hardly record any such motion. For
droplets (Fig. 14), on the other hand, this micro-
scopic motion depends on the macroscopic mo-
tion. When the droplet is fixed, the diffusion
is normal 〈∆r2〉 ∼ t, whereas a boid which be-
longs to moving flock diffuses as 〈∆r2〉 ∼ tα, with
α ∼ 4/3. We interpret this as being due to some
mesoscopic “hydrodynamical” structures within
moving flocks (jets, vortices, etc.). J. Toner and
Y. Tu [8] have shown via a mesoscopic equation
that collective motion induces transverse correla-
tions even in a co-moving frame. Therefore, boid
diffusion must be faster than Brownian. They
predicted an exponent equal to 4/3, with which

our results are in good agreement (Fig. 14, top
line).

9. Summary and Perspectives

We have introduced a simple model for the col-
lective and cohesive motion of self-propelled par-
ticles. We have described its various dynamical
phases, defined order parameters to distinguish
them, and presented a typical phase diagram at
large but finite number of particles N and large
but finite system size L (Fig. 7). Even though we
have provided evidence that this phase diagram
possesses well-defined N → ∞ and L → ∞ limits,
these limit diagrams require too heavy numerical
simulations to be determined at this stage.

We have also argued that the double limit of
an arbitrarily large flock evolving in an infinite
space is also well-defined. Here also, the map-
ping of the phase diagram in this limit is cur-
rently out of reach. But the existence of cohe-
sive phases in a model of noisy, short-range inter-
action, identical particles is ensured, which was
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Figure 13. Mean square displacement of the cen-
ter of mass vs time for a moving droplet of size
N = 1024, 256, 128, and 32 from top to bottom
(logarithmic scales, ρ = 1/64, α = 1.95, β = 40).
The solid lines have slope 2 and 1. The larger the
flock the more ballistic its motion at short times.
The inset represents the cross–over time between
the ballistic and the brownian motion.

one of our primary goals. Futhermore, we can
sketch the zero-density asymptotic diagram from
our partial knowledge (Fig. 15). A few remarks
are in order to explain the expected shape of the
asymptotic “gas/liquid” boundary: in the non-
moving phase, this transition is almost indepen-
dent on α and size-effects are negligible. We thus
expect this line to be horizontal, in agreement
with mean-field arguments (see Appendix). Sim-
ilarly, our preliminary study of the onset of collec-
tive motion shows that one can go directly from
a cohesive non-moving droplet to the incohesive
phase and that in this region the onset of collec-
tive motion is roughly independent on β, yielding
a vertical boundary.

More work should be devoted to the determina-
tion of the asymptotic phase diagrams mentioned
above, as well as to a quantitative study of the
onset of collective motion. Even in the simplest
case of the non-cohesive Vicsek-type models, it
can be second or first order, depending on the
nature of the microscopic noise in the model [12].
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Figure 14. Internal mean-square displacement vs
time of the individual boids of a cohesive droplet
of 10000 boids (ρ = 1/16, β = 40, the motion of
the center of mass has been substracted). Lower
curve: non-moving case (α = 1), normal diffu-
sion (the associated dashed line has slope 1). Top
curve: moving case (α = 3), superdiffusion (the
associated dashed line has slope 4/3, as predicted
by Toner and Tu [8]).

In both cases, we have started to uncover a rich
interplay between collective motion, critical fluc-
tuations, rotation modes, and shape dynamics in
the transition region.

Not even mentioning the study of our model
in three dimensions and its possible applications
to particular real-world situations (e.g. biology,
zoology, and robotics) the work presented here is
probably only the beginning of the exploration of
this new type of non-equilibrium systems.

Appendix: Mean-field approach

To understand the interplay between alignment
and body force, we simplify our system via a
Hamiltonian model. The total energy is the
sum of kinetic energy, two-body interaction en-
ergy, and a term related to the velocity alignment
“force”. We thus write

H =
Nm

2
v2
0 + U (r1, r2, ..., rN )
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− α

N
∑

i,j∼i

~vi.~vj − ~h0.

N
∑

i

~vi .

where we have introduced an external field ~h0.
In the spirit of the mean-field approach, we as-

sume that the fluctuations are negligible so that
each component can be integrated independently
and approximated by its averaged value. Thus
the contibution from the two-body interaction be-
comes:

U (r1, ..., rN ) ∼
1

2

∑

i∼j

u (|~ri − ~rj |) ∼
N

2
U0 ,

U0 =

∫ +∞

Rc

βρu(r)ddr ∼ −2aρβ ,

where a is a constant which depends on the po-
tential. The alignment energy is computed with
the coarse–grained velocity ~ϕ = 〈~v〉 and the aver-
age number of neighbors ρπr2

0 = ρs :

α

N
∑

i,j∼i

~vi.~vj + ~h0.

N
∑

i

~vi ∼
(

~h0 + αρs~ϕ
)

.

N
∑

i

~vi .

In the following, we use ~h0 + αρs~ϕ = ~h.
Because of the separation of phase space vari-

ables, each term of the Hamiltonian contributes
a factor to the partition function:
• the two-body coupling :

(S − bN)N exp

(

aNρ
β

kT

)

, (8)

where b = π
2
R2

c is the hard–core surface and S is
the whole surface,
• the alignment coupling :

[

2πmv0I0

(

−
hv0

kT

)]N

, (9)

where I0 is a Bessel function. The free energy of
the system is thus written:

−
F

NkT
= ln

(mv0

h̄

)

−
mv2

0

2kT
+ 1 + ln

(

ρ−1 − b
)

+ aρ
β

kT
+ ln I0

(

−
hv0

kT

)

− ρsϕ2 α

2kT

Imposing to be at a minimum of the free energy,
we find that the average velocity is the solution
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Figure 15. Sketch of the asymptotic phase dia-
gram in the zero density limit. Filled circles in-
dicate points determined numerically as in Sec-
tion 7.4. See text for more details.
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of a self–consistent equation:

ϕ

v0

=
I1
I0

(

v0h

kT

)

, (10)

and that the critical point is defined by

sv2
0ρα = 2kT . (11)

Collective motion thus emerges via a continous
phase transition whose critical exponents are 1/2
for the order parameter and 1 for its susceptibil-
ity, independently of the cohesive force.

Furthermore, the necessary concavity of the
free energy function implies a first order cohe-
sion transition, since the second derivative of the
free energy has two zeros. Their positions define
the phase coexistence region. We determined the
stability limit of the gas phase. As positions and
velocities are decorrelated, we studied two cases :
first without any motion, and then with collective
motion. In the first case:

βGL =
kT

2aρ (1 − bρ)2
, (12)

which means that the transition line does not
depend on the alignment parameter (Fig. 16).
Note also that there is no transition point in the
zero–density limit of this model. We numerically
solved the case with collective motion and found a
stabilization of the “liquid” phase (Fig. 16). This
is an effect of the assumption that velocity fluc-
tuations are negligible. At the onset of motion,
we expect that fluctuations of the macroscopic
velocity diverge, leading to strong density fluctu-
ations. This could explain the de–stabilization of
the “liquid” phase (Fig. 15) and its stabilization
in the mean field model 16, where such fluctua-
tions are by definition absent.
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